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Abstract: The identification of top quark decays where the top quark has a large momentum transverse

to the beam axis, known as top tagging, is a crucial component in many measurements of Standard

Model processes and searches for beyond the Standard Model physics at the Large Hadron Collider.

Machine learning techniques have improved the performance of top tagging algorithms, but the size

of the systematic uncertainties for all proposed algorithms has not been systematically studied. This

paper presents the performance of several machine learning based top tagging algorithms on a dataset

constructed from simulated proton-proton collision events measured with the ATLAS detector at√
𝑠 = 13 TeV. The systematic uncertainties associated with these algorithms are estimated through

an approximate procedure that is not meant to be used in a physics analysis, but is appropriate for

the level of precision required for this study. The most performant algorithms are found to have the

largest uncertainties, motivating the development of methods to reduce these uncertainties without

compromising performance. To enable such efforts in the wider scientific community, the datasets

used in this paper are made publicly available.
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1 Introduction

Collisions at the Large Hadron Collider (LHC) [1] can produce short-lived heavy Standard Model
(SM) particles such as the 𝑊 and 𝑍 bosons, the Higgs boson, and the top quark. These particles often
decay to quarks, which later hadronize and are detected as collimated sprays of particles called jets. In
the case that the originating particle’s momentum transverse to the beam axis (𝑝T) is large compared
to its mass (i.e. it is boosted), the decay products are highly collimated in the laboratory frame and
are reconstructed as a single jet. The task of distinguishing jets resulting from the decays of heavy
particles from the much more numerous jets resulting from light quarks and gluons is known as boosted

jet tagging. There is a rich history of boosted jet tagging methods at the LHC [2ś4]. Recently, the
adoption of machine-learning-based algorithms for boosted jet tagging has provided large performance
improvements [5, 6]. These algorithms, often called jet taggers, have been used in two ways. The őrst
is to make use of high-level quantities, which are observables designed to produce different values
when the jet is due to the decay of a heavy particle versus due to light quarks and gluons. These
are always functions of the kinematic properties of the constituent particles (called jet constituents)
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within a jet, which are experimentally reconstructed from inner detector tracks, calorimeter energy
deposits, or some non-trivial combination of the two. A set of high-level quantities is calculated
for a given jet, and then used as input to a neural network. The second approach is to directly use
the kinematic properties of the constituent particles as input to a neural network (see ref. [7]). The
information contained in a set of high-level quantities is a subset of the information contained in the
kinematic properties of the constituent particles, so the second approach has the potential for higher
performance. However, it requires the use of more complex neural networks as there are a varying
and possibly large number of constituent particles within a jet.

The performance of the constituent-based approach has been demonstrated [8ś13] in the context
of highly detailed simulation of the ATLAS [14ś16] and CMS [17] detectors, and used to enhance
the sensitivity of several physics analyses at the LHC [18ś20]. However, open questions remain
about the relative size of the systematic uncertainties associated with various constituent-based jet
tagging algorithms. The simulated datasets on which ATLAS and CMS train and evaluate ML-based
jet tagging algorithms are a useful, but limited approximation of the experimental data gathered by
the experiments. There are important differences that can produce different jet tagging efficiencies
between simulated and experimental data. These differences in efficiency are accounted for through
a measuremement of scale factors, deőned as the ratio of the efficiency in simulated data to the
efficiency in experimental data, and its associated uncertainties. These scale factors are required for
interpreting the results of any physics analysis in the context of the SM or any beyond the Standard
Model (BSM) physics model, so it is crucial to consider the size of scale-factor uncertainties when
comparing jet tagging algorithms. Scale-factor measurements are a signiőcant bottleneck in the
development of new jet tagging algorithms, as they require access to experimental data and must
be independently repeated for each algorithm. As a result they have only been carried out for a
few constituent-based taggers [21, 22], and most studies on constituent-based jet tagging have not
considered the uncertainties associated with the application of the tagger to experimental data.

This paper presents the performance of several constituent-based taggers, compared to the
performance of a baseline high-level-quantity-based tagger, on a benchmark jet tagging task that
involves identifying jets originating from the decay of a boosted top quark. This task, known as top

tagging, is a crucial component of many measurements of SM processes that involve the production of
top quarks [23ś30] and searches for BSM physics that contain top quarks in their őnal state [31ś36].
It is used as a benchmark jet tagging task since the three-body decay of the top quark produces jets
with a distinctive three-subjet radiation pattern, which can be used to distinguish them from the
background of jets originating from light quarks and gluons.

Following the performance comparison, the systematic uncertainties associated with the application
of each tagger to experimental data are assessed by applying systematic variations directly to the
kinematics of the jet constituents used as inputs to the neural networks. The resulting variations in
tagger efficiency are used to estimate the size of the systematic uncertainties associated with each tagger.
This approach does not require experimental data, and can be easily repeated for an arbitrary tagger
by measuring performance on the testing set with the systematic variations. applied, allowing the
őrst comparison of the systematic uncertainties produced by various jet tagging algorithms. However,
as will be discussed, there are many simplifying assumptions made in this approach. The resulting
systematic uncertainties lack the precision needed for use in a physics analysis, but they do provide a
useful estimate of the size of the systematic uncertainties associated with each tagger.
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The rest of this paper is organized as follows. The samples of simulated collision events used
in this study are described in section 2, and the subsequent jet reconstruction and event selections
are described in section 3. The various jet taggers considered are described in section 4, and the
performance of the taggers is compared in section 5. Section 6 describes the procedure used to
estimate the systematic uncertainties associated with each tagger, and presents the results. Finally,
conclusions are drawn in section 7.

2 Monte carlo simulation samples

Simulated proton-proton collisions at
√
𝑠 = 13 TeV using Monte Carlo (MC) methods are used

throughout this study. The nominal samples are generated at leading-order (LO) with Pythia8 [37]
using the NNPDF2.3LO [38] set of parton distribution functions (PDFs) and the A14 [39] set of tuned
parameters. The effects of pile-up are simulated by overlaying inelastic interactions on top of the
underlying hard scattering process. All simulated samples are passed through a Geant [40]-based
simulation of the ATLAS detector. For more details on the ATLAS detector, see ref. [14]. Boosted top
quarks are selected from simulated events containing the decay of a heavy BSM 𝑍 boson (𝑍 ′ → 𝑡𝑡 ),
with 𝑚𝑍 ′ = 2 TeV [41]. The cross section of this process is reweighted to produce an approximately
ŕat jet 𝑝T distribution to efficiently populate the kinematic region [0.35, 5] TeV. Light-quark and
gluon jets are selected from simulated events containing the production of high 𝑝T light quarks and
gluons through quantum chromodynamic (QCD) processes.

Additional samples of simulated collisions are utilized to assess the uncertainties from the
modeling of the parton shower and hadronization processes as described in section 6.2. These
uncertainties for boosted top-quark jets are assessed using simulated collision events containing
the production of boosted top quarks through SM processes. Two samples are generated with
matrix element calculations performed by the Powheg Box v2 [42ś45] generator at NLO with the
NNPDF3.0nlo [46] PDF set and the ℎdamp parameter1 set to 1.5 times the mass of the top quark [47].
For both samples the decays of bottom and charm hadrons were performed by EvtGen 1.6.0 [48].
In one sample the parton shower and hadronization is then modeled with Pythia8 [37], and in the
other it is modeled with Herwig7 [49, 50].

The uncertainties from the modeling of the parton shower and hadronization processes in the
production of light-quark and gluon jets are assessed using four samples of simulated collisions. All
of these samples are generated with matrix element calculations at LO using the NNPDF3.0LO [46]
PDF set. The parton shower modeling uncertainty is estimated by comparing performance between
samples generated with Herwig7, one produced with the default angular ordered parton shower model,
and the other produced with an alternative dipole parton shower model. The default cluster-based
hadronization model is used for both samples [51]. The hadronization model uncertainty is estimated
by comparing performance between samples generated with Sherpa2.2 [52], one produced with the
default cluster-based hadronization model [51], and the other produced with the Sherpa interface to
the Lund string fragmentation model of Pythia 6 [53] and its decay tables. The default 𝑝T ordered
parton shower model is used for both Sherpa generated samples.

1The ℎdamp parameter is a resummation damping factor and one of the parameters that controls the matching of Powheg

matrix elements to the parton shower and thus effectively regulates the high-𝑝T radiation against which the 𝑡𝑡 system recoils.
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3 Jet reconstruction, selection, and pre-processing

Uniőed Flow Objects (UFOs) [54] are jet clustering input objects that make use of different ATLAS
sub-systems in different kinematic ranges.2 At low 𝑝T, the inner tracking detector provides exceptional
spatial and momentum resolution, so low-𝑝T charged constituents are reconstructed from tracks using
charged Particle Flow objects (PFO) [55]. At high transverse momentum, the tracking detector’s
momentum resolution degrades but it retains high spatial resolution, and so high-𝑝T charged constituents
are reconstructed using energy measurements from the calorimeters and spatial measurements from
the tracking detector using Track Calo Clusters (TCC) [56]. Electrically neutral constituents are
reconstructed as neutral PFOs using measurements from the electromagnetic and hadronic calorimeters.
This scheme provides accurate reconstruction of constituent particles across a wide kinematic range.

Both the leading and sub-leading jets in 𝑝T in each event are used in these studies. Jets are
clustered using the anti-𝑘𝑡 algorithm [57] with a radius parameter of 𝑅 = 1.0, as implemented in the
FastJet package [58]. The Constituent Subtraction [59, 60] and Soft-Killer [61] (CSSK) algorithms
are applied to the neutral UFOs to mitigate contamination from any radiation that comes from pile-up
collisions rather than the quarks or gluons that initiated the jet. Further, the Soft-Drop algorithm [62]
(SD) is applied with parameters 𝛽 = 1.0 and 𝑧cut = 0.1 to remove soft and wide-angle radiation
resulting from pile-up or the underlying event.

Some requirements in the jet selection are placed on the truth jet, which is a jet formed from
stable particles3 in the simulated event before the detector response is modeled. All jets are required
to have a matched truth jet with Δ𝑅(jet, truth jet) < 0.75 The jet itself is required to have a mass
of at least 40 GeV, and at least three constituents. This last requirement is included to ensure the
preprocessing scheme described below is well deőned.

Jets in the signal sample must satisfy additional requirements which ensure the jet is due to
the decay of a top quark, and the decay products of the top quark are fully contained within the
jet. They require that the truth jet be spatially aligned with the observed jet, have a mass greater
than 140 GeV, have a ghost-associated bottom hadron [63], and satisfy a 𝑝T-dependent requirement
on the 𝑘𝑡 splitting scale

√
𝑑23 [64]. For more details on these requirements, see ref. [65]. All of

the requirements are summarized in table 1.

The training and performance of ML models can often be improved by applying pre-processing

to the data to eliminate irrelevant features and capitalize on well-known symmetries. One set of
irrelevant features is the unphysical bumps in the 𝑝T spectrum of the background light-quark and
gluon jets, which result from the simulation of QCD multĳet events in intervals of jet 𝑝T to allow for
efficient generation of high-𝑝T events. A physical 𝑝T spectrum is not required for tagger training. It is
only important that the tagger is trained to classify jets from across the desired kinematic range. To
achieve this, the background jet 𝑝T spectrum is re-weighted to match the approximately ŕat signal jet
𝑝T spectrum. Additionally, to a good approximation the probability of a jet to be due to a top quark or

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis
points upwards. Polar coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The

pseudorapidity is deőned in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2) and is equal to the rapidity 𝑦 =
1
2 ln

(

𝐸+𝑝𝑧𝑐
𝐸−𝑝𝑧𝑐

)

in

the relativistic limit. Angular distance is measured in units of Δ𝑅 ≡
√︁

(Δ𝑦)2 + (Δ𝜙)2.
3The stable particles are required to have a lifetime greater than 10 ps and muons and neutrinos are excluded as they only

leave minimal energy within the calorimeter.
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Table 1. A summary of the requirements applied on all of the jets in the simulation samples to produce the
training and testing sets. The additional top-quark jet requirements constitute the truth labeling strategy, and are
only applied to jets taken from the 𝑍 ′ → 𝑡𝑡 and SM 𝑡𝑡 samples of simulated events.

Jet requirements Top-quark jet requirements

Δ𝑅(jet, truth jet) < 0.75 Δ𝑅(truth jet, top parton) < 0.75

Jet |𝜂true | < 2.0 Ungroomed truth jet mass > 140 GeV

Jet 𝑝T,truth > 350 GeV Number ghost-associated 𝑏-hadrons ≥ 1

Number of constituents ≥ 3 Truth jet
√
𝑑23 > exp

(

3.3 − 6.98 × 10−4 × truth jet 𝑝T [GeV]
)

Jet mass > 40 GeV

to a light quark or gluon is invariant under translations of the jet in the 𝜂-𝜙 plane, and rotations of the
jet about the jet axis. In this study, a pre-processing of the angular coordinates modeled after that
used in ref. [7] is applied to the 𝜂 and 𝜙 coordinates of all jet constituents to remove this approximate
traslational and rotational symmetry. First the coordinates of the jet constituents are shifted such that
the highest 𝑝T constituent is located at the origin of the 𝜂-𝜙 plane. Then the jet is rotated such that
the second highest 𝑝T constituent is located on the negative 𝜙 axis. Finally if the third highest 𝑝T

constituent is located in the negative 𝜂 half-plane, the jet is reŕected about the 𝜙 axis to place it in
the positive 𝜂 half-plane. It is also advantageous to pre-process the constituent 𝑝T and energy values
to place them on an O(1) scale. This is done by taking the logarithm of these values. Three other
constituent-level quantities are calculated and used as inputs to the constituent-based taggers. The
őrst is the angular distance of the constituent from the jet axis, calculated as

𝑅 =

√︃

𝜂2 + 𝜙2, (3.1)

where 𝜂 and 𝜙 are taken after the pre-processing. The second (third) is calculated by dividing the
constituent 𝑝T (energy) by the total 𝑝T (energy) in the jet, and then taking the logarithm of this
fraction. All together, seven consituent-level quantities are used as inputs to the constituent-based
taggers: the preprocessed 𝜂 and 𝜙 coordinates, the logarithm of the 𝑝T and energy of the constituent,
the logarithm of the fraction of the constituent 𝑝T and energy to the total 𝑝T and energy of the jet,
and the angular distance of the constituent from the jet axis.

The number of constituents for a selection of jets from the 𝑡𝑡 enriched region described in
ref. [66] is shown in őgure 1 comparing the simulation to a data sample of proton-proton collisions
at

√
𝑠 = 13 TeV recorded with the ATLAS detector during Run 2 of the LHC and corresponding

to an integrated luminosity of 140 fb−1 [67, 68]. Despite the complexity of the ATLAS detector’s
calorimetry the number of constituents in data is well modeled by simulation. The jets in this histogram
are representative of those entering the signal regions of most analyses targeting boosted top quarks.
Each constituent is characterized by a four-vector, so there is an average of around 200 dimensions
used as input to the constituent-based taggers. To reduce the memory and compute requirements
for training the constituent-based taggers, the number of constituents used as input is limited to
80. Most boosted top jets have fewer than 80 constituents, but those with more are truncated. The
effects of this truncation are mitigated by őrst sorting the constituents by decreasing 𝑝T, ensuring
that only the softest constituents are removed.
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Figure 1. The number of constituents in a sample of jets obtained from the 𝑡𝑡 enriched region described
in ref. [66]. The number of constituents is shown for both the Powheg Box v2+Pythia 8 MC sample and
experimental data.

4 Top quark taggers

The top quark taggers considered in this study are described below. The constituent-based taggers use
the four-vectors of the UFOs used to reconstruct the jet as inputs, while the high-level-quantity-based
tagger uses the 15 high-level quantities listed in table 3 as inputs. Information useful for identifying
heavy-ŕavor decays, such as the presence of displaced-vertices, is not used as input to any of the taggers.
Instead the taggers are trained to identify the “3-pronged” substructure of boosted top-quark jets.
Inclusion of displaced-vertex information in the inputs would likely improve the taggers’ performance,
but maximizing performance is not the goal of this study and so this is left for future work. The number
of trainable parameters and inference time, deőned as the amount of time required to run inference for
a batch of 256 jets on an NVIDIA Tesla V100 GPU, are shown for each tagger considered in this study
in table 2. Many other proposed jet tagging algorithms have shown promising performance in the
context of simpliőed jet reconstruction and detector simulation [69ś74], but these are not considered
in this study. The training, validation, and testing sets consisted of about 9 million, 1 million, and
3.8 million jets respectively, each with equal parts signal and background jets. The taggers were
trained and the hyper-parameters were chosen as described in ref. [8].

4.1 High-level-quantity baseline

The high-level quantity densely connected neural network tagger (hlDNN) is trained on the 15
high-level quantities listed in table 3. This tagger is modeled after ref. [65], and serves as the baseline
against which the constituent-based taggers are compared. The network is a standard multi-layer
perceptron [75] (MLP).

4.2 Densely connected neural network

The simplest constituent-based tagger is the densely connected neural network (DNN), which is a
multi-layer perceptron operating directly on a vector of the constituent information [83]. When there
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Table 2. The number of trainable parameters and inference time for each tagger considered in this study. The
inference time is measured using a NVIDIA Tesla V100 GPU.

Tagger Number of parameters Inference time

hlDNN 133,381 3 ms

DNN 876,641 3 ms

EFN 959,251 4 ms

PFN 754,501 3 ms

ResNet 50 1,499,585 20 ms

ParticleNet 764,887 143 ms

Table 3. A listing of the 15 quantities used to train the baseline high-level-quantity-based tagger.

Quantity Symbols References

N-subjettiness 𝜏1, 𝜏2, 𝜏3, 𝜏4 [76] [77]

𝑘𝑡 Splitting Scales
√
𝑑12,

√
𝑑23 [78]

Generalized Energy Correlation Functions 𝐸𝐶𝐹1, 𝐸𝐶𝐹2, 𝐸𝐶𝐹3, 𝐶2, 𝐷2, 𝐿2, 𝐿3 [79] [80] [81]

Minimum Pair-wise Invariant Mass 𝑄𝑤 [78]

Thrust Major 𝑇𝑚 [82]

are less than 80 constituents in a jet, this vector contains zero padding which is used as input to the DNN.
The DNN has no mechanism for masking these zero padded inputs, meaning it has no inductive bias, or
specialization to the top tagging task, that naturally accounts for the variable number of jet constituents.
The DNN uses all 7 of the pre-processed constituent-level quantities described in section 3 as inputs.

4.3 Energy flow network

The Energy Flow Network [84] (EFN) is a model speciőcally engineered for jet tagging. It uses the
DeepSets structure [85], which ensures permutation invariance across the jet constituents used as
input and naturally handles the variable number of jet constituents. The EFN also uses a 𝑝T weighting
mechanism to ensure that lower 𝑝T consituents have lower impact on the output of the network. This
𝑝T weighting can be interpreted as enforcing infrared and collinear (IRC) safety [86]. The output for
any of the other networks considered in this study is not IRC safe. The EFN uses the logarithm of the
constituent 𝑝T as input to the 𝑝T weighting mechanism, and does not use the constituent energy as input.

4.4 Particle flow network

The particle ŕow network [84] (PFN) has a very similar structure to the EFN that naturally deals
with the variable number of jet constituents and enforces permutation invariance. However it does
not use the 𝑝T weighting mechanism, and uses the constituent energy and all other constituent-level
quantities described in section 3 as inputs.

4.5 ResNet 50

ResNet 50 [87] is a large-scale convolutional neural network (CNN) designed for image classiőcation
tasks. CNNs operate on two dimensional arrays whose values give pixel intensity. Noting the similarity
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Figure 2. (a) An example background jet image. (b) An example signal jet image. (c) The ratio of the average
signal and background jet images.

between energy deposits in the ATLAS calorimeter and standard two-dimensional images [88ś92],
the jets are converted into “jet images” by binning each constituent’s 𝜂 and 𝜙 coordinates into 64
bins, equally spaced in the range of [−2, 2]. The image is then a 64x64 square array where the pixel
values are the sum of the raw 𝑝T of the constituents within the pixel, normalized such that the sum
of the pixel intensity over the image is one. Pixel intensities are then rescaled by log(1 + 100 × 𝑝T)
to make lower 𝑝T patterns in the jet substructure visible.

Typically the images produced for single jets are very sparse, with most pixels containing no
constituents. Example signal and background jet images are shown in őgure 2, along with an image
which shows the ratio of the average signal and background jets. The differences between the average
radiation patterns for signal and background jets can be seen in deviations of the ratio from one. An
excess of transverse momentum concentrated just below the origin on the negative 𝜙-axis results
from the second prong of boosted top jets which is preprocessed to align with this axis. The diffuse
excess of transverse momentum distributed around the center is due to the third prong of the boosted
top jets. Finally the deőcit of transverse momentum in the center of the image is due to the more
collimated nature of light-quark and gluon jets.
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Table 4. The performance of each top quark tagger is measured with several metrics evaluated on the testing
set. AUC is the area under the receiving-operator-characteristic curve, ACC is the accuracy, and 𝜀−1

𝑏𝑘𝑔
is the

inverse background efficiency (or background rejection) evaluated at working points which yield a given signal
efficiency (𝜀𝑠𝑖𝑔) across the entire testing set. For all metrics, a higher value means better performance, and
the table is sorted by increasing AUC. The uncertainty reported on the metrics is the quadrature sum of the
uncertainty from the őnite statistics of the testing set and the error from the random initialization of network
weights and the stochastic nature of network training.

Tagger AUC ACC 𝜀−1
𝑏𝑘𝑔

@ 𝜀𝑠𝑖𝑔 = 0.5 𝜀−1
𝑏𝑘𝑔

@ 𝜀𝑠𝑖𝑔 = 0.8

ResNet 50 0.872 ± 0.006 0.787 ± 0.006 18.4 ± 1.1 4.63 ± 0.2

EFN 0.894 ± 0.001 0.810 ± 0.001 23.8 ± 0.5 5.74 ± 0.07

hlDNN 0.9374 ± 0.0001 0.8628 ± 0.0002 47.2 ± 0.4 10.36 ± 0.03

DNN 0.9447 ± 0.0004 0.8715 ± 0.0008 73.0 ± 1.3 12.5 ± 0.1

PFN 0.9502 ± 0.0004 0.878 ± 0.001 92.7 ± 1.8 14.6 ± 0.2

ParticleNet 0.9614 ± 0.0005 0.895 ± 0.001 155.8 ± 3.8 20.6 ± 0.4

4.6 ParticleNet

ParticleNet [93] is a graph neural network (GNN) which represents each jet as a graph composed
of nodes and edges. Each constituent in a jet is associated with a node, where all of the input
quantities are taken as features of the node. In this study, these are the 7 constituent-level quantities
deőned in section 3. Each node is connected by an edge to its 𝑘 nearest neighbors in the 𝜂-𝜙 plane,
where 𝑘 is a network hyper-parameter. ParticleNet applies a specialized form of the EdgeConv
operation [94] to this graph. This operation is similar to the two dimensional convolution used in
CNNs, but deőned on graphs instead of images.

Like the EFN and PFN, ParticleNet naturally handles the variable lengths of jets and enforces
permutation invariance. However the EdgeConv operation acts on the feature vectors of pairs of
constituents that are spatially close to each other, rather than each constituent separately. These paired
inputs allow ParticleNet to exploit the local relations between constituents.

5 Tagger performance

Performance metrics for the six taggers evaluated on the testing set are shown in table 4. The metrics
are the area under the receiving-operator-characteristic curve (AUC) [95], the fraction of correct
predictions (ACC), and the inverse of the background efficiency (background rejection) at two different
working points that őx the signal efficiencies to 50% and 80%. The uncertainties in the performance
metrics are the quadrature sum of the uncertainty from the őnite size of the testing set (statistical
uncertainty), and the uncertainty from the random initialization of the weights and the stochastic nature
of network training (training uncertainty). The statistical uncertainty is calculated as the standard
error of the performance metrics over 100 bootstrap replicas of the testing set [96]. The training
uncertainty is calculated by training each network 10 times on the same training set with different
weight initializations and batching of training data, and then evaluating the standard error of the
performance metrics over the 10 training runs. The differences in the performance metrics between the
taggers are larger than the uncertainties in the performance metrics. In all metrics, ParticleNet achieves
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Figure 3. Background rejection, or inverse background efficiency (𝜀−1
𝑏𝑘𝑔

), of the hlDNN, PFN, and ParticleNet
top quark taggers as a function of the jet 𝑝T at the (a) 50% signal efficiency and (b) 80% signal efficiency
working points. Shaded error bands are the quadrature sum of the error from the őnite size of the testing set and
the error from the random initialization of network weights and the stochastic nature of network training.

the best performance, followed by the PFN, the DNN, and the high-level-quantity-based tagger. The
EFN and ResNet50 fail to outperform the hlDNN, despite access to the constituent information. The
structure of the EFN ensures it is insensitive to low 𝑝T jet constituents, but at the expense of not fully
exploiting the available information. The weaker relative performance of ResNet50 is more suprising,
given its strong performance on datasets generated with a parametric detector simulation [7]. The
parametric detector simulation assumes uniform calorimeter cell granularity. Realistic calorimeters
like those used in ATLAS have a non-uniform granularity, which is captured in the high quality
simulation used to produce ATLAS simulated data. Building jet images by applying a uniform
pixelization to jet constituents in the context of a non-uniform calorimeter granularity could produce
non-physical distortions that are not present in simulated events generated with a parametric detector
simulation. This could explain the weaker performance of ResNet50 on ATLAS simulated data.

The background rejection at the 50% and 80% signal efficiency working points is shown as
a function of the jet 𝑝T in őgure 3 for the hlDNN, PFN, and ParticleNet taggers. Unlike the
high-level-quantity-based tagger, the constituent-based taggers’ performances are best in the mid-𝑝T

range around 1ś2 TeV. The high 𝑝T decrease in background rejection is expected, since the higher
collimation of jets at high-𝑝T makes it harder for the tracking detector and calorimeters to resolve
the 3-pronged substructure of boosted top jets. The low-𝑝T increase in background rejection appears
for all constituent-based taggers.

6 Systematic uncertainties

Samples of simulated events generated with Monte Carlo methods are a useful model of the experimental
data collected by the ATLAS detector for a given physics process, but as important differences between
simulated and experimental data can exist, the efficiency of a tagger in experimental data cannot
be assumed to be the same as the efficiency in simulated data. To establish the sensitivity of a
physics analysis to a SM or BSM process, this difference in efficiency must be known. The standard
method to establish this difference is to measure a scale-factor and the accompaying uncertainties.
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Scale-factor measurements are made using samples of signal and background jets collected from
experimental data. These samples are not obtainable for difficult-to-isolate SM or any BSM signature
in jet substructure, meaning scale-factors cannot be derived in many applications of jet tagging.
Scale-factor measurements are also time intensive, making it difficult to measure scale factors for two
taggers and then compare the size of the scale factors and their uncertainties.

An alternative approach to constraining the difference in tagger efficiency between simulated and
experimental data is to apply a set of systematic variations directly to simulated data, which alter the
tagger inputs within their uncertainties. These variations produce many systematic varied datasets, and
a tagger is then trained on the nominal and evaluated on the nominal and systematic varied datasets.
The differences in tagger efficiency between the nominal and systematic varied datasets can then be
used to set an uncertainty in the tagger’s efficiency in simulated data. Provided the systematic variations
account for all possible differences between simulated and experimental data at the level of the tagger
inputs, the uncertainty provides an estimate of the expected size of the difference in tagger efficiency.

Differences can be classiőed into two types: possible mis-modeling of the measurements of
the kinematic properties of jet constituents by the ATLAS detector (which produce experimental

uncertainties), and possible mis-modeling of the underlying physical processes that produce the jets
(which produce theoretical uncertainties). In this paper, the theoretical uncertainties are assessed
by evaluating the tagger efficiency over samples of jets generated with alternative models of the
underlying physics processes that produce light quarks, gluons, and top quarks. This is similar to
the procedure used in evaluating theoretical uncertainties in scale-factor measurements [66]. The
experimental uncertainties are assessed by varying the kinematic properties of the jet constituents
within the uncertainties of the ATLAS detector’s measurements. These uncertainties are established
through auxiliary measurements such as refs. [97, 98]. This is termed the “bottom-up” approach to
experimental uncertainties, which has been used to produce several measurements of jet substructure
observables [27, 99, 100]. In practice it is difficult to construct a set of variations that cover all possible
experimental uncertainties without over-covering some uncertainties and disregarding others. For
this reason the approach of applying systematic variations directly to simulated data is generally less
precise than scale-factor measurements, but it offers several advantages. Once the systematically
varied datasets are constructed, it is very easy to set uncertainties on the efficiency of an arbitrary
tagger, as it only requires running inference over additional datasets. Further, the approach requires
no samples of signal and background jets taken from experimental data. This is particularly useful
for analyses which use a jet tagger to identify BSM physics signatures.

In this section, the standard approach to theoretical uncertainties is combined with the bottom-up
approach to set uncertainties on the background rejection of the taggers. In a realistic physics analysis,
scale factors and their uncertainties would be derived for the signal efficiency. This study derives
uncertainties on the background rejection to have a single performance metric and its associated
uncertainty which can be compared between taggers. Several assumptions are made to simplify
the experimental uncertainties assigned in this study which will be mentioned explicitly in the
following sections. As a result the experimental uncertainties are only intended to be an estimate
of the relative size of the experimental uncertainties associated with each tagger, and are not meant
to be used in a physics analysis.
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6.1 Experimental uncertainties

The UFOs used as inputs to the constituent-based taggers can be classiőed into three types: charged,
neutral, and merged [54]. Charged UFOs are simply charged PFOs where an inner detector track [101]
is matched to a topological cluster [102] and used to subtract the expected calorimeter energy from
the cluster in a process called cell subtraction. The properties of charged UFOs are determined by
the underlying inner detector track, so a set of systematic variations covering track uncertainties
are applied to these objects [103, 104].

Neutral UFOs are the topological clusters which remain after both the cell subtraction procedure
in the Particle Flow algorithm, and the splitting procedure in the TCC algorithm. Their properties
are primarily determined by the underlying topological cluster, but the inner detector tracks can
also affect them through the cell subtraction and TCC splitting procedures. In this paper, the
simplifying assumption is made that neutral UFOs are only affected by the underlying topological
cluster, and so a set of systematic variations covering topological cluster uncertainties are applied
to these objects [27, 98, 100].

Merged UFOs start as charged PFOs where the cell subtraction procedure is disabled due to a large
amount of calorimeter activity in the vicinity of the track. The TCC algorithm is then run with these
charged PFOs as input. The UFOs this algorithm outputs have their 𝑝T determined by the properties
of the underlying topological cluster, and their 𝜂 and 𝜙 determined by the properties of the underlying
inner detector track. Since merged UFOs have their properties set by a combination of the properties
of the underlying inner detector tracks and topological clusters, a selection of the track and topological
cluster systematic variations are applied to these objects. This paper makes the simplifying assumption
that the 𝜂 and 𝜙 coordinates of merged UFOs are determined solely by the properties of the underlying
inner detector track, and the 𝑝T and energy of merged UFOs are determined solely by the properties of
the underlying topological cluster. This is not strictly true because of the complex interplay between
the inner detector tracks and topological clusters in the particle ŕow and TCC algorithms.

The track uncertainties are covered by three systematic variations: the track fake rate, the tracking
efficiency, and the track bias. The track fake rate systematic variation accounts for uncertainty in
the rate of tracks produced by chance alignment of signals in the tracking detector. The size of this
uncertainty is estimated by studying the non-linear component of the evolution of the number of inner
detector tracks with increasing pile-up in experimental data collected through random triggers [101].
The systematic variation selectively drops charged or merged UFOs, which has the effect of decreasing
the track fake rate by its uncertainty. An increase in the track fake rate is then covered by symmetrizing
the uncertainty in the tagger background rejection.

The tracking efficiency systematic variation accounts for uncertainty in the efficiency of őnding true
tracks. It contains components that account for limited knowledge of the inner detector material [101],
and the merging of tracks within dense tracking environments such as the cores of jets [105]. Like the
track fake rate systematic variation, the track efficiency systematic variation drops charged or merged
UFOs, but with different probabilities. This has the effect of decreasing the tracking efficiency, and an
increase in the efficiency is covered by symmetrizing the uncertainty in the tagger background rejection.

The track bias systematic variation accounts for possible biases in track 𝑝T measurements due
to residual misalignments in the ATLAS tracking detector [106]. This systematic variation biases
the ratio of the track’s charge to its momentum for charged UFOs, which in turn shifts the UFO
𝑝T. It is only applied to charged UFOs, since merged UFOs have their 𝑝T set by the properties
of the underlying topological cluster.
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Figure 4. The relative uncertainty in the background rejection due to the track systematic uncertainties as a
function of the jet 𝑝T for (a) the EFN and (b) ParticleNet taggers. The total uncertainty is the quadrature sum of
all track uncertainties. The ŕuctuations in the uncertainty result from the őnite statistics of the nominal and
systematic varied datasets. All uncertainties are evaluated at the 50% signal efficiency working point.

The relative uncertainty in background rejection due to the track uncertainties as a function
of the jet 𝑝T is shown in őgure 4 for the EFN and ParticleNet taggers. Fluctuations in the track
uncertainties result from the őnite statistics of the nominal and systematic varied datasets. For both
taggers the track fake rate is the dominant uncertainty in most 𝑝T bins. ParticleNet is found to be
more sensitive to the track systematic uncertainties than the EFN.

The cluster uncertainties are covered by three systematic variations: the cluster energy scale, the
cluster energy resolution, and the cluster position resolution. The cluster reconstruction efficiency
is a negligible source of uncertainty at the 𝑝T scale of the clusters contained within the jets in this
study. The cluster energy scale systematic variation accounts for uncertainty in the response of the
ATLAS calorimeter. A difference in the cluster energy scale between simulated and experimental
data would produce a coherent shift in the energy and 𝑝T measurements of topological clusters
toward higher or lower energy. The size of these possible differences is estimated by matching
topological clusters to isolated inner detector tracks, and studying the differences between the ratio
of the topological cluster’s energy to the inner detector track’s momentum (this quantity is often
termed E/p) between simulated and experimental data [97]. The difference in the mean of the E/p
distributions between simulated and experimental data gives the cluster energy scale uncertainty. The
energy and 𝑝T measurements of the neutral and merged UFOs are then shifted either up or down
by an amount within the cluster energy scale uncertainty to create the systematic varied datasets.
The őnal uncertainty is then the maximum of the differences in background rejection between the
nominal and the cluster energy scale varied up and down datasets.

The cluster energy resolution systematic variation accounts for uncertainty in the energy resolution
of the ATLAS calorimeter. The size of this uncertainty is estimated by comparing the standard
deviations of the distributions of E/p between simulated and experimental data. The cluster energy
resolution is varied up by an amount within the uncertainty by applying Gaussian smearing to the energy
and 𝑝T measurements. It is then varied down by symmetrizing the uncertainty in the tagger efficiency.

Finally, the cluster position resolution systematic variation accounts for uncertainty in the position
resolution of the ATLAS calorimeter. The size of this uncertainty is set by comparing the angular
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Figure 5. The relative uncertainty in the background rejection due to the cluster systematic uncertainties as a
function of the jet 𝑝T for (a) the EFN and (b) ParticleNet taggers. The total uncertainty is the quadrature sum of
all cluster uncertainties. All uncertainties are evaluated at the 50% signal efficiency working point.

coordinates between isolated tracks matched to isolated clusters. Like the cluster energy resolution
systematic, the cluster position resolution is varied up by applying Gaussian noise, but it acts on the 𝜂
and 𝜙 coordinates instead of the energy and 𝑝T. It is varied down by symmetrizing the uncertainty in
the tagger efficiency. This variation is applied only to neutral UFOs since the 𝜂 and 𝜙 coordinates
of merged UFOs are set by the underlying inner detector track.

In addition to these systematic variations, the taggers may be sensitive to the splitting and merging
of topological clusters, where a single particle is reconstructed as two or more clusters, or two or more
particles are reconstructed as single cluster. This paper makes the simplifying assumption that this
effect, and any other effects that may bias the reconstruction of jet constituents, is negligible.

The relative uncertainty in background rejection due to the cluster uncertainties as a function
of the jet 𝑝T is shown in őgure 5 for the EFN and ParticleNet taggers. For both taggers the cluster
energy scale uncertainty is dominant in all 𝑝T bins.

6.2 Theoretical uncertainties

Quarks and gluons produced in proton-proton collisions undergo a parton shower and hadronization
before they form jets. Given the strongly coupled nature of QCD, the description of the parton shower
and hadronization processes within the MC simulation is not exact. The possible differences between
simulated and experimental data that result are covered by parton shower and hadronization modeling
uncertainties. For the 𝑍 ′ → 𝑡𝑡 process used to obtain a sample of boosted top jets, these uncertainties
are estimated by evaluating the tagger background rejection with jets obtained from the two samples
of simulated SM 𝑡𝑡 events described in section 2. These are pure signal jets, so to set an uncertainty in
the background rejection the requirements which produce a 50% signal efficiency are re-calculated
using the jets obtained from the SM 𝑡𝑡 events, and then the background rejection is re-calculated
using these requirements. The difference between the background rejections calculated with the
two sets of requirements is taken as the uncertainty. Since the SM 𝑡𝑡 process only produces jets
in a limited kinematic range, the uncertainty is extrapolated to high 𝑝T by assigning the maximum
measured uncertainty to all 𝑝T bins above 1.5 TeV.
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Figure 6. The relative uncertainty in the background rejection due to the parton shower and hadronization
modeling as a function of the jet 𝑝T for (a) the EFN and (b) ParticleNet taggers. The total uncertaintiy is the
quadrature sum of all parton shower and hadronization modeling uncertainties. All uncertainties are evaluated at
the 50% signal efficiency working point. The uncertainty due to the modeling in the signal process is larger than
for the background process, but the signal process uncertainty covers both the parton shower and hadronization
modeling uncertainties together.

For the QCD multĳet process used to obtain light-quark and gluon jets, the uncertainty due
to the parton shower and hadronization modeling is estimated by comparing background rejections
between the four alternative samples described in section 2. The parton shower modeling uncertainty
is estimated by comparing background rejections between the two Herwig generated samples which
differ only by the parton shower model. The hadronization modeling uncertainty is likewise estimated
by comparing background rejections between the Sherpa generated samples which differ only by
the hadronization model. In both cases the difference in background rejection between the two
samples is taken as the uncertainty. In a realistic physics analysis involving top quarks, backgrounds
would typically be estimated with data-driven methods instead of with simulated data, so the parton
shower and hadronization modeling uncertainties for the QCD multĳet process would not be relevant.
However the taggers are trained on simulated data, so it is useful to know how the tagger performance
is affected by these uncertainties.

The relative uncertainty in background rejection due to the parton shower and hadronization
uncertainties as a function of the jet 𝑝T is shown in őgure 6 for the EFN and ParticleNet taggers.
Overall the signal process modeling uncertainties are larger than the background process modeling
uncertainties. However the signal process uncertainty covers both the parton shower and hadronization
modeling uncertainties together. The modeling uncertainties for the background process tend to
decrease with increasing jet 𝑝T. The ŕuctuations in the uncertainties at high 𝑝T, where the uncertainties
are small, are due to the őnite statistics of the nominal and systematic varied datasets. It is difficult to
discern a trend for the modeling uncertainties for the signal process due to the limited kinematic range
of the SM 𝑡𝑡 process. As with the experimental uncertainties, ParticleNet is much more sensitive
to the parton shower and hadronization modeling uncertainties than the EFN.

The őxed-order matrix element calculations used in the simulation of the 𝑍 ′ → 𝑡𝑡 and QCD
multĳet processes require a choice of factorization and renormalization scales to remove divergences.
The choice of this scale is unphysical and should not affect the őnal result of the calculation, but
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Figure 7. The relative uncertainty in the background rejection due to the choice of renormalization and
factorization scales as a function of the jet 𝑝T for (a) the EFN and (b) ParticleNet taggers. The total uncertaintiy
is the quadrature sum of all renormalization and factorization scale uncertainties. All uncertainties are evaluated
at the 50% signal efficiency working point.

in practice this can happen due to the truncation of the perturbative series. The scale uncertainties
cover possible mis-modeling of the underlying physical processes due to the choice of these scales.
It is assessed by applying Pythia parton shower weights [107] which vary the renormalization and
factorization scales for both the initial state radation (ISR) and őnal state radiation (FSR) up and
down by factors of two. The uncertainty is then estimated by comparing the background rejection of
the taggers calculated with the nominal sample to the background rejection calculated with each jet
weighted by the relevant shower weight. The uncertainties are then symmetrized by taking the envelope
over the up and down variations. This process is performed separately for the 𝑍 ′ → 𝑡𝑡 and QCD
multĳet simulation samples. The relative uncertainty in the background rejection due to the choice of
renormalization and factorization scales as a function of the jet 𝑝T is shown in őgure 7 for the EFN and
ParticleNet taggers. The ŕuctuations in these uncertainties are due to the őnite statistics of the testing
set. Again, ParticleNet is associated with larger uncertainties than the EFN. Both taggers show much
larger sensitivity to the FSR scales used in generating the 𝑍 ′ → 𝑡𝑡 sample compared to the other scales.

6.3 Validation of uncertainties

To place the uncertainties derived in this study in the context of the scale factor approach utilized by
realistic physics analyses, a comparison is made between the two methods for the hlDNN tagger. For
comparing uncertainties between taggers, it is useful to calculate uncertainties on the background
rejection so that a single metric can be used to characterize both tagger performance and the size of the
uncertainties. However physics analyses targeting boosted top-quarks are interested in the uncertainties
on the signal efficiency, since backgrounds are typically estimated with data-driven methods. Therefore
boosted top tagger scale factors are derived for the signal efficiency, so the uncertainties in this study
must be transferred to this quantity for a direct comparison. This excludes the parton shower and
hadronization modeling uncertainty for the QCD multĳet process, since it is not relevant for the signal
efficiency. The uncertainty budget for the signal efficiency is shown for the hlDNN tagger in őgure 8(a).
Within the jet 𝑝T range of [350−1000] GeV in which scale factors are derived, the parton shower and
hadronization modeling uncertainty for the 𝑍 ′ → 𝑡𝑡 process is the dominant uncertainty.
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Figure 8. (a) The uncertainty in the signal efficiency for the hlDNN tagger, calculated as the quadrature sum
of all uncertainties considered in this study except the parton shower and hadronization modeling uncertainty
for the QCD multĳet process. (b) A comparison between the total uncertainty derived in this study and the
scale factor and its uncertainty for the hlDNN tagger. The scale factor is measured using the same methods as
described in ref. [66].

To calculate the scale factor, the signal efficiency in experimental data is measured using the
highest 𝑝T large-radius jet in events taken from a semi-leptonic 𝑡𝑡 enriched signal region. The
uncertainty in the scale factor is calculated by propagating experimental and theoretical uncertainties
through the template őt used to extract the signal efficiency. For details on scale-factor measurements
see ref. [66]. The scale factor is a measurement of the ratio of the signal efficiencies in simulated and
experimental data, along with the uncertainty in this ratio. In contrast the uncertainties derived in this
study provide an upper bound, or maximum possible value, for the magnitude of the difference in
tagger efficiency between simulated and experimental data. The deviation of the scale factors from one
should then be smaller than the uncertainties dervied in this study. Figure 8(b) shows a comparison
between the upper bound on the magnitude of the difference in efficiency derived in this study and
the scale factor and its uncertainty for the hlDNN tagger. The upper bound covers the central value
of the scale factor in all 𝑝T bins, providing good validation of the approach.

6.4 Total uncertainties

The total uncertainty, calculated as the quadrature sum of all sources of uncertainty described above,
is shown as a function of the jet 𝑝T for the EFN and ParticleNet taggers in őgure 9. For both the EFN
and ParticleNet, the parton shower and hadronization modeling uncertainties for the 𝑍 ′ → 𝑡𝑡 process
are the largest in most 𝑝T bins. These are followed by the factorization and renormalization scales
and background parton shower and hadronization modeling uncertainties. The total uncertainty as
a function of the jet 𝑝T is shown for all constituent-based taggers in őgure 10(a). All taggers have
the largest uncertainties at low jet 𝑝T where the theoretical uncertainties produce large and equal
contributions to the total uncertainty. Figure 10(b) shows the total uncertainty in the background
rejection across the entire 𝑝T range plotted against the background rejection for all taggers considered.
A clear correlation between background rejection and uncertainty in the background rejection is visible,
with the most powerful taggers producing the largest uncertainties. The exception to this correlation is
ResNet50, which is associated with large uncertainties while also having poor performance.
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Figure 9. The total uncertainty budget in the background rejection as a function of the jet 𝑝T for (a) the EFN
and (b) ParticleNet taggers. All uncertainties are evaluated at the 50% signal efficiency working point.
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Figure 10. (a) The total uncertainty for each of the constituent-based taggers considered in this study, and (b) the
total uncertainty in the background rejection across the entire testing set plotted against the background rejection
for each constituent-based tagger. All uncertainties are evaluated at the 50% signal efficiency working point.

7 Conclusion

This paper presents the performance of selected constituent-based jet taggers on a top tagging task.
Several constituent-based taggers (DNN, PFN, and ParticleNet) outperform the high-level-quantity-
based baseline tagger, while the EFN and ResNet50 underperform. This underperformance was not
observed in studies performed with a parametric detector simulation [7], highlighting the importance
of developing taggers in the context of realistic detector simulation.

The systematic uncertainties that would result from the application of taggers to experimental data
are then probed by applying systematic variations directly to the simulated data. A strong correlation
between tagger performance and the size of the uncertainties is observed. The theoretical uncertainties
were found to be dominant for all taggers considered. In particular the parton shower and hadronization
modeling uncertainties are dominant in most 𝑝T bins for all taggers. Compared with the theoretical
uncertainties, the experimental uncertainties are found to be small. The uncertainties derived in
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this study are not a scale-factor measurement, or uncertainties on a scale factor. The experimental
uncertainties rely on simplifying assumptions which ignore possible differences between simulated
and experimental data. They should be considered as an illustration of the bottom-up approach to
experimental systematic uncertainties, rather than a set of uncertainties that could be used in a physics
analysis. However they are useful for establishing the sensitivity of the different taggers to possible
differences between simulated and experimental data.

The systematic uncertainties derived in this study stem from performance differences between the
nominal and systematic varied datasets. Therefore large uncertainties suggest that large performance
differences between the nominal datasets and experimental data are possible. The highly performant
jet taggers that produce large systematic uncertainties in this study could have lower performance in
experimental data than in simulated data, meaning they would not deliver the sensitivity improvements
expected from performance studies which do not consider systematic uncertainties. Even if these
performance differences are accounted for by scale-factor measurements, such a degradation in tagger
performance is not recoverable. Additionally scale-factor measurements also have uncertainties which
are expected to correlate with the uncertainties derived in this study. This was veriőed by comparing
the size of the uncertainties derived for the hlDNN in this study to scale factors and scale-factor
uncertainties derived using semi-leptonic 𝑡𝑡 events with the methods described in ref. [66], and őnding
good agreement. Scale-factor uncertainties will be included as a systematic uncertainty in any physics
analysis which uses a jet tagger, so larger scale-factor uncertainties will also degrade the sensitivity
improvements from a more performant tagger.

The size of scale-factor uncertainties relative to other uncertainties in a physics analysis will be
highly dependent on the context, so it is difficult to predict if larger scale-factor uncertainties would be
limiting for a given physics analysis. In some cases larger scale-factor uncertainties could present a
limitation in the sensitivity improvements expected from ML-based jet tagging techniques. Reducing
the size of these systematic uncertainties without compromising the tagger performance is then an
important direction for future research. Two possible directions are to design taggers which are robust
against, or aware of systematic effects [70ś74, 108ś112], or to train taggers directly on experimental
data in a weakly supervised setting [113ś115]. To support progress in the őrst direction and to allow
a more realistic assessment of the performance of other existing taggers, the datasets used in this
study are made publicly available [116]. This includes all nominal and systematic varied datasets,
including the alternative Monte Carlo samples used to assess the parton shower and hadronization
modeling uncertainties. Additional documentation is provided, which details how to use the datasets
to assess the uncertainties associated with an arbitrary tagger.
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