9 research outputs found

    An overview of assessment methodology for obesity-related variables in infants at risk

    Get PDF
    Background: The first 2 years of a child’s life are a particularly critical time period for obesity prevention. Aim: An increasing amount of research across the world is aimed at understanding factors that impact early childhood obesity and developing interventions that target these factors effectively. With this growing interest, new and interdisciplinary research teams are developing to meet this research need. Due to rapid growth velocity during this phase of the lifespan, typical assessments used in older populations may not be valid or applicable in infants, and investigators need to be aware of the pros and cons of specific methodological strategies. Methods: This paper provides an overview of methodology available to assess obesity-related factors in the areas of anthropometry and body composition, nutrient intake, and energy expenditure in infants aged 0–2 years. Results: Gold standard measures for body composition, such as dual-energy X-ray absorptiometry (DXA) or other imaging techniques, are costly, require highly trained personnel, and are limited for research application. Nutrient intake methodology primarily includes surveys and questionnaires completed via parent proxy report. In terms of energy expenditure, methods of calorimetry are expensive and may not differentiate between different activities. Questionnaires or physical activity sensors offer another way of energy expenditure assessment. However, questionnaires have a certain recall bias, while the sensors require further validation. Conclusions: Overall, in addition to understanding the pros and cons of each assessment tool, researchers should take into consideration the experience of the interdisciplinary team of investigators, as well as the cost and availability of measures at their institution

    Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex

    Get PDF
    We measured seasonal patterns of net ecosystem exchange (NEE) of CO2 in a diverse peatland complex underlain by discontinuous permafrost in northern Manitoba, Canada, as part of the Boreal Ecosystems Atmosphere Study (BOREAS). Study sites spanned the full range of peatland trophic and moisture gradients found in boreal environments from bog (pH 3.9) to rich fen (pH 7.2). During midseason (July‐August, 1996), highest rates of NEE and respiration followed the trophic sequence of bog (5.4 to −3.9 ÎŒmol CO2 m−2 s−1) \u3c poor fen (6.3 to −6.5 ÎŒmol CO2 m−2 s−1) \u3c intermediate fen (10.5 to −7.8 ÎŒmol CO2 m−2 s−1) \u3c rich fen (14.9 to −8.7 ÎŒmol CO2m−2 s−1). The sequence changed during spring (May‐June) and fall (September‐October) when ericaceous shrub (e.g., Chamaedaphne calyculata) bogs and sedge (Carex spp.) communities in poor to intermediate fens had higher maximum CO2 fixation rates than deciduous shrub‐dominated (Salix spp. and Betula spp.) rich fens. Timing of snowmelt and differential rates of peat surface thaw in microtopographic hummocks and hollows controlled the onset of carbon uptake in spring. Maximum photosynthesis and respiration were closely correlated throughout the growing season with a ratio of approximately 1/3 ecosystem respiration to maximum carbon uptake at all sites across the trophic gradient. Soil temperatures above the water table and timing of surface thaw and freeze‐up in the spring and fall were more important to net CO2 exchange than deep soil warming. This close coupling of maximum CO2 uptake and respiration to easily measurable variables, such as trophic status, peat temperature, and water table, will improve models of wetland carbon exchange. Although trophic status, aboveground net primary productivity, and surface temperatures were more important than water level in predicting respiration on a daily basis, the mean position of the water table was a good predictor (r2 = 0.63) of mean respiration rates across the range of plant community and moisture gradients. Q10 values ranged from 3.0 to 4.1 from bog to rich fen, but when normalized by above ground vascular plant biomass, the Q10 for all sites was 3.3

    The introduction of keyboarding to children with Autism Spectrum Disorders: a help or a hindrance?

    No full text
    This study explored the utility of using keyboarding as an alternative to handwriting for students with ASD who experience handwriting difficulties. Participants included 22 students with ASD (M age = 10.83 ± 1.4 years) who had been using portable word processors in mainstream classrooms for at least 6 months to circumvent handwriting difficulties. Teacher, parent and student questionnaires rated perceptions of students’ motivation, ability, preferences and frequency of use of keyboarding as compared to handwriting, helpfulness of portable word processors and factors contributing to or limiting their use. Keyboarding and handwriting speeds were measured in letters per minute. Two short compositions using handwriting and keyboarding were compared in length and quality. Handwriting legibility was also rated. The teacher, parent and student questionnaires indicated that students’ motivation was generally rated as much higher for keyboarding than for handwriting. Teachers and parents predominantly perceived portable word processors as helpful. The group mean scores for keyboarding speed, and length and quality of keyboarded compositions were greater than comparable group mean scores for handwriting. These differences, however, did not reach statistical significance. Keyboarding, nevertheless, was effective in overcoming difficulties experienced by many students in respect of legibility

    Plant biomass and production and CO2 exchange in an ombrotrophic bog

    No full text
    Summary Above-ground biomass was measured at bog hummock, bog hollow and poor-fen sites in Mer Bleue, a large, raised ombrotrophic bog near Ottawa, Ont., Canada. The average above-ground biomass was 587 g m−2 in the bog, composed mainly of shrubs and Sphagnum capitula. In the poor fen, the average biomass was 317 g m−2, comprising mainly sedges and herbs and Sphagnum capitula. Vascular plant above-ground biomass was greater where the water table was lower, with a similar but weaker relationship for Sphagnum capitula and vascular leaf biomass. Below-ground biomass averaged 2400 g m−2 at the bog hummock site, of which 300 g m−2 was fine roots (\u3c 2 mm diameter), compared with 1400 g m−2 in hollows (fine roots 450 g m−2) and 1200 g m−2 at the poor-fen site. Net Ecosystem Exchange (NEE) of CO2 was measured in chambers and used to derive ecosystem respiration and photosynthesis. Under high light flux (PAR of 1500 ”mol m−2 s−1), NEE ranged across sites from 0.08 to 0.22 mg m−2 s−1 (a positive value indicates ecosystem uptake) in the spring and summer, but fell to –0.01 to –0.13 mg m−2 s−1 (i.e. a release of CO2) during a late-summer dry period. There was a general agreement between a combination of literature estimates of photosynthetic capacity for shrubs and mosses and measured biomass and summer-time CO2 uptake determined by the eddy covariance technique within a bog footprint (0.40 and 0.35–0.40 mg m−2 s−1, respectively). Gross photosynthesis was estimated to be about 530 g m−2 year−1, total respiration 460 g m−2 year−1, and export of DOC, DIC and CH4 10 g m−2 year−1, leaving an annual C sequestration rate of 60 g m−2 year−1. Root production and decomposition are important parts of the C budget of the bog. Root C production was estimated to be 161–176 g m−2 year−1, resulting in fractional turnover rates of 0.2 and 1 year−1 for total and fine roots, respectively
    corecore