124 research outputs found

    The global politics of a β€˜poncy pillowcase’: Migration and borders in Coronation Street

    Get PDF
    This article examines the ways in which popular culture stages and supplies resources for agency in everyday life, with particular attention to migration and borders. Drawing upon cultural studies, and specific insights originating from the Birmingham Centre for Contemporary Cultural Studies, we explore how intersectional identities such as race, ethnicity, class, and gender are experienced in relation to the globalisation of culture and identity in a 2007 Coronation Street storyline. The soap opera genre offers particular insights into how agency emerges in everyday life as migrants and locals navigate the forces of globalisation. We argue that a focus on popular culture can mitigate the problem of isolating migrant experiences from local experiences in migrant-receiving areas

    An interdisciplinary intervention for older Taiwanese patients after surgery for hip fracture improves health-related quality of life

    Get PDF
    Abstract Background The effects of intervention programs on health-related quality of life (HRQOL) of patients with hip fracture have not been well studied. We hypothesized that older patients with hip fracture who received our interdisciplinary intervention program would have better HRQOL than those who did not. Methods A randomized experimental design was used. Older patients with hip fracture (N = 162), 60 to 98 years old, from a medical center in northern Taiwan were randomly assigned to an experimental (n = 80) or control (n = 82) group. HRQOL was measured by the SF-36 Taiwan version at 1, 3, 6, and 12 months after discharge. Results The experimental group had significantly better overall outcomes in bodily pain (β = 9.38, p = 0.002), vitality (β = 9.40, p < 0.001), mental health (β = 8.16, p = 0.004), physical function (β = 16.01, p < 0.001), and role physical (β = 22.66, p < 0.001) than the control group at any time point during the first year after discharge. Physical-related health outcomes (physical functioning, role physical, and vitality) had larger treatment effects than emotional/mental- and social functioning-related health outcomes. Conclusions This interdisciplinary intervention program may improve health outcomes of elders with hip fracture. Our results may provide a reference for health care providers in countries using similar programs with Chinese/Taiwanese immigrant populations. Trial registration NCT01052636http://deepblue.lib.umich.edu/bitstream/2027.42/78259/1/1471-2474-11-225.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78259/2/1471-2474-11-225.pdfPeer Reviewe

    Biological therapies in the systemic management of psoriasis: International Consensus Conference

    Full text link
    Psoriasis is a chronic, immune-mediated disorder that usually requires long-term treatment for control. Approximately 25% of patients have moderate to severe disease and require phototherapy, systemic therapy or both. Despite the availability of numerous therapeutic options, the long-term management of psoriasis can be complicated by treatment-related limitations. With advances in molecular research and technology, several biological therapies are in various stages of development and approval for psoriasis. Biological therapies are designed to modulate key steps in the pathogenesis of psoriasis. Collectively, biologicals have been evaluated in thousands of patients with psoriasis and have demonstrated significant benefit with favourable safety and tolerability profiles. The limitations of current psoriasis therapies, the value of biological therapies for psoriasis, and guidance regarding the incorporation of biological therapies into clinical practice are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72815/1/j.1365-2133.2004.06070.x.pd

    Beta-catenin/TCF4 transactivates miR-30e during intestinal cell differentiation

    Get PDF
    The Wnt/beta-catenin/TCF4 pathway plays critical roles in the maintenance of small intestinal epithelium; however, downstream targets of the beta-catenin/TCF4 complex are not extensively characterized. We identified miR-30e as an immediate target activated by the beta-catenin/TCF4 complex. miR-30e was detected in the peri-nuclear region of the intestinal crypt IEC-6 cells. Bioinformatics analysis revealed clustered beta-catenin/TCF4 binding sites within the miR-30e promoter region. This promoter region was cloned into pGL3-control luciferase reporter vector, with the enhancer region removed. Transfection of pCMV-SPORT6-beta-catenin expression vector dose-dependently increased luciferase activity, and co-transfection of pCMV-SPORT6-TCF4 expression vector further enhanced the promoter activity. Dexamethasone-induced IEC-6 cells differentiation caused a 2.5-fold increase in miR-30e expression, and upon beta-catenin siRNA transfection, miR-30e increased 1.3-fold. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirmed the binding between beta-catenin/TCF4 complexes from IEC-6 nuclear extracts and the putative sequences in the miR-30e promoter. These results demonstrate that beta-catenin/TCF4 transactivates miR-30e during intestinal cell differentiation

    An alginate-layer technique for culture of Brassica oleracea L. protoplasts

    Get PDF
    Ten accessions belonging to the Brassica oleracea subspecies alba and rubra, and to B. oleracea var. sabauda were used in this study. Protoplasts were isolated from leaves and hypocotyls of in vitro grown plants. The influence of selected factors on the yield, viability, and mitotic activity of protoplasts immobilized in calcium alginate layers was investigated. The efficiency of protoplast isolation from hypocotyls was lower (0.7 ± 0.1 × 106 mlβˆ’1) than for protoplasts isolated from leaf mesophyll tissue (2 ± 0.1 × 106 mlβˆ’1). High (70–90%) viabilities of immobilized protoplasts were recorded, independent of the explant sources. The highest proportion of protoplasts undergoing divisions was noted for cv. Reball F1, both from mesophyll (29.8 ± 2.2%) and hypocotyl (17.5 ± 0.3%) tissues. Developed colonies of callus tissue were subjected to regeneration and as a result plants from six accessions were obtained

    A Regulatory Role for NBS1 in Strand-Specific Mutagenesis during Somatic Hypermutation

    Get PDF
    Activation-induced cytidine deaminase (AID) is believed to initiate somatic hypermutation (SHM) by deamination of deoxycytidines to deoxyuridines within the immunoglobulin variable regions genes. The deaminated bases can subsequently be replicated over, processed by base excision repair or mismatch repair, leading to introduction of different types of point mutations (G/C transitions, G/C transversions and A/T mutations). It is evident that the base excision repair pathway is largely dependent on uracil-DNA glycosylase (UNG) through its uracil excision activity. It is not known, however, which endonuclease acts in the step immediately downstream of UNG, i.e. that cleaves at the abasic sites generated by the latter. Two candidates have been proposed, an apurinic/apyrimidinic endonuclease (APE) and the Mre11-Rad50-NBS1 complex. The latter is intriguing as this might explain how the mutagenic pathway is primed during SHM. We have investigated the latter possibility by studying the in vivo SHM pattern in B cells from ataxia-telangiectasia-like disorder (Mre11 deficient) and Nijmegen breakage syndrome (NBS1 deficient) patients. Our results show that, although the pattern of mutations in the variable heavy chain (VH) genes was altered in NBS1 deficient patients, with a significantly increased number of G (but not C) transversions occurring in the SHM and/or AID targeting hotspots, the general pattern of mutations in the VH genes in Mre11 deficient patients was only slightly altered, with an increased frequency of A to C transversions. The Mre11-Rad50-NBS1 complex is thus unlikely to be the major nuclease involved in cleavage of the abasic sites during SHM, whereas NBS1 might have a specific role in regulating the strand-biased repair during phase Ib mutagenesis

    Human Cytomegalovirus UL29/28 Protein Interacts with Components of the NuRD Complex Which Promote Accumulation of Immediate-Early RNA

    Get PDF
    Histone deacetylation plays a pivotal role in regulating human cytomegalovirus gene expression. In this report, we have identified candidate HDAC1-interacting proteins in the context of infection by using a method for rapid immunoisolation of an epitope-tagged protein coupled with mass spectrometry. Putative interactors included multiple human cytomegalovirus-coded proteins. In particular, the interaction of pUL38 and pUL29/28 with HDAC1 was confirmed by reciprocal immunoprecipitations. HDAC1 is present in numerous protein complexes, including the HDAC1-containing nucleosome remodeling and deacetylase protein complex, NuRD. pUL38 and pUL29/28 associated with the MTA2 component of NuRD, and shRNA-mediated knockdown of the RBBP4 and CHD4 constituents of NuRD inhibited HCMV immediate-early RNA and viral DNA accumulation; together this argues that multiple components of the NuRD complex are needed for efficient HCMV replication. Consistent with a positive acting role for the NuRD elements during viral replication, the growth of pUL29/28- or pUL38-deficient viruses could not be rescued by treating infected cells with the deacetylase inhibitor, trichostatin A. Transient expression of pUL29/28 enhanced activity of the HCMV major immediate-early promoter in a reporter assay, regardless of pUL38 expression. Importantly, induction of the major immediate-early reporter activity by pUL29/28 required functional NuRD components, consistent with the inhibition of immediate-early RNA accumulation within infected cells after knockdown of RBBP4 and CHD4. We propose that pUL29/28 modifies the NuRD complex to stimulate the accumulation of immediate-early RNAs

    Current understanding of the human microbiome

    Get PDF
    Author Posting. Β© The Author(s), 2018. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Medicine 24 (2018): 392–400, doi:10.1038/nm.4517.Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review, we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.Many of the studies described here in our laboratories were supported by the NIH, NSF, DOE, and the Alfred P. Sloan Foundation.2018-10-1

    Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    Get PDF
    International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcΞ³RIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology
    • …
    corecore