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Abstract 

Our understanding of the link between the human microbiome and disease, including obesity, 

inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the 

throughput and accuracy of DNA sequencing of the genomes of microbial communities 

associated with human samples, complemented by analysis of transcriptomes, proteomes, 

metabolomes and immunomes, and mechanistic experiments in model systems, have vastly 

improved our ability to understand the structure and function of the microbiome in both diseased 

and healthy states. However, many challenges remain. In this Review, we focus on studies in 

humans to describe these challenges, and propose strategies that leverage existing knowledge to 

move rapidly from correlation to causation, and ultimately to translation.  
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The microbial cells that colonize the human body, including in mucosal and skin environments, 

are at least as abundant as our somatic cells1, and certainly contain far more genes than our 

human genome (Box 1).  An estimated 500-1000 species of bacteria exist in the human body at 

any one time2, although the number of unique genotypes (sub-species) could be orders of 

magnitude greater than this3. Each bacterial strain has a genome containing thousands of genes, 

offering substantially more genetic diversity and hence flexibility than the human genome. 

However, different people harbour radically different collections of microbes with substantially 

varying densities even among conserved taxa, and we understand little about what leads to and 

what regulates this variation. Importantly, we do not yet understand how the variation within a 

person over time, or between different people, influences wellness, the preservation of health, or 

the onset and progression of disease. However, we do know that changes in the microbiome, and 

microbial metabolome and their interaction with the immune, endocrine, and nervous system are 

correlated with a wide array of illnesses, ranging from inflammatory bowel disease 4–6 to cancer7 

to major depressive disorder 8,9.  

 

Human microbiome investigations have now reached a critical inflection point. We are 

transitioning from description and investigation to understanding mechanism, and developing 

novel clinical interventions based on this understanding10 . These advances have also created a 

surge in translational research, resulting in substantial private investment not only in academic 

research, but also in the private sector, including so-called “Big Pharma”. This drive toward 

clinical microbiome studies is supported by a revolution in personalized medicine, in which, for 

example, the decline in cost of cancer genome sequencing is allowing the rapid identification of 

the precise treatment regimen that will lead to a positive outcome in an individual patient, for 

example, with colorectal cancer11 . Our ability to rapidly and reproducibly characterize the 

microbiome, like cancer genomics, offers an opportunity to develop fundamentally new 

diagnostic biomarkers and therapeutics.  

 

Here we present the current state of knowledge linking the microbiome to human disease. We 

have focused on human studies when possible, but also highlight select mouse studies when 
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human studies are not available. This is to provide a platform from which to explore the future of 

applied clinical microbiome research.  

 

We will strategize on how to progress from the correlative and biomarker studies towards studies 

that will reveal the underlying mechanisms and opportunities for new preventive and therapeutic 

modalities.  

 

Factors influencing the human microbiome 

 

To alter the microbiome deliberately for preventive or therapeutic purposes, or use it to 

understand a particular medical condition, we must first understand the factors that influence its 

composition. We have reviewed many of these factors in detail recently10,12, so we provide only 

a brief summary here. 

 

Human genetics and immune interactions in early development  

The composition of the human microbiome is unique in each individual, and the differences 

among individuals are large compared to the typical biochemical differences within a person 

over time13,14. Identical twins are barely more similar to one another in microbial composition 

and structure than are non-identical twins15, at least over the range of environmental factors 

captured in studies to date, suggesting that the effect of the human genome is limited, and that 

most of microbial community assembly may be determined by environmental factors. Early 

underpowered studies suggested that monozygotic twins were no more similar in terms of their 

overall gut microbiota than dizygotic twins16–18, although larger cohort sizes show a small but 

statistically significant effect of genetics on microbiome composition in twins with certain taxa 

being identified as highly heritable, such as Christensenella15. However, one way to rationalize 

this is that the number of bacteria that are able to successfully colonize humans is limited. 

Colonizing initially germ-free mice with diverse environmental samples demonstrates that very 

few bacteria present in the environment can survive in the mouse gut, and those that do are 

rapidly displaced by human- or mouse-derived bacteria on exposure19 Furthermore, human 

immune responses shape responses to changes in the microbiome and are involved in shaping the 

microbiome itself20.  
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Most human immunological studies regrettably still lack a microbiome component, that will be 

essential to untangling the relationship between the immune response and microbial colonisation 

and stability. The mammalian immune system has a complex and dynamic bidirectional 

relationship with the microbiome. Although, recent human cohort studies suggest that most of 

the variability in human immune response to stimulation derives from the genome, at least 10% 

of this immune response variability derives directly from interactions associated with the 

microbiome21.  

 

The large majority of microbiome colonization occurs in the early years of life. This topic has 

been reviewed extensively22,23. During and shortly after birth, newborns are exposed to maternal 

and environmental microbes initiating gut microbiome establishment24.  Within the first year of 

life, an estimated 1013 to 1014 microbes/ml comprising 500-1000 species colonize the 

gastrointestinal tract25. After weaning, the gut microbiota becomes firmly established, leading to 

a lifelong microbiome signature in healthy individuals26.  

  

Body site  

When  the microbiomes of large cohorts of people at a given body site are compared, individuals 

fit on a continuum of microbial diversity within a human population, rather than clustering into 

discrete groups27,28. During human development, the human microbiome follows body site-

specific trajectories, so that each body site develops a specific biogeography (Figure 1). The 

skin, for example, shows dramatic variation in microbiome composition and structure across 

different sites29. The physical and topographical characteristics of skin play a significant role in 

shaping the microbial community similarity between sites30. These factors also play a role in 

shaping the individuality of the microbiome, so that each person develops a unique microbial 

signature on their skin, irrespective of the differences between skin sites31. Similarly, although 

prolonged physical oral interaction between humans influences microbial community 

composition over time32, the oral microbiome still maintains a relatively unique composition in 

each person33. Longitudinal characterization of the human gut microbiome has shown that the 

adult microbiota remain relatively stable and unique to each person, compared to the drastic 

change over the first three years of life31,34.  
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However, the microbiome is a living ecosystem, and consequently undergoes fluctuations in the 

growth rate and survival of each of its constituents. For example, changes in diet can profoundly 

impact the gut microbial community structure35,36, and vigorous cleaning can temporarily alter 

the skin microbiome. However, in both cases the original microbiota and structure re-emerge 

when the original conditions resume37. Transit time of food through the gut  also influences the 

types of microbes which can proliferate within the gut, with rapid transit time selecting for 

functions associated with biofilm formation or rapid cell division38,39 . Defining a microbiota 

based on the relative abundance of its members may therefore provide only a limited view of the 

microbial assemblage, and integrating more information about the function of each gene and 

genome in the context of the ecosystem and the host will provide increasingly important insights. 

Human microbiome variability makes blanket stratification difficult for particular disease states, 

although it is possible to identify biomarkers for some conditions [Box 2].  

 

The vaginal microbiome has a similar degree of stability to the skin microbiome, and unlike the 

gut, classifying the vaginal microbiome into discrete states during disease has been possible. The 

vaginal microbiota of asymptomatic women tend to be dominated by individual species of 

Lactobacillus and diverse additional anaerobic taxa40. The Lactobacilli are believed to benefit the 

host by lowering vaginal pH through fermentation end-products, thereby reducing the likelihood 

of allochthonous microbial colonization or pathogen invasion. Microbial variation within an 

individual woman does occur over days to weeks41, although menstruation and pregnancy appear 

to result in a similar microbiome in different groups of women42. Diseases such as bacterial 

vaginosis result in disruption of the ‘normal’ vaginal ecosystem function, but also result in a 

highly similar microbial profile between women, thereby providing a generalized biomarker of 

disease43. 

 

Diet 

Diet has been studied extensively in relation to the gut microbiome44, but less so with respect to 

other microbiomes at other sites across the body. Modulating diet is an ideal opportunity for low-

risk, culturally and psychologically acceptable intervention to change the microbiome. 

Therefore, this avenue of research could yield novel therapeutic strategies through targeted 
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dietary interventions should gut microbiota be shown to be causative for certain diseases. 

Evidence to date suggests that long-term diet has very large effects on gut microbiome 

composition45 although a sufficiently extreme short-term dietary change can cause people to 

resemble one another within days35. Fascinatingly, the effects of the same dietary ingredient on 

blood glucose measurements can vary in different people, an effect mediated by the 

microbiome46. Although we know that the microbiome can influence leptin concentrations in 

humans, and hence influence appetite47, an open question is whether the microbiome can 

influence dietary preferences, which could lead to positive feedback loops when these dietary 

changes in turn alter the microbiome. 

 

Antibiotics 

The effect of antibiotics on all microbiomes is expected to be large compared to other factors, 

and preliminary studies have been performed to determine the impact48. The gut microbiome in 

adults appears not to be resilient to repeated antibiotic administration49. The same antibiotic 

appears to affect particular microbes differently depending on the rest of the microbiome50, 

perhaps due to different growth phases, metabolic states, or contextual microbial network in 

which the microorganisms find themselves. An especially interesting area of research is the 

increasing evidence that antibiotics in early life have a profound effect of the gut microbiome 

that can result in the later development of obesity51, asthma, inflammatory bowel disease and 

other disorders.  

 

Lifestyle   

Lifestyle is also thought to have a strong influence on microbiome composition. Cohabitation 

with pets, such as dogs, has a statistically significant association with the microbiome. In one 

study, the skin microbiome of couples living together has a closer resemblance if the couple has 

a dog, but, intriguingly, a small child did not provide the same trend, so couples with a child but 

no dog were not significantly more similar to one another than couples without a child52. Pet 

ownership and exposure to livestock have been associated with decreased risk of asthma53. 

Interrupting this exposure in infants from human populations with a known ancestral history of 

interaction with animals has been shown to lead to a substantial increase in atopy, especially 

asthma54. If these results turn out to be caused by the microbiome, rather than simply correlative, 
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they suggest potential new therapeutic strategies for disease intervention could come from 

microbial exposure focused on immune activation.  

 

Other lifestyle traits have been shown to correlate with the composition of the microbiota. For 

example, exercise appears to influence the structure of the microbiome through reducing 

inflammation, with subtle changes in the microbial community composition correlated with 

changes in cytokine profiles55. Sleep deprivation correlates with changes in the gut microbiome, 

with a greater ratio of Firmicutes to Bacteroidetes and elevated abundance of Coriobacteriaceae 

and Erysipelotrichaceae associated with sleep loss56. Stress increases intestinal permeability, and 

is correlated with changes in Bacteroidetes and Actinobacteria, with corresponding shifts in 

metabolite concentrations and inflammatory markers57.  

 

Occupation has primarily been assumed to influence the microbiome via exposure to different 

environments and place of residence. For example, farmers have a different microbiome than 

city workers58. However, very few microbiome studies have isolated occupation as a variable 

influencing composition. For example, the oral microbiota of sailors is significantly altered by 

their occupational activities, so that after 120 days at sea, they show a five-fold reduction in 

alpha diversity and an increase Streptococcus59. Similarly, sexual intercourse in heterosexual 

couples leads to an increased similarity of the penile and vaginal microbiota between sexual 

partners, which could potentially alter sexual disease ecology in the participants;  there is 

emerging evidence that microbiome differences might affect transmission of STIs (Sexually 

Transmitted Infections)60. Finally, couples who physically interact have a more similar 

microbiota than people who share the same living quarters but do not physically interact14, 

indicating that physical interaction influence microbial sharing and hence microbiome similarity,  

highlighting the effects of social interaction on the microbiome. 

 

Dynamics of the human microbiome  

 

Human interaction with the environment, including with other people, creates the potential for 

specific microbial taxa to either act as an immune-stimulant that influences the microbiome 

through, for example, inflammation, or to act as a source for bacteria, fungi, and viruses that can 
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colonize the human body. The identification of bacterial taxa in the gut that alter animal 

hormonal regulation, leading to obesity in mice61, suggests that such events may alter our 

physiology. The composition of the gut microbiome itself is influenced by circadian rhythm, and 

which also then affect host circadian cycles (Figure 2). Disruption of the microbial diurnal cycle 

can lead to disruption in host circadian rhythms, which can specifically alter hormone regulation 

in mice 62. The human microbiome demonstrates enormous plasticity, while also being extremely 

robust on longer timescales and to larger types of variation31,34,35, but experiments in mouse 

models have shown some of the ways in which it can be re-shaped. 

 

This apparent dichotomy between dynamism and robustness of the microbiome at first glance 

seems difficult to resolve, until the ecological dynamics of the system are considered. All 

ecosystems undergo variation in species population density and assemblage diversity, but with 

differing magnitudes at different temporal scales. This variation includes competition among 

microbial taxa and shifting metabolic relationships, compounded and influenced by the state of 

the immune system, changing dietary patterns, and a constant exposure to bacteria from family 

and environment. Longitudinal characterization of the host microbiome and its sources is 

therefore essential to capture dynamic variance within an individual, and to determine the degree 

to which the system demonstrates predictable successional traits63. 

  

The plasticity vs. stability dichotomy of the human microbiome is evident over a period of days, 

as was illustrated in the first dense time series analysis of the human microbiome 31 and 

confirmed in later ones 34. In that study, two subjects provided daily samples of their oral, skin 

and faecal microbiota, one for six months and the other for fifteen months. The results illustrated 

that at the sequencing depth studied only a tiny fraction of bacterial taxa were found to be 

consistently present across all (or even most) samples in an individual host. For the skin sites 

(the left and right palm) there were no species detected in all samples, while in the gut and the 

mouth, about 5% of the species were defined as belonging to a stable temporal core microbiome. 

Yet each person still maintained a personalized microbiome. The degree of personalization of the 

human microbiome vastly exceeds the host genome, which is over 99.5% identical between 

individuals, suggesting that only 0.5% of the genome is unique to an individual. However, based 

on current observations, two individuals can show no overlap in microbial species in their 
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microbiome. This degree of personalization is so high that it may even have forensic 

applications64.  

  

While we are now used to thinking about the composition of the human microbiome being 

personalized, it has also been shown that the rate of change of the human microbiome 

composition is personalized65. In that study, over an approximately three-month period, 85 

college age adults donated weekly microbiome samples from gut, skin, and oral sites. Over this 

timeframe, the microbiome composition remained almost constant in some individuals, while 

that in other individuals abundances changed rapidly. These differing rates of temporal 

variability were identified at all of the body sites that were profiled (the palm of the dominant 

hand, the forehead, the tongue, and faeces), and the rate of change was not correlated across the 

different sites. On average, skin sites changed most rapidly, followed by the gut, and then oral 

(this pattern matches the relative sizes of the stable temporal core microbiome observed in the 

long-term survey mentioned above31). One potential reason for the dynamics in skin is that there 

are many species at low abundance. None of the information collected about the host correlated 

with the differing rates of change in the microbiome, so it was not possible to determine the 

underlying cause of these differences. However, one interesting observation was that individuals 

who self-reported taking antibiotics during (or in the week preceding) the sampling period did 

not change their microbiome composition more rapidly than subjects who did not report taking 

antibiotics. The absence of a difference may reflect that a one-week time frame does not fully 

capture the effects of recent or even lifetime antibiotic use. Nevertheless, on a per individual 

basis, in this study, reported antibiotic usage was typically associated with the largest change in 

an individual’s microbiome overall.  

  

While most studies associate microbiome composition with host disease state, and likelihood of 

response to a treatment, at least one recent study suggests that the rate of change of the 

microbiome may itself be a clinical feature66, as also was observed in a mouse model of juvenile 

diabetes 67. The rate of change of the vaginal microbiome differed across women with bacterial 

vaginosis, and was predictive of the subtype of bacterial vaginosis affecting the women. That 

observation, paired with data indicating that individuals differ in the rate of change of their gut, 
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skin, and oral microbiomes, suggests that characterizing temporal variability may be an 

important part of characterizing an individual’s microbiome. 

 

Understanding traits such as variance in microbiome dynamics in individuals, and whether that 

relates to  patterns of succession will simplify understanding of causal relationships between 

species and disease, and the interpretation of correlations among  taxonomic groups68. By 

prospectively assessing the microbiomes of patients undergoing different procedures, we can 

determine the rate of change, and potentially the rate of recovery of the microbiome, if it is 

altered by the procedure or by the disease state that led to the procedure. Doing this in a human 

population will provide the statistical power to relate these measurements to remission of clinical 

symptoms. Examining the sources that shape the microbiome is key to determining this variance.  

 

Bayesian statistics can also be used to map the relative contribution of a specific source to the 

human microbiome over time69, or to create artificial neural networks of conditional 

dependencies that can be used to capture predictive characteristics of a microbial network70,71. 

Using these methods, the dynamic nature of the human microbiome or metabolome both within 

an individual and within a population of individuals can be captured. Once gathered, the data can 

be harnessed to provide a predictive signature or characteristic biomarker for a given 

physiological, immunological or neurological condition. The application of machine learning 

algorithms have also proven to be valuable in identifying highly predictive characteristics of a 

microbial signature to map forensic relationships between humans and their built environments14. 

 

 

Towards Mechanistic Studies of the Microbiome 

 

Mechanistic studies of the microbiome are typically difficult to perform in humans, in part 

because of tremendous genetic and lifestyle heterogeneity, and there are ethical issues associated 

with colonizing human subjects with microbes that are hypothesized to cause disease. Therefore, 

most of what we know currently stems from experiments in animal models. However, recent 

studies that complement observations in humans with interventions in animal models have 
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produced striking new insight into the microbial origins of disease that cannot be acquired from 

human studies alone. 

 

The importance of strain-level resolution for microbiome studies 

 

The field of host-pathogen interactions has long relied on culturing strains of pathogens 

including clinical isolates, and transferring these pathogens to isolated cells, tissues, or whole 

animals to perform intervention studies. Many components of the microbiome have been 

inaccessible to such techniques because the relevant organisms cannot be cultured, although 

recent advances greatly expand the repertoire of the organisms that can be grown from the 

human gut72 so this barrier may be temporary. However, the culturable component of the 

microbiome can still be extraordinarily useful, even if incomplete. For example, a recent study in 

which 53 strains of bacteria were isolated from the human gut and used to monocolonize 

previously germ-free mice revealed large differences in immunomodulatory properties of these 

bacteria, including closely related strains that affected production of cytokines such as IL10, 

IL17a, IL22, and interferon gamma with some promoting and others inhibiting production73. 

These results underscore the need to characterize microbial activity at the strain level, not just at 

the higher taxonomic levels that are typically provided by amplicon profiling, and will probably 

reveal important links between the microbiome and disease when extended to more complex 

communities.  

 

Identifying disease - relevant strains from population studies 

 

Population-based microbiome studies complemented with mechanistic experimental work in 

mice can use microbial associations with phenotype in humans to identify bacteria or compounds 

that then can be tested in intervention studies to reveal causal pathways. For example, a study of 

heritability of different taxa within the gut microbiome in twins in the UK revealed that one 

specific taxon, Christensenella, was highly heritable and associated with low BMI in this 

population15. Strains from this genus were cultured in the lab, and then transplanted into germ-

free mice, resulting in decreased weight gain in these mice when compared to transplantation 

from an obese human, which would normally induce weight gain (as described above).  
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Similarly, in a comparative study of different human populations in Finland, Russia and Estonia, 

which differ dramatically in the incidence of early-onset autoimmune diseases, Bacteroides sp. 

were especially common in the gut microbiomes of Finnish and Estonian children, in whom the 

incidence of the diseases were lowest, and were hypothesized to provide most of the LPS 

(lipopolysaccharide; a common marker of bacterial infection in the bloodstream) exposure in 

those populations. In contrast, the Russian children had high levels of E. coli. in their 

microbiomes. Tests of the effect injections of LPS from E. coli and B. dorei showed that the 

former, but not the latter, protected mice with a genetic defect from developing autoantibodies 

and diabetes symptoms, providing a potential explanation for the consequences of the different 

early-life microbiomes on development of autoimmune disease in humans74. A similar strategy 

was used to explain differences in asthma development between Amish and Hutterite children in 

the United States.  Dust extracts from houses from each population,  shown to differ in their 

microbiome content, were tested in a mouse model of asthma development that examines 

sensitivity to ovalbumin. The tests indicated that the dust from Amish but not Hutterite homes 

protected against asthma development54, which was attributed to differences in the bacterial 

content of the dust. These strategies are broadly applicable to many other situations in which 

differential exposure to environmental bacteria may play a role in disease etiology. 

 

Identifying biomarkers in microbiome studies 

 

Some studies are now performing these types of mechanistic experiments in humans directly. In 

one striking example, examining 500 European-ancestry individuals in the Netherlands, the 

authors tested the ability of the individual’s blood to produce cytokines after several antigen 

challenges, then paired these with data about their gut metagenome. The data suggest that the 

yeast Candida albicans had an especially large influence on the host’s TNF-alpha response21. 

This study also associated  pathways active in bacteria such as palmitoleic acid metabolism with 

lower systemic inflammatory response; adding palmitoleic acid in challenge with C. albicans to 

an individual’s blood resulted in lower TNF-alpha, but unchanged IFN-gamma responses, as 

predicted from the association data. These types of studies are especially useful in conjunction 

with humans with naturally occurring genetic knockouts or variant alleles. These human genetic 
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variants may enable microbially induced disease states that can be tested in mice with 

comparable null or variant genetic changes, as has been shown for Parkinson’s Disease.73 

 

Characterizing microbial biomarkers has great potential for precision medicine, and is 

therefore a relatively simple way of translating microbiome research into clinical practice. For 

example, from groundbreaking animal studies, we know that bacterial probiotics (live bacteria 

deliberately introduced to the animal to produce a therapeutic effect) can be used to enhance 

immune checkpoint blockade therapy for melanoma patients75. Studying the microbiomes of 

melanoma patients prior to immune checkpoint blockade therapy has identified 

microorganisms in the gut to be biomarkers for diagnosis that can predict whether patients are 

at risk of developing checkpoint-blockade-induced colitis76.  

 

These prospective studies are extremely important for linking microbial community structure, 

function, and metabolic products to health outcomes. Studies of the microbiome as infants 

develop are also key in this area, and many ongoing investigations, such as the NIH Common 

Core program Environmental Influences on Child Health Outcomes (ECHO: 

https://www.nih.gov/echo), now provide the infrastructure to sequence healthy, susceptible 

and diseased participants to examine how lifestyle and environmental experiences shape the 

development of immune, endocrine and neurological conditions. Although cross-sectional 

single time point studies of birth cohorts provide intriguing statistical associations77, 

longitudinal prospective studies complemented by mechanistic experiments in animal models 

are required to establish whether a certain microbiome causes disease.  

 

Future studies: developing translational potential 

 

There remains much that we do not understand about the human microbiome. The sources of 

bacteria that colonize an infant include the mother and other caregivers (even one-day-old pre-

term infants have unique microbiomes that differ from each other and from the mother but 

possibly derived from their mothers78), and human genetics shapes microbiome-immune 

interaction. Given these observations, why do monozygotic twins growing up in the same 

household develop microbiomes that are barely more similar than those of dizygotic twins? The 
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role of exogenous immune stimulation in shaping the colonization efficiency of different strains 

must be investigated in more detail. Animal models have produced intriguing findings, but 

prospective longitudinal studies in human infants are required to better understand how human 

genetics influence the developing microbiome. These longitudinal investigations will also help 

us to understand the implication of ecological dynamics of the microbiome in health and disease. 

Microbiome stability (resistance to change) and resilience (return to the initial state following 

perturbation) are essential but poorly understood ecological characteristics that can be quantified 

through longitudinal studies by serial collection of DNA sequence data from the microbiome, 

perhaps complemented by metabolite and gene expression profiling. For example, performing 

weekly microbiome profiling of participants before, during. and after surgery could help  identify 

whether (and which) microbiome ecological dynamics are linked to response to surgery, 

complications, and recovery. Similarly, understanding the resistance and resilience of the 

microbiome to antibiotics requires larger-scale longitudinal studies of diverse cohorts (Figure 3). 

This is especially relevant in childhood, when the microbiome is in flux and may be less 

resistant, but more resilient to these stresses.  

 

As we move forward with transforming microbiome research from a descriptive to causal, and 

finally translational science, the ability to define biomarkers that can stratify patient populations 

within a disease state represents ‘low-hanging fruit’ (Box 2). Of course, the effort required to 

take advantage of these biomarkers is considerable. Clinical studies that recruit large and 

representative patient populations to examine the response to a new drug or therapeutic 

intervention should definitely consider the opportunity to collect data on both immune function 

and the microbiome. These additional variables may lead to new non-invasive diagnostic 

platforms. In the future, it may be possible to request a stool or vaginal sample, or even an saliva 

sample (which has been shown to yield effective microbial biomarkers for diseases not centered 

on the mouth such as rheumatoid arthritis79 (Box 2)) from a patient prior to a surgical 

intervention. Then, along with their genome and medical history, scientists could make a more 

accurate prediction about the likelihood of successful outcome and/or of complications for each 

proposed intervention. This additional information, if presented in a sufficiently clear format, 

would substantially aid clinicians by providing new data layers that enrich the decision-making 

process. To realize this vision, we must better understand the factors that influence the 
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microbiome of a healthy individual, and how the microbiome is reshaped during different health 

and disease states. 

 

Concluding Remarks 

Microbiome analysis, and so-called Microbiome Wide Association Studies (MWAS)10, are 

revolutionizing clinical investigations by providing greater patient stratification and new 

biomarkers of disease. We are poised to make great advances in patient care over the next decade 

as we improve our ability to characterize and manipulate the microbiome and its metabolism. 

The omics tools available to perform this characterization have been developed independently, 

but now there is an ongoing concerted effort80,81 to better standardize and integrate methods and 

data resources to improve our ability to understand microbial dynamics in human systems. 

Systems microbiome medicine approaches are rapidly finding their way into clinical 

investigations, and this is producing a need to integrate traditional clinical statistics and 

epidemiology with microbial ecological statistics and theory. While these two concepts are not 

mutually exclusive, they are often treated as such; a new breed of data scientist is required as 

early-career clinician-scientists develop their new skills in this rapidly expanding field. This in 

turn increases the likelihood that patient cohort studies will be integrated with animal 

investigations that enable more accurate interpretation of observed host-microbiome traits.  

 

It is a brave new world, where ecologists and data scientists are being integrated into clinical 

departments, but this paradigm shift is a necessary precondition to realize the potential of 

microbiome-informed and microbiome-based medicine. The societal need for improved medical 

interventions and preventive strategies is driving a sea-change in both the clinical and 

commercial world. The onus is on the basic and clinical translational research community to 

ensure that our experimental designs are robust and can deliver on the promises of this field. Just 

as important are the technical advances that must occur to ensure that we have the tools to derive 

the data to test our hypotheses. The microbial ecology community came together in 2015-2016 to 

support the proposal for a National Microbiome Initiative, which was in turn supported by the 

United States President’s Office of Science and Technology Policy82; one of the key outcomes of 

this effort was the identification of gaps in our technologies that would need to be filled to 

realize the full potential of microbiome science83. We have a long way to go, but with each new 
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investigation we are moving closer to the realization of more effective diagnosis, treatment, and 

preventive modalities to improve human wellness and fight disease.  

 

Box 1: How many microbial cells and genes colonize a human? 

 Although a frequently reported figure is that our microbes outnumber our own cells by 10:1, this 

number stems from a 1972 article which uses a ‘back of the envelope calculation’ to arrive at this 

ratio84. A more prosaic figure was provided by Rosner85 of between 5 and 724 x 1012 human 

cells, and between 30 and 400 x 1012 bacterial cells. More recently, a refined estimate based on 

experimental observation and extrapolation actually arrives at a ratio of 1.3 bacterial cells for 

every one human cell1. However, these estimates don’t take into consideration the viruses and 

phage present in various body environments, which could equal bacterial estimates or more 

likely outnumber them by at least an order of magnitude86.  Although these estimates reduce the 

extent to which microbial cells outnumber human cells, they do not reduce the estimates 

associated with the diversity of microbial life associated with the human body. Bacteria and 

other microbes including archaea, fungi, and, arguably, viruses, are extremely diverse. A 

similarly rough estimate of 1000 bacterial species in the gut with 2000 genes per species yields 

an estimate of 2,000,000 genes, 100 times the figure of approximately 20,000 human genes2. 

This agrees well with the actual size of microbial gene catalogues obtained by MetaHIT87 and 

the Human Microbiome Project13. 

 

Box 2: The microbiome as novel biomarkers for disease 

There is extensive evidence for many diseases that the microbiome can be used to explain a 

substantially greater percentage of the variance in the relevant phenotypes for a given condition 

within a population than can human genetic factors. For example, in individuals with 

Clostridium difficile infection (CDI), the aberrant stool microbiome looks nothing like a healthy 

stool but rather more like the microbiome of a completely different body site. Fecal microbiota 

transplant is able to cure C. diff infection and after transplantation  the restoration of the stool 

microbiome to a community that matches that of  the healthy state is both rapid and visible88. 

The C. diff infection has a much larger impact on the stool microbiome composition than does 

any human genetic variation observed to date, which may explain the high efficacy of stool 

transplant relative to standard antibiotic treatments for C. diff89.  
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Obesity provides an example in which human genetics has failed to explain the obesity 

epidemic, in contrast, the gut microbiome can classify individuals as lean or obese with over 

90% accuracy within the context of a given case-control study90, although this result depends on 

using the correct methods91,92. Conversely the abundance of Christensenella within the human 

gut are negatively correlated with BMI, and can induce weight loss when experimentally fed to 

mice15.  

 Autism Spectrum Disorder has a complex presentation of symptoms, and is difficult to 

attribute entirely to host genetics, mainly due to the number of confounding influences and 

variables93. Yet the environmental interaction, and potentially the microbiome, plays a 

substantial role in shaping the etiology of the disease94,95. Animal models have been used to 

indicate the ability of bacterial metabolites in mediating autism-like behaviours96, and fecal 

microbiota transplant in humans has been associated with improvement in behavioral and 

gastrointestinal symptoms of autism 97. In further work, the link between host genetics, behavior 

and the gut microbiome has been partially elucidated, identifying a strong association between 

Lactobacillus and memory formation98.   

 A host of allergic and immune diseases has increased in frequency in parallel to the 

above metabolic and cognitive diseases. These include childhood-onset asthma, and allergies, 

including food and cutaneous allergies. Similarly, inflammatory bowel disease and type 1 

diabetes has been increasing globally, which cannot be explained by differences in assessment 

practices. A growing body of evidence is linking these with altered microbiota compositions, 

especially loss of diversity, seen in Inflammatory Bowel Disease patients99,100 and children at 

risk for T1D101.  One hypothesis is that this might be linked to a microbiome perturbation, in 

general, rather than the acquisition or loss of specific microbes that modify phenotype 102. 

Perturbation of microbiomes during early life might be particularly important because that is 

when immunity, metabolism, and cognition are under development. A large Canadian study of 

infant stool samples (n=319) collected over the first 90 days of life, compared the early-life (first 

90 days) faecal microbiota of infants who went on to develop allergic sensitization and wheezing 

at age two, to subjects who did not. The depletion of certain bacterial taxa was characteristic of 

atopic children, and corresponded with reduced concentrations of faecal acetate and 

dysregulation of enterohepatic metabolites103, suggesting that the foundation for allergic disease 

development occurs in early life and is mediated at least in part by gut microbiome dysbiosis.  
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