537 research outputs found

    Methodological Journey: Lessons Learned From a Student-led Intercultural Pilot Study

    Get PDF
    New technical communication scholars face the challenge of developing cultural competence in order to effectively and appropriately carry out intercultural research. With interculturally competent technical communicators in increasingly high demand, instructors wrestle with the challenge of preparing students for cross-cultural work environments (Melton, 2011; Smith & Mikelonis, 2011; St.Amant, 2011). The field has adopted a wide variety of globalization-driven, culture-conscious educational practices over the past few decades, but a knowledge gap still persists regarding how to equip new scholars with training and tools that are necessary for building cultural competence, particularly as it relates to designing and conducting research. In this article, we offer a critical reflection on our recent research journey during an intercultural pilot study in order to share lessons learned along the way about cultural competence, intercultural rhetoric, and multi-lingual interpreter-facilitated interviews

    On the Spin of the Black Hole in IC 10 X-1

    Get PDF
    The compact X-ray source in the eclipsing X-ray binary IC 10 X–1 has reigned for years as ostensibly the most massive stellar-mass black hole, with a mass estimated to be about twice that of its closest rival. However, striking results presented recently by Laycock et al. reveal that the mass estimate, based on emission-line velocities, is unreliable and that the mass of the X-ray source is essentially unconstrained. Using Chandra and NuSTAR data, we rule against a neutron-star model and conclude that IC 10 X–1 contains a black hole. The eclipse duration of IC 10 X–1 is shorter and its depth shallower at higher energies, an effect consistent with the X-ray emission being obscured during eclipse by a Compton-thick core of a dense wind. The spectrum is strongly disk-dominated, which allows us to constrain the spin of the black hole via X-ray continuum fitting. Three other wind-fed black hole systems are known; the masses and spins of their black holes are high: M ~ 10 - 15M_☉ and ɑ_* > 0.8. If the mass of IC 10 X-1's black hole is comparable, then its spin is likewise high

    Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts

    Get PDF
    The replacement of fish oil (FO) with a DHA-rich Schizochytrium sp. algal meal (AM) at two inclusion levels (11% and 5.5% of diet) was tested in Atlantic salmon post-smolts compared to fish fed a FO diet of northern (NFO) or southern hemisphere (SFO) origin. Fish were preconditioned prior to the 19-week experimental feeding period to reduce long-chain polyunsaturated fatty acid (LC-PUFA) and persistent organic pollutant levels (POPs). Dietary POP levels differed significantly between treatments in the order of NFO>SFO>11AM/5.5AM and were subsequently reflected in the flesh. Fish fed the 11AM diet contained similar DHA levels (g.100g-1 flesh) to FO-fed fish, despite percentage differences. However, the low levels of EPA in the diets and flesh of algal-fed fish compromised the overall nutritional value to the final consumer. Nevertheless, further developments in microalgae culture offer a promising alternative lipid source of LC-PUFA to FO in salmon feeds that warrants further investigation

    Exploring Heterogeneity in Histology-Independent Technologies and the Implications for Cost-Effectiveness

    Get PDF
    Background: The National Institute for Health and Care Excellence and a number of international health technology assessment agencies have recently undertaken appraisals of histology-independent technologies (HITs). A strong and untested assumption inherent in the submissions included identical clinical response across all tumour histologies, including ‘new’ histologies unrepresented in the trial. Challenging this assumption and exploring the potential for heterogeneity has the potential to impact upon cost-effectiveness. Method: Using published response data for a HIT, a Bayesian hierarchical model (BHM) was used to identify heterogeneity in response and to estimate the probability of response for each histology included in single-arm studies which informed the submission for the HIT, larotrectinib. The probability of response for a ‘new’ histology was estimated. Results were inputted into a simplified response-based economic model using hypothetical parameters. Histology-independent and histology-specific incremental cost-effectiveness ratios (ICERs) accounting for heterogeneity were generated. Results: The results of the BHM show considerable heterogeneity in response rates across histologies. The predicted probability of response estimated by the BHM is 60.9% (95% CrI 16.0; 91.8%), lower than the naively pooled probability of 74.5%. A mean response probability of 56.9% (0.2; 99.9%) is predicted for an unrepresented histology. Based on the economic analysis, the probability of the hypothetical HIT being cost effective under the assumption of identical response is 78%. Allowing for heterogeneity, the probability of various approval decisions being cost effective ranges from 93% to 11%. Conclusions: Central to the challenge of reimbursement of HITs is the potential for heterogeneity. This study illustrates how heterogeneity in clinical-effectiveness can result in highly variable and uncertain estimates of cost-effectiveness. This analysis can help understand the consequences of histology-independent vs histology-specific decisions

    What is embodiment? a psychometric approach

    Get PDF
    What is it like to have a body? The present study takes a psychometric approach to this question. We collected structured introspective reports of the rubber hand illusion, to systematically investigate the structure of bodily self-consciousness. Participants observed a rubber hand that was stroked either synchronously or asynchronously with their own hand and then made proprioceptive judgments of the location of their own hand and used Likert scales to rate their agreement or disagreement with 27 statements relating to their subjective experience of the illusion. Principal components analysis of this data revealed four major components of the experience across conditions, which we interpret as: embodiment of rubber hand, loss of own hand, movement, and affect. In the asynchronous condition, an additional fifth component, deafference, was found. Secondary analysis of the embodiment of runner hand component revealed three subcomponents in both conditions: ownership, location, and agency. The ownership and location components were independent significant predictors of proprioceptive biases induced by the illusion. These results suggest that psychometric tools may provide a rich method for studying the structure of conscious experience, and point the way towards an empirically rigorous phenomenology

    Cognitive training for freezing of gait in Parkinson's disease: a randomized controlled trial.

    Get PDF
    The pathophysiological mechanism of freezing of gait (FoG) has been linked to executive dysfunction. Cognitive training (CT) is a non-pharmacological intervention which has been shown to improve executive functioning in Parkinson's disease (PD). This study aimed to explore whether targeted CT can reduce the severity of FoG in PD. Patients with PD who self-reported FoG and were free from dementia were randomly allocated to receive either a CT intervention or an active control. Both groups were clinician-facilitated and conducted twice-weekly for seven weeks. The primary outcome was percentage of time spent frozen during a Timed Up and Go task, assessed both on and off dopaminergic medications. Secondary outcomes included multiple neuropsychological and psychosocial measures. A full analysis was first conducted on all participants randomized, followed by a sample of interest including only those who had objective FoG at baseline, and completed the intervention. Sixty-five patients were randomized into the study. The sample of interest included 20 in the CT group and 18 in the active control group. The primary outcome of percentage time spent frozen during a gait task was significantly improved in the CT group compared to active controls in the on-state. There were no differences in the off-state. Patients who received CT also demonstrated improved processing speed and reduced daytime sleepiness compared to those in the active control. The findings suggest that CT can reduce the severity of FoG in the on-state, however replication in a larger sample is required

    Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease

    Get PDF
    Impairments in motor automaticity cause patients with Parkinson's disease to rely on attentional resources during gait, resulting in greater motor variability and a higher risk of falls. Although dopaminergic circuitry is known to play an important role in motor automaticity, little evidence exists on the neural mechanisms underlying the breakdown of locomotor automaticity in Parkinson's disease. This impedes clinical management and is in great part due to mobility restrictions that accompany the neuroimaging of gait. This study therefore utilized a virtual reality gait paradigm in conjunction with functional MRI to investigate the role of dopaminergic medication on lower limb motor automaticity in 23 patients with Parkinson's disease that were measured both on and off dopaminergic medication. Participants either operated foot pedals to navigate a corridor (‘walk’ condition) or watched the screen while a researcher operated the paradigm from outside the scanner (‘watch’ condition), a setting that controlled for the non-motor aspects of the task. Step time variability during walk was used as a surrogate measure for motor automaticity (where higher variability equates to reduced automaticity), and patients demonstrated a predicted increase in step time variability during the dopaminergic “off” state. During the “off” state, subjects showed an increased blood oxygen level-dependent response in the bilateral orbitofrontal cortices (walk>watch). To estimate step time variability, a parametric modulator was designed that allowed for the examination of brain regions associated with periods of decreased automaticity. This analysis showed that patients on dopaminergic medication recruited the cerebellum during periods of increasing variability, whereas patients off medication instead relied upon cortical regions implicated in cognitive control. Finally, a task-based functional connectivity analysis was conducted to examine the manner in which dopamine modulates large-scale network interactions during gait. A main effect of medication was found for functional connectivity within an attentional motor network and a significant condition by medication interaction for functional connectivity was found within the striatum. Furthermore, functional connectivity within the striatum correlated strongly with increasing step time variability during walk in the off state (r=0.616, p=0.002), but not in the on state (r=−0.233, p=0.284). Post-hoc analyses revealed that functional connectivity in the dopamine depleted state within an orbitofrontal-striatal limbic circuit was correlated with worse step time variability (r=0.653,

    Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    Get PDF
    We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the final design and early procurement phase, with commissioning at the telescope expected in 2017.Comment: 11 pages, 11 Figures, Summary of a presentation to Astronomical Telescopes and Instrumentation 201
    corecore