
Western University Western University 

Scholarship@Western Scholarship@Western 

Paediatrics Publications Paediatrics Department 

1-1-2012 

A two-stage approach for measuring vascular water exchange A two-stage approach for measuring vascular water exchange 

and arterial transit time by diffusion-weighted perfusion MRI and arterial transit time by diffusion-weighted perfusion MRI 

Keith S. St. Lawrence 
Lawson Health Research Institute, kstlawr@uwo.ca 

Daron Owen 
Ottawa Hospital Research Institute 

Danny J.J. Wang 
University of California, Los Angeles 

Follow this and additional works at: https://ir.lib.uwo.ca/paedpub 

Citation of this paper: Citation of this paper: 
St. Lawrence, Keith S.; Owen, Daron; and Wang, Danny J.J., "A two-stage approach for measuring vascular 
water exchange and arterial transit time by diffusion-weighted perfusion MRI" (2012). Paediatrics 
Publications. 1510. 
https://ir.lib.uwo.ca/paedpub/1510 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/paedpub
https://ir.lib.uwo.ca/paed
https://ir.lib.uwo.ca/paedpub?utm_source=ir.lib.uwo.ca%2Fpaedpub%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/paedpub/1510?utm_source=ir.lib.uwo.ca%2Fpaedpub%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages


A Two-Stage Approach for Measuring Vascular Water
Exchange and Arterial Transit Time by Diffusion-
Weighted Perfusion MRI

Keith S. St. Lawrence,1* Daron Owen,2 and Danny J. J. Wang3

Changes in the exchange rate of water across the blood-brain
barrier, denoted kw, may indicate blood-brain barrier dysfunc-
tion before the leakage of large-molecule contrast agents is
observable. A previously proposed approach for measuring kw
is to use diffusion-weighted arterial spin labeling to measure
the vascular and tissue fractions of labeled water, because
the vascular-to-tissue ratio is related to kw. However, the ac-
curacy of diffusion-weighted arterial spin labeling is affected
by arterial blood contributions and the arterial transit time
(ta). To address these issues, a two-stage method is proposed
that uses combinations of diffusion-weighted gradient
strengths and post-labeling delays to measure both ta and kw.
The feasibility of this method was assessed by acquiring dif-
fusion-weighted arterial spin labeling data from seven healthy
volunteers. Repeat measurements and Monte Carlo simula-
tions were conducted to determine the precision and accu-
racy of the kw estimates. Average grey and white matter kw
values were 110 6 18 and 126 6 18 min21, respectively, which
compare favorably to blood-brain barrier permeability meas-
urements obtained with positron emission tomography. The
intrasubject coefficient of variation was 26% 6 23% in grey
matter and 21% 6 17% in white matter, indicating that repro-
ducible kw measurements can be obtained. Magn Reson
Med 67:1275–1284, 2012. VC 2011 Wiley Periodicals, Inc.

Through the formation of tight junctions joining the en-
dothelial cells of capillaries in the brain, the blood-brain
barrier (BBB) acts to restrict and regulate the exchange of
substances between the general circulation and the cen-
tral nervous system (1). As such, the integrity of the BBB
is critical to neuronal health, because it protects the
brain from toxins, facilitates nutrient transport, and
maintains ion balance. Increasing evidence suggests that
BBB dysfunction is a contributing factor to a number of
serious neurological diseases such as multiple sclerosis,
stroke, brain tumors, central nervous system infection,
and Alzheimer’s disease (2). The most common biochem-
ical assay of BBB permeability is the cerebrospinal fluid/

serum albumin ratio, which requires lumbar puncture
and provides no information regarding regional BBB
changes. Dynamic contrast-enhanced MRI using intrave-
nous injection of gadolinium (Gd)-based contrast agents
(e.g., Gd-DTPA) has been the most widely applied
method for imaging BBB permeability in clinical settings
(3). The leakage rate of contrast agent across the BBB,
expressed as the transfer constant Ktrans, can be assessed
by fitting a two-compartment pharmacokinetic model to
the dynamic curve of signal enhancement (4). Dynamic
contrast-enhanced MRI has been successfully applied in
imaging studies of brain tumor (5), in which a relatively
high degree of BBB leakage is expected. However, in
populations where subtle changes of BBB permeability
are expected, such as aging and dementia, dynamic con-
trast-enhanced MRI evidence of a leaky BBB has been
less convincing (6). One explanation is that the sensitiv-
ity of dynamic contrast-enhanced MRI may not be
adequate to detect subtle changes in BBB permeability
due to insufficient leakage of contrast agent into the in-
terstitial space. Detecting such changes likely requires
the use of small solutes with less encumbered movement
across the BBB.

A potential alternative to contrast agents is water,

which is able to cross the intact BBB by diffusion. How-

ever, water transport across the BBB is slower than in

other vascular beds, as the tight junctions of the BBB

prevent filtration by hydrostatic or osmotic pressure gra-

dients (1). Additionally, the multiple layers of the bar-

rier, including the endothelium and the basement mem-

brane, all hinder water movement (7). These findings

suggest that measuring the water exchange rate could be

a sensitive marker of subtle changes in BBB integrity.

Indeed, changes in water exchange rate were observed

within 1 h of ischemia in a rat stroke model before the

leakage of Gd-DTPA (8).

Arterial spin labeling (ASL) approaches have been pro-

posed for measuring water exchange across the BBB.

Although ASL is predominately considered as a perfu-

sion technique (9), it is in principle sensitive to water

exchange because of significant signal contributions from

labeled water in blood and tissue (10–12). The sensitivity

of the ASL signal to these two pools can be altered using

diffusion weighting gradients (13). We have applied this

method to study the rate of water exchange in the human

brain (14). A series of ASL scans with different diffusion

weightings were acquired to separate the vascular (i.e.,

fast diffusion) and the tissue (i.e., slow diffusion) compo-

nents. The water exchange rate was determined using a

tracer kinetic model to characterize the vascular signal

fraction (10).
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Although the results of the previous study were prom-
ising (14), the limited data that could be collected within
a reasonable scanning duration resulted in some simpli-
fications to the kinetic model that is used to characterize
the DW ASL data. Specifically, it was necessary to
assume that no labeled water remained in the arterial
blood, and the arterial transit time was known. Both fac-
tors have been shown to significantly affect the accuracy
of ASL perfusion measurements (15,16). To address
these issues, we propose a two-stage method using a
combination of flow-encoding gradients and postlabeling
delays. In the first stage, the strength of the flow-encod-
ing gradient was chosen to suppress spins moving in
larger feeding vessels, and a relatively short postlabeling
delay ensured signal from both the arterial and capillary/
tissue compartments. The arterial transit time can be
determined from the ratio of ASL images acquired with
and without diffusion weighting (17). The second stage
was similar, except the postlabeling delay was increased
to allow time for the labeled water to reach the tissue
compartment, and the strength of the flow-encoding gra-
dient was increased to suppress spins moving through
the microvasculature. The tracer kinetic model used to
determine the water exchange rate, which is referred
to as the single-pass approximation model, was modified
to incorporate arterial transit times. To improve the sen-
sitivity of the technique, DW-ASL images were acquired
using pseudo-continuous ASL (pCASL) to increase label-
ing efficiency (18,19), background suppression to
improve temporal stability (20,21), and a phased array
receiver coil to achieve a higher signal-to-noise ratio
(SNR) (22). This study presents the application of this
two-stage approach to measuring water exchange rates in
the human brain, as well as error analysis to assess the
feasibility and limitations of this approach.

THEORY

The arterial transit time (ta) was determined using the
flow-encoding arterial spin tagging (FEAST) method,
which is outlined in detail in Ref. 17. This section out-
lines the single-pass approximation model solution used
to determine the water exchange rate (10). The ASL sig-
nal, DM(t), is related to the arterial concentration of la-
beled water through the equation

DMðtÞ ¼ CBF

Z t

0

qðuÞDMaðt � uÞdu; ½1�

where DMa(t) is the difference in arterial blood magnet-
ization between control and label procedures and q(t) is
the impulse residue function. The impulse residue func-
tion represents the concentration in the tissue volume
following an idealized impulse input of unit mass and is
defined in terms of capillary and brain tissue compo-
nents (qc(t) and qb(t), respectively) to account for the
exchange of labeled water between blood and surround-
ing tissue:

qcðtÞ ¼ e�at

qbðtÞ ¼ b½e�R1bt � e�at� ½2�

where R1b is the longitudinal relaxation rate of brain tis-
sue and the parameters a and b are defined in Table 1.
Both a and b depend on the rate of water exchange from
blood to tissue, defined as kw in Table 1. In turn, kw
equals the permeability-surface area product of water
(PSw) divided by the capillary blood volume (Vc) (10). To
simplify the solution to Eq. 1, these equations are based
on the assumption that the vascular transit time is longer
than the acquisition time, which is reasonable considering
that venous outflow is negligible at typical flow rates in
the human brain (23). Figure 1 shows an example of qc(t)
and qb(t) as predicted by Eq. 2. Because labeled water
enters the tissue volume via the blood supply, qc(t) ¼ 1
and qb(t) ¼ 0 at time zero. As the labeled water flows
through the capillary space, qc(t) continually decreases
due to the diffusion of labeled water into the surrounding
tissue and T1 relaxation of blood. At the same time, qb(t)
increases due to the influx of labeled water; however, this
increase is counteracted by T1 relaxation of tissue.

For pseudo-continuous ASL (pCASL), DMa(t) is
defined as

DMaðtÞ ¼
0 0 < i < ta

� 2eM0

l e�R1ata ta � t � dþ ta;
0 dþ ta < t

½3�

where e is the tagging efficiency (19), M0 is the tissue
equilibrium magnetization, l is the partition coefficient
of water in brain, R1a is the longitudinal relaxation rate
of arterial blood, and d is the duration of the labeling pe-
riod. In this study, the postlabeling delay (td) was long
enough to allow all of the labeled water time to reach
the tissue (i.e., t > d þ ta). Under this condition, the
ASL contributions from the capillary space, DMc(t), and
the tissue space, DMb(t), are given by

DMcðtÞ ¼ �2CBFeM0

la
e�ðR1a�aÞta e�aðt�dÞ � e�at

� �
; ½4�

Table 1
Definitions of parameters

Vc Distribution volume of water
tracer in capillary space

mL/100g

CBF Cerebral blood flow mL/100g/min
PSw Capillary permeability

surface-area

product of water

mL/100g/min

kw Exchange rate of water from

blood to tissue ¼ PSw/Vc

min�1

l Blood-brain partition
coefficient of water

mL/100 g

R1b Longitudinal relaxation
rate in brain tissue

s�1

R1a Longitudinal relaxation
rate in arterial blood

s�1

dR1 R1a–R1b s�1

d Duration of the arterial
spin labeling

s

ta Transit time to the

capillary-tissue
compartment

s

a Model parameter ¼ kw þ R1a s�1

b Model parameter kw
kwþdR1

1276 St. Lawrence et al.



DMbðtÞ ¼ � 2CBFeM0b

l

e�ðR1a�R1bÞta

R1b
e�R1bðt�dÞ � e�R1bt

� ��

� e�ðR1a�aÞta

a
e�aðt�dÞ � e�at

� ��
: ð5Þ

With DW-ASL, it is assumed that DMc(t) and DMb(t) can
be separated by their different sensitivities to flow-
encoding gradients. Consequently, the ASL signal col-
lected at a given postlabeling delay and with multiple
diffusion-weightings (i.e., b values) can be characterized
by a bi-exponential model (14):

DMðt; bÞ
DMðt; 0Þ ¼ A1ðtÞe�bD1 þA2ðtÞe�bD2 ; ½6�

where the weighting factors A1 and A2 are the fractions
of the fast (vascular) and slow (tissue) components of
the signal attenuation curve, respectively (A1 þ A2 ¼
1), and D1 and D2 are the corresponding apparent diffu-
sion coefficients. Using the definitions of DMc(t) and
DMb(t) provided in Eqs. 4 and 5, the weighting factors
are given by

A1ðtÞ ¼ DMcðtÞ
DMcðtÞ þ DMbðtÞ and A2ðtÞ ¼ DMbðtÞ

DMcðtÞ þ DMbðtÞ :

½7�

These terms are functions of time since their relative
magnitude will change with the duration of the postlab-
eling delay. That is, A1 will decrease with longer post-
labeling delays as the labeled water diffuses from the mi-
crovasculature into the tissue. The weighting factors can
be determined by fitting Eq. (6) to DM data acquired at
multiple b values ranging from 0 to 300 s/mm2 (14).
However, this is a relatively slow process and the SNR
of the DM data decreases with larger diffusion weighting
due to the increased sensitivity to motion. An alternative
procedure is to acquire DM data at only two b values:
zero and a larger value (bDW) sufficient to suppress the

vascular signal, but with minimum effect on the tissue
signal. In this case, A1 and A2 are given by

A1ðtÞ ¼ 1� DMðbDW Þ
DMðb0Þ and A2ðtÞ ¼ DMðbDW Þ

DMðb0Þ ½8�

The expressions for A1 and A2 contain two unknown
variables: kw, which is incorporated into the parameters
a and b, and the arterial transit time ta. Figure 2 shows
the dependency of the capillary fraction (A1) on kw over
a range from 0 to 200 min�1.

MATERIALS AND METHODS

Diffusion-Weighted Arterial Spin Labeling Sequence

Similar to the original study (14), the DW-ASL
sequence used a combination of a continuous arterial
spin labeling sequence and a twice refocused, spin-echo
diffusion sequence (Fig. 3) (24). For this study, a ‘‘bal-
anced’’ pCASL sequence was implemented consisting of
1600 selective radiofrequency pulses (Hanning-shaped
pulses with duration of 500 ms, spacing of 920 ms, peak
B1 of 5.3 mT, and average B1 of 1.8 mT) (19,25). The
train of radiofrequency pulses was performed in con-
junction with a slice-selective gradient (6.0 mT/m) for a
total duration of 1.5 s. The labeling plane was posi-
tioned 8 cm from the center of the imaging volume.
Background suppression was achieved by applying two
nonselective inversion pulses during the postlabeling
delay. Hyperbolic secant pulses (duration of 15.35 ms)
were implemented and the timings of the background
suppression pulses for each postlabeling delay were
chosen to suppress grey and white matter signals in the
first imaging slice (26).

Interleaved images with and without labeling were
acquired using a single-shot, spin-echo, echo-planar
imaging (EPI) sequence with two refocusing pulses. Two
pairs of bipolar gradients were applied along the slice
direction (between the excitation pulse and EPI acquisi-
tion), with the radiofrequency refocusing pulses dividing
each bipolar pair. The durations of the four lobes of the
bipolar gradients were optimized to minimize effects of
eddy currents during EPI readout.

FIG. 1. Illustrated example of the impulse residue function (q(t),
solid line) and its capillary (qc(t), dashed line) and tissue (qt(t), dot-

ted line) components as defined by Eq. (2). In this example, CBF
¼ 50 mL/100g/min, PS ¼ 150 mL/100g/min, Vc ¼ 2.0 mL/100g,
T1a ¼ 1.5 s, and T1b ¼ 1.26 s.

FIG. 2. Predicted capillary fraction of labeled water (A1) plotted as
a function of the water-exchange rate (kw). Simulated data were

generated using T1b ¼ 1.26 s, T1c ¼ 1.5 s, a labeling duration of
1.5 s, ta ¼ 1.26 s and a postlabeling delay of 1.5 s.

In Vivo Imaging of Water Exchange Across BBB 1277



Imaging Protocols

Written informed consent was obtained before all studies
according to a protocol approved by the Institutional
Review Board. Each session began with the acquisition
of anatomical images using a 3D MPRAGE sequence (re-
covery time (TR)/echo time (TE) ¼ 2000/2.96 ms with an
isotropic resolution of 1 mm).

Multiple b-Value Protocol

Diffusion-weighted pCASL data were acquired with four
td values (900, 1200, 1500, and 1800 ms) and seven b
values (0, 5, 10, 25, 50, 100, and 200 s/mm2) to deter-
mine the appropriate b value for the two-stage protocol
that would suppress the vascular signal contribution
while having minimal effect on the tissue signal. Experi-
ments were conducted on a Siemens 3 T Trio whole-
body scanner (Siemens AG, Erlangen, Germany) employ-
ing a product eight-channel head array coil. Four healthy
volunteers (average age 26.4 6 3.4 yr, two females) par-
ticipated in the experiment.

The image acquisition parameters for the DW-ASL
sequence were a field of view ¼ 22 cm, a matrix ¼ 64 �
64, bandwidth ¼ 3kHz/pixel, 6/8 partial k-space, rate-2
GRAPPA, slice thickness ¼ 8 mm, interslice gap ¼ 2
mm, TE ¼ 55 ms, and TR ¼ 4 s. Eight slices were
acquired in ascending order. Diffusion gradients were
applied along the Z-axis. Control and labeled images
were acquired in an alternating pattern. Eighty acquisi-
tions were obtained for each td value combined with
seven b values. The acquisition duration for each combi-
nation was 5.5 min.

Two-Stage Protocol

Experiments were conducted on a Siemens 3 T Verio
whole-body scanner (Siemens AG, Erlangen, Germany)
employing a product 32-channel head array coil. Seven
healthy volunteers (mean age 28 6 5 yr, three females)
participated in the experiment.

The DW-pCASL images were acquired with a field of
view ¼ 24 cm, a matrix ¼ 64 � 64, bandwidth ¼ 3 kHz/
pixel, 7/8 partial k-space, rate-2 GRAPPA, slice thickness
¼ 8 mm, interslice gap ¼ 2 mm, and TE ¼ 48 ms. Eight
slices were acquired in ascending order. Three sets of DW-
pCASL data were collected, each with two b values. The
FEAST data were acquired using b ¼ 0 and 10 s/mm2 and

td ¼ 800 ms, which were sufficient to allow the labeled
water to reach the arterial compartment. The total acquisi-
tion time for the FEAST was 7.5 min with a TR ¼ 3.5 s.
For the second and third data sets, b ¼ 0 and 50 s/mm2—
the latter value will suppress all flowing spins—and td ¼
1500 ms to ensure all labeled water reached the tissue
compartment (i.e., capillaries and surrounding tissue). For
each of these sets, which are denoted DW-pCASL (kw), the
acquisition time was 8.5 min with a TR ¼ 4 s. Diffusion
gradients were applied along the Z-axis. The flow encod-
ing velocities for the b value of 10 and 50 s/mm2 were 7
and 2 mm/s, respectively. These values were chosen to
suppress spins in vessels larger than arterioles and in
capillaries, respectively (27).

Data Analysis

Raw EPI images were motion corrected and spatially fil-
tered using SPM software (Statistical Parametric Map-
ping, London, UK). Images acquired under the multi b-
value protocol were filtered with a 2-mm FWHM iso-
tropic gaussian kernel, while an 8-mm smoothing kernel
was used for the FEAST images acquired under the two-
stage protocol (i.e., b ¼ 0 and 10 s/mm2). The kernel size
was increased to 15 mm used for the DW-ASL (kw)
images (i.e., b ¼ 0 and 50 s/mm2) to improve the preci-
sion of the kw estimates (see error analysis section). Proc-
essed EPI images were pair-wise subtracted and time
averaged to generate mean ASL images (DM) for each b
value.

The SPM software was used to segment the anatomical
images into regions of interests (ROIs) representing grey
matter, white matter, and cerebrospinal fluid. The ROIs
were applied to the multi b-value DM images to extract
mean DM values in grey and white matter for each of the
seven b values. Equation 6 was fit to the DM series to
extract estimates of the weighting factors (A1 and A2)
and the apparent diffusion coefficients (D1 and D2). The
fitting procedure was performed using software written
in IDL (Interactive Data Language, Research Systems,
Boulder, CO) and conducted on each subject’s data, as
well as the DM signal averaged across all subjects.

ROI analysis was also conducted on the images
acquired under the two-stage protocol to obtain mean
values of ta and kw for grey and white matter. Arterial
transit time was determined from the FEAST images
(17). This analysis accounted for the delay of 87 ms

FIG. 3. DW-ASL sequence incor-

porated pseudo-continuous ASL
(pCASL), background suppres-
sion, and twice-refocused spin-

echo diffusion weighting.
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between the acquisition of successive slices. Grey and
white matter kw values were determined by comparing
the measured capillary fraction, A1, to a table of A1 val-
ues generated from Eq. 8 using the measured ta and a
range of kw values (0.01 to 500 min�1). The upper limit
was deemed sufficient to characterize complete extraction
of labeled water into the tissue during a single capillary
transit (28). The A1 values were generated assuming T1

values of grey matter, white matter, and blood equal to
1.26, 0.85, and 1.49 s, respectively (29,30). Mean kw val-
ues were determined separately for the two sets of DW-
ASL (kw) data to assess reproducibility. Using the same
look-up table approach, images of ta and kw were gener-
ated from the FEAST and DW-ASL (kw) images, respec-
tively. For the latter, the two data sets were combined to
improve the SNR and the average ta in each slice was
used to generate the corresponding kw image.

Error Analysis

Monte Carlo simulations were conducted to assess the
accuracy and the precision of the kw measurements. A
set of 5000 A1 values was generated from Eqs. 4, 5, and
8 assuming kw ¼ 100 min�1, ta ¼ 1.2 s, td ¼ 1.5 s, d ¼
1.5 s, grey matter T1 ¼ 1.26 s, and blood T1 ¼ 1.49 s.
Random gaussian noise was added to the A1 values, and
kw estimates were determined from the noisy data using
the same look-up table approach used to analyze the exper-
imental data. Simulations were conducted over a range of
noise levels. For comparison, the standard deviation of the
filtered DM images, s(DM), was measured in the FEAST

and DW-ASL(kw) time series. The analysis was conducted
across all pixels in grey and white matter ROIs.

RESULTS

Figure 4 shows average DM images from one subject
under the multiple b value protocol to illustrate the sig-
nal reduction as the strength of the diffusion-weighting
gradient increased. Bi-exponential fitting was success-
fully applied to the grey and white matter DM data from
each subject. Figure 5 shows the average DM series
acquired at four td values. The magnitude of the fast
component (i.e., the vascular contribution) diminished
with longer postlabeling delays due to increased extrac-
tion of labeled water into the tissue. The best-fit esti-
mates of the fast (D1) and slow (D2) apparent diffusion
coefficients from these data sets are provided in Table 2,
along with the corresponding vascular fraction A1. The
D1 value varied considerably between the different DM
series, likely reflecting the difficulty of characterizing
this fast component; however, D1 was always much
greater than D2. For example, the D1 and D2 values at td
¼ 1500 ms, which was the postlabeling delay used with
the two-stage protocol, indicated that a b value of 50 s/
mm2 would be sufficient to separate the vascular and tis-
sue signal contributions. At this b value, the average vas-
cular and tissue contributions in grey matter were less
than 0.2% and greater than 94%, respectively.

Individual ta and kw measurements in grey and white
matter from all subjects are presented in Table 3. These
measurements were obtained by ROI analysis of the

FIG. 4. Average DM images acquired under the multiple b value protocol from one individual with the delay of 1200 ms. Images from
five b values are presented to illustrate the general effect of varying the diffusion weighting. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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DM(b10)/DM(b0) and DM(b50)/DM(b0) images, respectively.
Using a two-tailed paired t test, no significant differences
were found between grey and white matter ta measure-
ments or between grey and white matter kw measure-
ments. Average DM(b10)/DM(b0) and DM(b50)/DM(b0) val-
ues across the whole brain were 0.58 6 0.05 and 0.72 6
0.08, respectively. The intrasubject coefficient of varia-
tion determined from the two DW-ASL (kw) data sets
was 26% 6 23% in grey matter and 21% 6 17% in
white matter.

Representative FEAST and DW-ASL(kw) images from
one subject are shown in Fig. 6a and b, respectively.
Each set of images includes the diffusion-weighted
images (DM(b0) and DM(bDW)), the DM(bDW)/DM(b0)
images, and either (a) the ta images or (b) the kw images.
In this example, whole brain DM(b10)/DM(b0) ¼ 0.57 and
DM(b50)/DM(b0) ¼ 0.74. Average grey and white matter
values from the kw images for all subjects are presented
in Table 4. Similarly to the previous ROI analysis, there
was no statistically significant difference between the
grey and white matter kw values. However, these values
were significantly higher than the corresponding values
derived from the DM(b50)/DM(b0) images (Table 3). This
bias was caused by pixels with kw values that reached
the upper limit of 500 min�1. In those pixels, the
DM(b50)/DM(b0) ratio was close to or greater than 1,
likely due to noise contributions. Example histograms
of the DM(b50)/DM(b0) ratio and the corresponding kw

values from subject 7 are shown in Fig. 7. Approximately
5% of the DM(b50)/DM(b0) values were greater than 1 in
this case, which is the same fraction of kw values equal
to 500 min�1.

Mean pixel SNR measurements from the four acquired
DM sets are given in Table 5. As expected, the FEAST
DM images have higher SNRs than the corresponding
DW-ASL(kw) images due to the shorter post-labeling
delay and smaller b value used with the former. Because
of the higher SNR, no significant differences were found
between grey and white matter values from the ta images
(1.49 6 0.08 and 1.48 6 0.04 s, respectively) and
those values derived from the DM(b10)/DM(b0) images
(Table 3).

Results of the Monte Carlo simulations used to assess
the accuracy and precision of the kw measurements are
shown in Fig. 8. The range of kw estimates are plotted as
a function of the coefficient of variation of A1. As coeffi-
cient of variation increased, the number of A1 values
close to or greater than 1 increased, resulting in a
skewed distribution of kw estimates with a cluster of val-
ues at the upper limit (500 min�1) and a bias in the
mean value. For comparison, the mean coefficient of var-
iation of A1 derived from the SNR calculations given in
Table 5 was 0.62 6 0.10. Figure 8 predicts a bias of

FIG. 5. Average DM signal (symbols) acquired at four postlabeling delays plotted as a function of diffusion-weighting strength. Data were
averaged across all pixels in grey matter, a, or white matter, b, and across four subjects. Each subject’s data were normalized to the signal

without diffusion weighting (b ¼ 0). The errors bars represent the standard error. The solid lines represent the best fit of a bi-exponential
decay model (Eq. 6) to each DM series. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 2

Parameters characterizing the DM decay in grey and white matter
regions of interest

Grey matter White matter

td
(ms)

D1

(mm2/s)
D2

(mm2/s) A1

D1

(mm2/s)
D2

(mm2/s) A1

900 493 0.0025 0.37 1.1 0.00196 0.29
1200 0.3 0.0016 0.29 0.235 0.0013 0.24

1500 0.125 0.0013 0.23 0.123 0.0009 0.20
1800 0.23 0.0014 0.06 54.51 0.00123 0.05

Values were obtained from the analysis of the DM signal averaged
across four subjects.

Table 3

Average transit time (ta) and water exchange rate (kw) in grey and
white matter regions of interest

Subject

ta (s) kw (min�1)

Grey

matter

White

matter

Grey

matter

White

matter

1 1.57 1.65 81 110

2 1.56 1.53 116 123
3 1.41 1.45 127 146
4 1.50 1.43 100 125

5 1.52 1.54 108 135
6 1.50 1.57 121 98

7 1.36 1.52 124 144
Mean 1.49 6 0.08 1.53 6 0.07 110 6 18 126 6 18

The ta and kw values were obtained from the ROI analysis of the
DM(b10)/DM(b0) and DM(b50)/DM(b0) images, respectively.
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approximately 36% at this coefficient of variation value
with approximately 5% of the kw estimates at the upper
level. Both of these predictions are similar to the experi-
mental results presented in Table 4 and Fig. 7.

DISCUSSION

Analogous to ASL blood flow measurements, the accu-
racy of DW-ASL kw measurements can be affected by the
arterial transit time and signal contributions from arterial
blood. We have attempted to minimize these confound-
ing effects by directly measuring ta and by choosing a
postlabeling delay greater than ta. The latter ensures that
all labeled water reaches the capillary space, where it
can diffuse across the blood-brain barrier into tissue. The
signal equations that characterize the amount of labeled
water in these two spaces were modified to account for
both of these timing variables (Eqs. 4 and 5). In this
study, the chosen postlabeling delay (td ¼ 1.5 s) was suf-
ficient to satisfy the second criterion for all subjects—

note, some of the ta values given in Table 3 are greater
than 1.5 s because these values were averaged across all
slices. If the duration of the postlabeling delay had not
been sufficient, an alternative approach would be to use
a serial compartment model as originally proposed for
cerebral blood flow measurements (16). In the case of
DW-ASL, the first compartment would represent the
arterial contribution and the second compartment would
represent the capillary/tissue contributions.

The average values of ta in grey and white matter
obtained with the FEAST technique (Table 3) were in
good agreement with our previous results (17), which
were also obtained using continuous ASL with a labeling
distance of 8 cm. It was anticipated that ta would be
greater in white matter than grey matter. The lack of a
difference between the two tissues was likely due to the
poorer SNR in white matter voxels and signal contamina-
tion from grey matter caused by spatial filtering. Partial
volume errors can also result from signal contamination
from cerebrospinal fluid. However, this error is caused
primarily by incorrectly estimating M0 and, therefore, it
should have minimal effect on ta and kw (31). In contrast
to the ta measurements, our previous estimation of grey
matter kw (193 6 50 min�1) is larger than the average
value obtained by ROI analysis in the present study (14).
In the previous study, kw was determined using an
assumed arterial transit time (ta ¼ 1.4 s), a shorter post-
labeling delay (td ¼ 1.2 s), and a version of the single-
pass approximation model that did not account for signal
contributions from labeled water in arterial blood when
td < ta. Explicitly accounting for these factors in this
study likely resulted in more accurate measurements.

An estimation of the permeability-surface area product
of water can be derived from kw by assuming a known
value for the microvasculature blood volume. Reported

FIG. 6. DW-ASL DM images from one subject: a: FEAST data acquired with td ¼ 0.8 s and b: DW-ASL (kw) data acquired with td ¼ 1.5 s.

Each set shows the average diffusion-weighted DM images, DM (b0) in the first row and DM (bDW) in the second row; the ratio images
DM(bDW)/DM(b0) are in the third row; and either the (a) ta or (b) kw images are in the final row (the ta scale is in units of seconds and the
kw scale in min�1). Four of eight slices are shown. All images were smoothed with a gaussian filter with a kernel size of 8 mm for the

FEAST images and 15 mm for the DW-ASL(kw) images. Images were generated using T1 values of 1.26, 0.85, and 1.49 s for grey matter,
white matter, and blood, respectively.

Table 4

Average grey and white matter values determined from the kw
images

Subject

kw (min�1)

Grey matter White matter

1 94 119
2 147 203
3 156 156

4 112 119
5 155 224

6 158 104
7 151 157
Mean 139 6 25 154 6 45
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values of Vc in the cerebral cortex of cats are typically
1.5 to 2 mL/100 g (27). Using this range and the mean
grey matter kw value given in Table 3, PSw would be
between 165 to 220 mL/100 g/min, which is in reasona-
ble agreement with previously reported values: 127 mL/
100 g/min in humans (32), 138 mL/100 g/min in mon-
keys (33), 140 mL/100 g/min in rabbits (34), and between
138 to 319 mL/100 g/min in rats (35,36). Assuming a
grey-to-white matter blood volume ratio of 2:1 (37), the
estimated PSw in white matter would be between 95 to
126 mL/100 g/min, which is similar to the value of 80
mL/100g/min reported by Herscovitch et al. (32). The gen-
eral agreement between our results and previous measure-
ments of PSw suggests that DW-ASL can accurately mea-
sure the water exchange rate. The next step will be to
determine if the technique is sensitive to changes in BBB
permeability, such as caused by infusing hypertonic man-
nitol, or if kw is linearly correlated with regional varia-
tions in CBF as previously reported for PSw (32).

The primary challenge to measuring kw by ASL is
achieving an acceptable degree of precision due to the
inherently poor SNR of ASL. The first ASL study to mea-
sure kw acquired data at multiple postlabeling delays
and included PSw as an additional fitting parameter (23).
Large intersubject variability was found with this
approach and it has been suggested that it lacks the sen-
sitivity to measure PSw with reasonable precision (38).
The poor sensitivity can, in part, be attributed to the rel-
atively small differences in blood and tissue relaxation
times, which makes it difficult to distinguish the two
pools. The use of diffusion weighting gradients enhances
this signal differences. In this study, the average
decrease in the DM signal caused by applying DW gra-

dients with b ¼ 50 s/mm2 was 28%. However, this
approach is also SNR limited because the estimation of
kw is based on the ratio of two DM images, one of which
has lower a SNR due to diffusion weighting (Table 5).
This SNR limitation manifested as a bias in the mean
value of the kw images and a large coefficient of varia-
tion. For example, the five and nine percentiles from the
data presented in Fig. 7 were 52 and 500 min�1, respec-
tively. The latter percentile had reached the upper limit
set in the fitting algorithm and pixels at the upper limit
are evident in the kw images by bright artifacts (Fig. 6).
Similar effects due to image noise were predicted by the
Monte Carlo simulations. The simulations also demon-
strated that minimizing the bias and reducing the 5 and
95 percentiles to less than 6 25% would require reduc-
ing the coefficient of variation to below 0.2. This reduc-
tion can be achieved by ROI analysis, such as the grey
and white matter results presented in Table 3. In this
study, separate ROI analysis of the two DW-ASL(kw) data
sets indicted a test-retest coefficient of variation of 26%
in grey matter and 25% in white matter. These results
demonstrate that DW-ASL can produce reproducible kw
values, at least in large regions of interest. Achieving

FIG. 7. a: Histogram of DM(b50)/DM(b0) values across all pixels from one subject’s data. The ordinate represents the relative number of
pixels at a given DM(b50)/DM(b0) value. b: Histogram of corresponding kw values.

Table 5
Mean pixel SNR in each DW-ASL image set

Image series SNR

FEAST DM(b0) 3.08 6 0.70
FEAST DM(b10) 1.53 6 0.34
DW-ASL(kw) DM(b0) 1.96 6 0.39

DW-ASL(kw) DM(b50) 0.84 6 0.18

Values were averaged across seven subjects.

FIG. 8. Error in water-exchange rate kw due to random noise

added to the capillary fraction (A1) signal. The dotted black line
represents the input kw value and the solid black line represents

the mean value from the simulations. The two dashed red lines
are the 16 and 84 percentiles and the two solid red lines are the 5
and 95 percentiles. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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comparable levels of precision at a pixel-by-pixel level
will clearly require greater sensitivity. One immediate
improvement would be to incorporate DW-ASL with sin-
gle-shot 3D imaging, which has been shown to signifi-
cantly improve temporal SNR (39). Another alternative
for future clinical applications would be to use DM(b50)/
DM(b0) as a surrogate marker of water exchange since the
DM(b50)/DM(b0) images demonstrated superior spatial ho-
mogeneity compared with the kw maps (see Fig. 6b). In
previous animal studies, the ratio of the tissue-compart-
ment ASL signal to the total ASL signal has been used to
estimate the water extraction fraction (E) based on
the assumption of instantaneous extraction across the
BBB (13,40).

One limitation of this study was that the diffusion gra-
dients were applied along the z-axis, with the assump-
tion that microvascular flow is isotropic. In future stud-
ies, diffusion gradients can be applied along two or three
directions, which would simultaneously shorten the
echo time. Nevertheless, our recent multidirectional DW-
pCASL data acquired with six non-collinear directions
suggested no evidence of anisotropic microvascular
flow (41).

In summary, this study investigated the feasibility of a
two-stage DW-ASL procedure for measuring both ta and
kw. The ta estimates were in good agreement with our
previous results (17), and the kw values compared favor-
ably with PSw measurements from positron emission to-
mography (32). The reproducibility of regional kw values
was reasonable, as determined from the intrasubject coef-
ficients of variation; however, SNR analysis and Monte
Carlo simulations indicated that the sensitivity of the
technique needs to be improved to provide pixel kw val-
ues with acceptable precision.
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