4 research outputs found

    Recent Insights in Barium-131 as a Diagnostic Match for Radium-223: Cyclotron Production, Separation, Radiolabeling, and Imaging

    No full text
    Barium-131 is a single photon emission computed tomography (SPECT)-compatible radionuclide for nuclear medicine and a promising diagnostic match for radium-223/-224. Herein, we report on the sufficient production route 133Cs(p,3n)131Ba by using 27.5 MeV proton beams. An average of 190 MBq barium-131 per irradiation was obtained. The SR Resin-based purification process led to barium-131 in high radiochemical purity. An isotopic impurity of 0.01% barium-133 was detectable. For the first time, radiolabeling of the ligand macropa with barium-131 was performed. Radiolabeling methods under mild conditions and reaction controls based on TLC systems were successfully applied. Small animal SPECT/ computed tomography (CT) measurements and biodistribution studies were performed using [131Ba]Ba(NO3)2 as reference and 131Ba-labeled macropa in healthy mice for the first time. Biodistribution studies revealed the expected rapid bone uptake of [131Ba]Ba2+, whereas 131Ba-labeled macropa showed a fast clearance from the blood, thereby showing a significantly (p < 0.001) lower accumulation in the bone. We conclude that barium-131 is a promising SPECT radionuclide and delivers appropriate imaging qualities in small animals. Furthermore, the relative stability of the 131Ba-labeled macropa complex in vivo forms the basis for the development of sufficient new chelators, especially for radium isotopes. Thereby, barium-131 will attain its goal as a diagnostic match to the alpha emitters radium-223 and radium-224

    Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker

    Get PDF
    <p>This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole PANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.</p>

    Literaturverzeichnis

    No full text
    corecore