2,120 research outputs found
41Ca in tooth enamel. part I: A biological signature of neutron exposure in atomic bomb survivors
The detection of 41Ca atoms in tooth enamel using accelerator mass spectrometry is suggested as a method capable of reconstructing thermal neutron exposures from atomic bomb survivors in Hiroshima and Nagasaki. In general, 41Ca atoms are produced via thermal neutron capture by stable 40Ca. Thus any 41Ca atoms present in the tooth enamel of the survivors would be due to neutron exposure from both natural sources and radiation from the bomb. Tooth samples from five survivors in a control group with negligible neutron exposure were used to investigate the natural 41Ca content in tooth enamel, and 16 tooth samples from 13 survivors were used to estimate bomb-related neutron exposure. The results showed that the mean 41Ca/Ca isotope ratio was (0.17 ± 0.05) × 10-14 in the control samples and increased to 2 × 10-14 for survivors who were proximally exposed to the bomb. The 41Ca/Ca ratios showed an inverse correlation with distance from the hypocenter at the time of the bombing, similar to values that have been derived from theoretical free-in-air thermal-neutron transport calculations. Given that γ-ray doses were determined earlier for the same tooth samples by means of electron spin resonance (ESR, or electron paramagnetic resonance, EPR), these results can serve to validate neutron exposures that were calculated individually for the survivors but that had to incorporate a number of assumptions (e.g. shielding conditions for the survivors).Fil: Wallner, A.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; Alemania. Universidad de Viena; AustriaFil: Ruhm, W.. Helmholtz Center Munich German Research Center For Environmental Health; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Rugel, G.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; AlemaniaFil: Nakamura, N.. Radiation Effects Research Foundation; JapónFil: Arazi, Andres. Universitat Technical Zu Munich; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faestermann, T.. Universitat Technical Zu Munich; AlemaniaFil: Knie, K.. Universitat Technical Zu Munich; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Maier, H. J.. Ludwig Maximilians Universitat; AlemaniaFil: Korschinek, G.. Universitat Technical Zu Munich; Alemani
AMS measurements of cosmogenic and supernova-ejected radionuclides in deep-sea sediment cores
Samples of two deep-sea sediment cores from the Indian Ocean are analyzed
with accelerator mass spectrometry (AMS) to search for traces of recent
supernova activity around 2 Myr ago. Here, long-lived radionuclides, which are
synthesized in massive stars and ejected in supernova explosions, namely 26Al,
53Mn and 60Fe, are extracted from the sediment samples. The cosmogenic isotope
10Be, which is mainly produced in the Earths atmosphere, is analyzed for dating
purposes of the marine sediment cores. The first AMS measurement results for
10Be and 26Al are presented, which represent for the first time a detailed
study in the time period of 1.7-3.1 Myr with high time resolution. Our first
results do not support a significant extraterrestrial signal of 26Al above
terrestrial background. However, there is evidence that, like 10Be, 26Al might
be a valuable isotope for dating of deep-sea sediment cores for the past few
million years.Comment: 5 pages, 2 figures, Proceedings of the Heavy Ion Accelerator
Symposium on Fundamental and Applied Science, 2013, will be published by the
EPJ Web of conference
Search for supernova-produced 60Fe in a marine sediment
An 60Fe peak in a deep-sea FeMn crust has been interpreted as due to the
signature left by the ejecta of a supernova explosion close to the solar system
2.8 +/- 0.4 Myr ago [Knie et al., Phys. Rev. Lett. 93, 171103 (2004)]. To
confirm this interpretation with better time resolution and obtain a more
direct flux estimate, we measured 60Fe concentrations along a dated marine
sediment. We find no 60Fe peak at the expected level from 1.7 to 3.2 Myr ago.
However, applying the same chemistry used for the sediment, we confirm the 60Fe
signal in the FeMn crust. The cause of the discrepancy is discussed.Comment: 15 pages, 5 figures, submitted to PR
Settling the half-life of ⁶⁰Fe: fundamental for a versatile astrophysical chronometer
In order to resolve a recent discrepancy in the half-life of ⁶⁰Fe, we performed an independent measurement with a new method that determines the ⁶⁰Fe content of a material relative to Fe55 (t1/2=2.744yr) with accelerator mass spectrometry. Our result of (2.50±0.12)×10⁶yr clearly favors the recently reported value (2.62±0.04)×10⁶yr, and rules out the older result of (1.49±0.27)×10⁶yr. The present weighted mean half-life value of (2.60±0.05)×10⁶yr substantially improves the reliability as an important chronometer for astrophysical applications in the million-year time range. This includes its use as a sensitive probe for studying recent chemical evolution of our Galaxy, the formation of the early Solar System, nucleosynthesis processes in massive stars, and as an indicator of a recent nearby supernova.Part of this work was funded by the Austrian Science
Fund (FWF) Projects No. AP20434 and AI00428 (FWF
and CoDustMas, Eurogenesis via ESF)
The Search for Supernova-produced Radionuclides in Terrestrial Deep-sea Archives
An enhanced concentration of 60Fe was found in a deep ocean's crust in 2004
in a layer corresponding to an age of ~2 Myr. The confirmation of this signal
in terrestrial archives as supernova-induced and detection of other
supernova-produced radionuclides is of great interest. We have identified two
suitable marine sediment cores from the South Australian Basin and estimated
the intensity of a possible signal of the supernova-produced radionuclides
26Al, 53Mn, 60Fe and the pure r-process element 244Pu in these cores. A finding
of these radionuclides in a sediment core might allow to improve the time
resolution of the signal and thus to link the signal to a supernova event in
the solar vicinity ~2 Myr ago. Furthermore, it gives an insight on
nucleosynthesis scenarios in massive stars, the condensation into dust grains
and transport mechanisms from the supernova shell into the solar system
From Gravitons to Gravity: Myths and Reality
There is a general belief, reinforced by statements in standard textbooks,
that: (i) one can obtain the full non-linear Einstein's theory of gravity by
coupling a massless, spin-2 field self-consistently to the total
energy momentum tensor, including its own; (ii) this procedure is unique and
leads to Einstein-Hilbert action and (iii) it only uses standard concepts in
Lorentz invariant field theory and does not involve any geometrical
assumptions. After providing several reasons why such beliefs are suspect --
and critically re-examining several previous attempts -- we provide a detailed
analysis aimed at clarifying the situation. First, we prove that it is
\textit{impossible} to obtain the Einstein-Hilbert (EH) action, starting from
the standard action for gravitons in linear theory and iterating repeatedly.
Second, we use the Taylor series expansion of the action for Einstein's theory,
to identify the tensor , to which the graviton field
couples to the lowest order. We show that the second rank tensor
is {\it not} the conventional energy momentum tensor
of the graviton and provide an explanation for this feature. Third, we
construct the full nonlinear Einstein's theory with the source being spin-0
field, spin-1 field or relativistic particles by explicitly coupling the spin-2
field to this second rank tensor order by order and summing
up the infinite series. Finally, we construct the theory obtained by self
consistently coupling to the conventional energy momentum tensor
order by order and show that this does {\it not} lead to Einstein's
theory. (condensed).Comment: revtex; 19 pages; no figure
Reality Conditions and Ashtekar Variables: a Different Perspective
We give in this paper a modified self-dual action that leads to the
-ADM formalism without having to face the difficult second class
constraints present in other approaches (for example if one starts from the
Hilbert-Palatini action). We use the new action principle to gain some new
insights into the problem of the reality conditions that must be imposed in
order to get real formulations from complex general relativity. We derive also
a real formulation for Lorentzian general relativity in the Ashtekar phase
space by using the modified action presented in the paper.Comment: 22 pages, LATEX, Preprint CGPG-94/10-
Ultrasensitive search for long-lived superheavy nuclides in the mass range A=288 to A=300 in natural Pt, Pb, and Bi
Theoretical models of superheavy elements (SHEs) predict a region of increased stability around the proton and neutron shell closures of Z = 114 and N = 184. Therefore a sensitive search for nuclides in the mass range from A = 288 to A = 300 was performed in natural platinum, lead, and bismuth, covering long-lived isotopes of Eka-Pt (Ds, Z = 110), Eka-Pb (Z = 114), and Eka-Bi (Z = 115). Measurements with accelerator mass spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA) established upper limits for these SHE isotopes in Pt, Pb, and Bi with abundances of <2×10-15, <5×10-14, and <5×10-13, respectively. These results complement earlier searches for SHEs with AMS at VERA in natural thorium and gold, which now amounts to a total number of 37 SHE nuclides having been explored with AMS. In none of our measurements was evidence found for the existence of SHEs in nature at the reported sensitivity level. Even though a few events were observed in the window for Ek293a-Bi, a particularly strong pileup background did not allow a definite SHE isotope identification. The present result sets limits on nuclides around the center of the island of stability, essentially ruling out the existence of SHE nuclides with half-lives longer than ∼150 million years
- …