172 research outputs found

    Crossover between Thermally Assisted and Pure Quantum Tunneling in Molecular Magnet Mn12-Acetate

    Full text link
    The crossover between thermally assisted and pure quantum tunneling has been studied in single crystals of high spin (S=10) uniaxial molecular magnet Mn12 using micro-Hall-effect magnetometry. Magnetic hysteresis and relaxation experiments have been used to investigate the energy levels that determine the magnetization reversal as a function of magnetic field and temperature. These experiments demonstrate that the crossover occurs in a narrow (0.1 K) or broad (1 K) temperature interval depending on the magnitude of the field transverse to the anisotropy axis.Comment: 5 pages, 4 figure

    Predator density influences nest attendance of Yellow‐headed Blackbirds Xanthocephalus xanthocephalus

    Get PDF
    Nest attendance behaviour in birds is a function of the careful balance between the risk of nest predation and the needs of the parents and nestlings. This attendance must be carefully regulated, as increased parental activity at the nest increases nest predation risk. We tested the long-standing hypothesis that nest predation risk influences parental behavior by evaluating the influence of local Marsh Wren Cistothorus palustris density on the off-bout frequency of Yellow-headed Blackbirds Xanthocephalus xanthocephalus. Marsh Wren density was negatively correlated with Yellow-headed Blackbird off-bout frequency during the morning (0500-1000), day (1000-1600), and evening (1600-2100), suggesting that Yellow-headed Blackbirds alter their nest attendance behaviour in response to a perceived increased risk of nest predation. We suggest that Yellow-headed Blackbirds are sensitive to nest predation risk and alter their behaviour accordingly to increase overall fitness, although future research is needed to evaluate the influence of Marsh Wren nest predation on the reproductive success of Yellowheaded Blackbirds

    Systems-Scale Analysis Reveals Pathways Involved in Cellular Response to Methamphetamine

    Get PDF
    Background: Methamphetamine (METH), an abused illicit drug, disrupts many cellular processes, including energy metabolism, spermatogenesis, and maintenance of oxidative status. However, many components of the molecular underpinnings of METH toxicity have yet to be established. Network analyses of integrated proteomic, transcriptomic and metabolomic data are particularly well suited for identifying cellular responses to toxins, such as METH, which might otherwise be obscured by the numerous and dynamic changes that are induced. Methodology/Results: We used network analyses of proteomic and transcriptomic data to evaluate pathways in Drosophila melanogaster that are affected by acute METH toxicity. METH exposure caused changes in the expression of genes involved with energy metabolism, suggesting a Warburg-like effect (aerobic glycolysis), which is normally associated with cancerous cells. Therefore, we tested the hypothesis that carbohydrate metabolism plays an important role in METH toxicity. In agreement with our hypothesis, we observed that increased dietary sugars partially alleviated the toxic effects of METH. Our systems analysis also showed that METH impacted genes and proteins known to be associated with muscular homeostasis/ contraction, maintenance of oxidative status, oxidative phosphorylation, spermatogenesis, iron and calcium homeostasis. Our results also provide numerous candidate genes for the METH-induced dysfunction of spermatogenesis, which have not been previously characterized at the molecular level. Conclusion: Our results support our overall hypothesis that METH causes a toxic syndrome that is characterized by the altered carbohydrate metabolism, dysregulation of calcium and iron homeostasis, increased oxidative stress, and disruption of mitochondrial functions

    Improving access for community health and sub-acute outpatient services: protocol for a stepped wedge cluster randomised controlled trial

    Get PDF
    BACKGROUND: Waiting lists for treatment are common in outpatient and community services, Existing methods for managing access and triage to these services can lead to inequities in service delivery, inefficiencies and divert resources from frontline care. Evidence from two controlled studies indicates that an alternative to the traditional &quot;waitlist and triage&quot; model known as STAT (Specific Timely Appointments for Triage) may be successful in reducing waiting times without adversely affecting other aspects of patient care. This trial aims to test whether the model is cost effective in reducing waiting time across multiple services, and to measure the impact on service provision, health-related quality of life and patient satisfaction. METHODS/DESIGN: A stepped wedge cluster randomised controlled trial has been designed to evaluate the impact of the STAT model in 8 community health and outpatient services. The primary outcome will be waiting time from referral to first appointment. Secondary outcomes will be nature and quantity of service received (collected from all patients attending the service during the study period and health-related quality of life (AQOL-8D), patient satisfaction, health care utilisation and cost data (collected from a subgroup of patients at initial assessment and after 12&nbsp;weeks). Data will be analysed with a multiple multi-level random-effects regression model that allows for cluster effects. An economic evaluation will be undertaken alongside the clinical trial. DISCUSSION: This paper outlines the study protocol for a fully powered prospective stepped wedge cluster randomised controlled trial (SWCRCT) to establish whether the STAT model of access and triage can reduce waiting times applied across multiple settings, without increasing health service costs or adversely impacting on other aspects of patient care. If successful, it will provide evidence for the effectiveness of a practical model of access that can substantially reduce waiting time for outpatient and community services with subsequent benefits for both efficiency of health systems and patient care.<br /

    An optimistic outlook on the use of evidence syntheses to inform environmental decision-making

    Get PDF
    Practitioners and policymakers working in environmental arenas make decisions that can have large impacts on ecosystems. Basing such decisions on high‐quality evidence about the effectiveness of different interventions can often maximize the success of policy and management. Accordingly, it is vital to understand how environmental professionals working at the science‐policy interface view and use different types of evidence, including evidence syntheses that collate and summarize available knowledge on a specific topic to save time for decision‐makers. We interviewed 84 senior environmental professionals in Canada working at the science‐policy interface to explore their confidence in, and use of, evidence syntheses within their organizations. Interviewees value evidence syntheses because they increase confidence in decision‐making, particularly for high‐profile or risky decisions. Despite this enthusiasm, the apparent lack of available syntheses for many environmental issues means that use can be limited and tends to be opportunistic. Our research suggests that if relevant, high quality evidence syntheses exist, they are likely to be used and embraced in decision‐making spheres. Therefore, efforts to increase capacity for conducting evidence syntheses within government agencies and/or funding such activities by external bodies have the potential to enable evidence‐based decision‐making.Additional co-authors: Karen E. Smokorowski, Steven M. Alexander, Steven J. Cook

    Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions

    Get PDF
    Lettuce (Lactuca sativa L.) seeds have poor shelf life and exhibit thermoinhibition (fail to germinate) above ∼25°C. Seed priming (controlled hydration followed by drying) alleviates thermoinhibition by increasing the maximum germination temperature, but reduces lettuce seed longevity. Controlled deterioration (CD) or accelerated ageing storage conditions (i.e. elevated temperature and relative humidity) are used to study seed longevity and to predict potential seed lifetimes under conventional storage conditions. Seeds produced in 2002 and 2006 of a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas×L. serriola accession UC96US23 were utilized to identify quantitative trait loci (QTLs) associated with seed longevity under CD and conventional storage conditions. Multiple longevity-associated QTLs were identified under both conventional and CD storage conditions for control (non-primed) and primed seeds. However, seed longevity was poorly correlated between the two storage conditions, suggesting that deterioration processes under CD conditions are not predictive of ageing in conventional storage conditions. Additionally, the same QTLs were not identified when RIL populations were grown in different years, indicating that lettuce seed longevity is strongly affected by production environment. Nonetheless, a major QTL on chromosome 4 [Seed longevity 4.1 (Slg4.1)] was responsible for almost 23% of the phenotypic variation in viability of the conventionally stored control seeds of the 2006 RIL population, with improved longevity conferred by the Salinas allele. QTL analyses may enable identification of mechanisms responsible for the sensitivity of primed seeds to CD conditions and breeding for improved seed longevity

    Contrasting patterns of evolutionary constraint and novelty revealed by comparative sperm proteomic analysis in Lepidoptera

    Get PDF
    Background: Rapid evolution is a hallmark of reproductive genetic systems and arises through the combined processes of sequence divergence, gene gain and loss, and changes in gene and protein expression. While studies aiming to disentangle the molecular ramifications of these processes are progressing, we still know little about the genetic basis of evolutionary transitions in reproductive systems. Here we conduct the first comparative analysis of sperm proteomes in Lepidoptera, a group that exhibits dichotomous spermatogenesis, in which males produce a functional fertilization-competent sperm (eupyrene) and an incompetent sperm morph lacking nuclear DNA (apyrene). Through the integrated application of evolutionary proteomics and genomics, we characterize the genomic patterns potentially associated with the origination and evolution of this unique spermatogenic process and assess the importance of genetic novelty in Lepidopteran sperm biology. Results: Comparison of the newly characterized Monarch butterfly (Danaus plexippus) sperm proteome to those of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated conservation at the level of protein abundance and post-translational modification within Lepidoptera. In contrast, comparative genomic analyses across insects reveals significant divergence at two levels that differentiate the genetic architecture of sperm in Lepidoptera from other insects. First, a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insect species was observed. Second, a substantial number of sperm proteins were found to be specific to Lepidoptera, in that they lack detectable homology to the genomes of more distantly related insects. Lastly, the functional importance of Lepidoptera specific sperm proteins is broadly supported by their increased abundance relative to proteins conserved across insects. Conclusions: Our results identify a burst of genetic novelty amongst sperm proteins that may be associated with the origin of heteromorphic spermatogenesis in ancestral Lepidoptera and/or the subsequent evolution of this system. This pattern of genomic diversification is distinct from the remainder of the genome and thus suggests that this transition has had a marked impact on lepidopteran genome evolution. The identification of abundant sperm proteins unique to Lepidoptera, including proteins distinct between specific lineages, will accelerate future functional studies aiming to understand the developmental origin of dichotomous spermatogenesis and the functional diversification of the fertilization incompetent apyrene sperm morph

    Inflammatory Transcriptome Profiling of Human Monocytes Exposed Acutely to Cigarette Smoke

    Get PDF
    <div><h3>Background</h3><p>Cigarette smoking is responsible for 5 million deaths worldwide each year, and is a major risk factor for cardiovascular and lung diseases. Cigarette smoke contains a complex mixture of over 4000 chemicals containing 10<sup>15</sup> free radicals. Studies show smoke is perceived by cells as an inflammatory and xenobiotic stimulus, which activates an immune response. The specific cellular mechanisms driving cigarette smoke-induced inflammation and disease are not fully understood, although the innate immune system is involved in the pathology of smoking related diseases.</p> <h3>Methodology/Principle findings</h3><p>To address the impact of smoke as an inflammagen on the innate immune system, THP-1 cells and Human PBMCs were stimulated with 3 and 10% (v/v) cigarette smoke extract (CSE) for 8 and 24 hours. Total RNA was extracted and the transcriptome analysed using Illumina BeadChip arrays. In THP-1 cells, 10% CSE resulted in 80 genes being upregulated and 37 downregulated by ≥1.5 fold after 8 hours. In PBMCs stimulated with 10% CSE for 8 hours, 199 genes were upregulated and 206 genes downregulated by ≥1.5 fold. After 24 hours, the number of genes activated and repressed by ≥1.5 fold had risen to 311 and 306 respectively. The major pathways that were altered are associated with cell survival, such as inducible antioxidants, protein chaperone and folding proteins, and the ubiquitin/proteosome pathway.</p> <h3>Conclusions</h3><p>Our results suggest that cigarette smoke causes inflammation and has detrimental effects on the metabolism and function of innate immune cells. In addition, THP-1 cells provide a genetically stable alternative to primary cells for the study of the effects of cigarette smoke on human monocytes.</p> </div
    corecore