35 research outputs found

    A two-stage approach for measuring vascular water exchange and arterial transit time by diffusion-weighted perfusion MRI

    Get PDF
    Changes in the exchange rate of water across the blood-brain barrier, denoted kw, may indicate blood-brain barrier dysfunction before the leakage of large-molecule contrast agents is observable. A previously proposed approach for measuring kw is to use diffusion-weighted arterial spin labeling to measure the vascular and tissue fractions of labeled water, because the vascular-to-tissue ratio is related to kw. However, the accuracy of diffusion-weighted arterial spin labeling is affected by arterial blood contributions and the arterial transit time (τa). To address these issues, a two-stage method is proposed that uses combinations of diffusion-weighted gradient strengths and post-labeling delays to measure both τa and kw. The feasibility of this method was assessed by acquiring diffusion-weighted arterial spin labeling data from seven healthy volunteers. Repeat measurements and Monte Carlo simulations were conducted to determine the precision and accuracy of the kw estimates. Average grey and white matter kw values were 110 ± 18 and 126 ± 18 min-1, respectively, which compare favorably to blood-brain barrier permeability measurements obtained with positron emission tomography. The intrasubject coefficient of variation was 26% ± 23% in grey matter and 21% ± 17% in white matter, indicating that reproducible kw measurements can be obtained. Copyright © 2011 Wiley Periodicals, Inc

    Impaired cerebrovascular function in coronary artery disease patients and recovery following cardiac rehabilitation

    Get PDF
    © 2016 Anazodo, Shoemaker, Suskin, Ssali, Wang and St. Lawrence. Coronary artery disease (CAD) poses a risk to the cerebrovascular function of older adults and has been linked to impaired cognitive abilities. Using magnetic resonance perfusion imaging, we investigated changes in resting cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to hypercapnia in 34 CAD patients and 21 age-matched controls. Gray matter volume (GMV)s were acquired and used as a confounding variable to separate changes in structure from function. Compared to healthy controls, CAD patients demonstrated reduced CBF in the superior frontal, anterior cingulate (AC), insular, pre- and post-central gyri, middle temporal, and superior temporal regions. Subsequent analysis of these regions demonstrated decreased CVR in the AC, insula, post-central and superior frontal regions. Except in the superior frontal and precentral regions, regional reductions in CBF and CVR were identified in brain areas where no detectable reductions in GMV were observed, demonstrating that these vascular changes were independent of brain atrophy. Because aerobic fitness training can improve brain function, potential changes in regional CBF were investigated in the CAD patients after completion of a 6-months exercise-based cardiac rehabilitation program. Increased CBF was observed in the bilateral AC, as well as recovery of CBF in the dorsal aspect of the right AC, where the magnitude of increased CBF was roughly equal to the reduction in CBF at baseline compared to controls. These exercise-related improvements in CBF in the AC is intriguing given the role of this area in cognitive processing and regulation of cardiovascular autonomic control

    Regional cerebral blood flow alterations in obstructive sleep apnea

    Full text link
    Obstructive sleep apnea (OSA) is a condition characterized by upper airway muscle atonia with continued diaphragmatic efforts, resulting in repeated airway obstructions, periods of intermittent hypoxia, large thoracic pressure changes, and substantial shifts in arterial pressure with breathing cessation and resumption. The hypoxic exposure and hemodynamic changes likely induce the structural and functional deficits found in multiple brain areas, as shown by magnetic resonance imaging (MRI) procedures. Altered cerebral blood flow (CBF) may contribute to these localized deficits; thus, we examined regional CBF, using arterial spin labeling procedures, in 11 OSA (age, 49.1±12.2 years; 7 male) and 16 control subjects (42.3±10.2 years; 6 male) with a 3.0-Tesla MRI scanner. CBF maps were calculated, normalized to a common space, and regional CBF values across the brain quantified. Lowered CBF values emerged near multiple bilateral brain sites in OSA, including the corticospinal tracts, superior cerebellar peduncles, and pontocerebellar fibers. Lateralized, decreased CBF appeared near the left inferior cerebellar peduncles, left tapetum, left dorsal fornix/stria terminalis, right medial lemniscus, right red nucleus, right midbrain, and midline pons. Regional CBF values in OSA are significantly reduced in major sensory and motor fiber systems and motor regulatory sites, especially in structures mediating motor coordination; those reductions are often lateralized. The asymmetric CBF declines in motor regulatory areas may contribute to loss of coordination between upper airway and diaphragmatic musculature, and lead to further damage in the syndrome

    Developmental trajectories of cerebral blood flow and oxidative metabolism at baseline and during working memory tasks

    Full text link
    The neurobiological interpretation of developmental BOLD fMRI findings remains difficult due to the confounding issues of potentially varied baseline of brain function and varied strength of neurovascular coupling across age groups. The central theme of the present research is to study the development of brain function and neuronal activity through in vivo assessments of cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) both at baseline and during the performance of a working memory task in a cohort of typically developing children aged 7 to 18years. Using a suite of 4 emerging MRI technologies including MR blood oximetry, phase-contrast MRI, pseudo-continuous arterial spin labeling (pCASL) perfusion MRI and concurrent CBF/BOLD fMRI, we found: 1) At baseline, both global CBF and CMRO2 showed an age related decline while global OEF was stable across the age group; 2) During the working memory task, neither BOLD nor CBF responses showed significant variations with age in the activated fronto-parietal brain regions. Nevertheless, detailed voxel-wise analyses revealed sub-regions within the activated fronto-parietal regions that show significant decline of fractional CMRO2 responses with age. These findings suggest that the brain may become more "energy efficient" with age during development

    Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal

    Full text link
    Functional magnetic resonance imaging (fMRI) in the resting state, particularly fMRI based on the blood-oxygenation level-dependent (BOLD) signal, has been extensively used to measure functional connectivity in the brain. However, the mechanisms of vascular regulation that underlie the BOLD fluctuations during rest are still poorly understood. In this work, using dual-echo pseudo-continuous arterial spin labeling and MR angiography (MRA), we assess the spatio-temporal contribution of cerebral blood flow (CBF) to the resting-state BOLD signals and explore how the coupling of these signals is associated with regional vasculature. Using a general linear model analysis, we found that statistically significant coupling between resting-state BOLD and CBF fluctuations is highly variable across the brain, but the coupling is strongest within the major nodes of established resting-state networks, including the default-mode, visual, and task-positive networks. Moreover, by exploiting MRA-derived large vessel (macrovascular) volume fraction, we found that the degree of BOLD–CBF coupling significantly decreased as the ratio of large vessels to tissue volume increased. These findings suggest that the portion of resting-state BOLD fluctuations at the sites of medium-to-small vessels (more proximal to local neuronal activity) is more closely regulated by dynamic regulations in CBF, and that this CBF regulation decreases closer to large veins, which are more distal to neuronal activity

    Simultaneous fMRI–PET of the opioidergic pain system in human brain

    Full text link
    MRI and PET provide complementary information for studying brain function. While the potential use of simultaneous MRI/PET for clinical diagnostic and disease staging has been demonstrated recently; the biological relevance of concurrent functional MRI-PET brain imaging to dissect neurochemically distinct components of the blood oxygenation level dependent (BOLD) fMRI signal has not yet been shown. We obtained sixteen fMRI-PET data sets from eight healthy volunteers. Each subject participated in randomized order in a pain scan and a control (nonpainful pressure) scan on the same day. Dynamic PET data were acquired with an opioid radioligand, [(11)C]Diprenorphine, to detect endogenous opioid releases in response to pain. BOLD fMRI data were collected at the same time to capture hemodynamic responses. In this simultaneous human fMRI-PET imaging study, we show co-localized responses in thalamus and striatum related to pain processing, while modality specific brain networks were also found. Co-localized fMRI and PET signal changes in the thalamus were positively correlated suggesting pain-induced changes in opioid neurotransmission contribute a significant component of the fMRI signal change in this region. Simultaneous fMRI-PET provides unique opportunities allowing us to relate specific neurochemical events to functional hemodynamic activation and to investigate the impacts of neurotransmission on neurovascular coupling of the human brain in vivo

    Vessel density mapping of small cerebral vessels on 3D high resolution black blood MRI

    No full text
    Small cerebral blood vessels are largely inaccessible to existing clinical in vivo imaging technologies. This study aims to present a novel analysis pipeline for vessel density mapping of small cerebral blood vessels from high-resolution 3D black-blood MRI at 3T. Twenty-eight subjects (10 under 35 years old, 18 over 60 years old) were imaged with the T1-weighted turbo spin-echo with variable flip angles (T1w TSE-VFA) sequence optimized for black-blood small vessel imaging with iso-0.5 mm spatial resolution (interpolated from 0.51×0.51×0.64 mm3) at 3T. Hessian-based vessel segmentation methods (Jerman, Frangi and Sato filter) were evaluated by vessel landmarks and manual annotation of lenticulostriate arteries (LSAs). Using optimized vessel segmentation, large vessel pruning and non-linear registration, a semiautomatic pipeline was proposed for quantification of small vessel density across brain regions and further for localized detection of small vessel changes across populations. Voxel-level statistics was performed to compare vessel density between two age groups. Additionally, local vessel density of aged subjects was correlated with their corresponding gross cognitive and executive function (EF) scores using Montreal Cognitive Assessment (MoCA) and EF composite scores compiled with Item Response Theory (IRT). Jerman filter showed better performance for vessel segmentation than Frangi and Sato filter which was employed in our pipeline. Small cerebral blood vessels including small artery, arterioles, small veins, and venules on the order of a few hundred microns can be delineated using the proposed analysis pipeline on 3D black-blood MRI at 3T. The mean vessel density across brain regions was significantly higher in young subjects compared to aged subjects. In the aged subjects, localized vessel density was positively correlated with MoCA and IRT EF scores. The proposed pipeline is able to segment, quantify, and detect localized differences in vessel density of small cerebral blood vessels based on 3D high-resolution black-blood MRI. This framework may serve as a tool for localized detection of small vessel density changes in normal aging and cerebral small vessel disease
    corecore