18 research outputs found

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations

    Accuracy versus precision in boosted top tagging with the ATLAS detector

    Get PDF
    Abstract The identification of top quark decays where the top quark has a large momentum transverse to the beam axis, known as top tagging, is a crucial component in many measurements of Standard Model processes and searches for beyond the Standard Model physics at the Large Hadron Collider. Machine learning techniques have improved the performance of top tagging algorithms, but the size of the systematic uncertainties for all proposed algorithms has not been systematically studied. This paper presents the performance of several machine learning based top tagging algorithms on a dataset constructed from simulated proton-proton collision events measured with the ATLAS detector at √ s = 13 TeV. The systematic uncertainties associated with these algorithms are estimated through an approximate procedure that is not meant to be used in a physics analysis, but is appropriate for the level of precision required for this study. The most performant algorithms are found to have the largest uncertainties, motivating the development of methods to reduce these uncertainties without compromising performance. To enable such efforts in the wider scientific community, the datasets used in this paper are made publicly available.</jats:p

    Composite anodes for lithium-ion batteries: status and trends

    No full text

    Porous carbon spheres: Recent developments and applications

    No full text

    The <em>Drosophila</em> gonads: models for stem cell proliferation, self-renewal, and differentiation

    No full text

    Integrative Nanomedicine: treating Cancer with Nanoscale Natural Products

    No full text

    Tools for estimating fake/non-prompt lepton backgrounds with the ATLAS detector at the LHC

    Get PDF
    International audienceMeasurements and searches performed with the ATLAS detector at the CERN LHC often involve signatures with one or more prompt leptons. Such analysesare subject to `fake/non-prompt' lepton backgrounds, where either a hadron or a lepton from a hadron decay or an electron from a photon conversion satisfies the prompt-leptonselection criteria. These backgrounds often arise within a hadronic jet because of particle decays in the showering process, particle misidentification or particleinteractions with the detector material. As it is challenging to model these processes with high accuracy in simulation, their estimation typically uses data-driven methods.Three methods for carrying out this estimation are described, along with their implementation in ATLAS and their performance
    corecore