94 research outputs found

    Differences between children and adolescents in treatment response to atomoxetine and the correlation between health-related quality of life and Attention Deficit/Hyperactivity Disorder core symptoms: Meta-analysis of five atomoxetine trials

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>To explore the influence of age on treatment responses to atomoxetine and to assess the relationship between core symptoms of attention deficit/hyperactivity disorder (ADHD) and health-related quality of life (HR-QoL) outcomes.</p> <p>Data Sources</p> <p>Data from five similar clinical trials of atomoxetine in the treatment of children and adolescents with ADHD were included in this meta-analysis.</p> <p>Study Selection</p> <p>Atomoxetine studies that used the ADHD Rating Scale (ADHD-RS) and the Child Health and Illness Profile Child Edition (CHIP-CE) as outcome measures were selected.</p> <p>Interventions</p> <p>Treatment with atomoxetine.</p> <p>Main Outcome Measures</p> <p>Treatment group differences (atomoxetine vs placebo) in terms of total score, domains, and subdomains of the CHIP-CE were compared across age groups, and correlations between ADHD-RS scores and CHIP-CE scores were calculated by age.</p> <p>Results</p> <p>Data of 794 subjects (611 children, 183 adolescents) were pooled. At baseline, adolescents showed significantly (p < 0.05) greater impairment compared with children in the Family Involvement, Satisfaction with Self, and Academic Performance subdomains of the CHIP-CE. Treatment effect of atomoxetine was significant in both age groups for the Risk Avoidance domain and its subdomains. There was a significant age-treatment interaction with greater efficacy seen in adolescents in both the Risk Avoidance domain and the Threats to Achievement subdomain. Correlations between ADHD-RS and CHIP-CE scores were generally low at baseline and moderate in change from baseline and were overall similar in adolescents and children.</p> <p>Conclusions</p> <p>Atomoxetine was effective in improving some aspects of HR-QoL in both age groups. Correlations between core symptoms of ADHD and HR-QoL were low to moderate.</p

    Mathematical modeling of the dynamic storage of iron in ferritin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron is essential for the maintenance of basic cellular processes. In the regulation of its cellular levels, ferritin acts as the main intracellular iron storage protein. In this work we present a mathematical model for the dynamics of iron storage in ferritin during the process of intestinal iron absorption. A set of differential equations were established considering kinetic expressions for the main reactions and mass balances for ferritin, iron and a discrete population of ferritin species defined by their respective iron content.</p> <p>Results</p> <p>Simulation results showing the evolution of ferritin iron content following a pulse of iron were compared with experimental data for ferritin iron distribution obtained with purified ferritin incubated <it>in vitro </it>with different iron levels. Distinctive features observed experimentally were successfully captured by the model, namely the distribution pattern of iron into ferritin protein nanocages with different iron content and the role of ferritin as a controller of the cytosolic labile iron pool (cLIP). Ferritin stabilizes the cLIP for a wide range of total intracellular iron concentrations, but the model predicts an exponential increment of the cLIP at an iron content > 2,500 Fe/ferritin protein cage, when the storage capacity of ferritin is exceeded.</p> <p>Conclusions</p> <p>The results presented support the role of ferritin as an iron buffer in a cellular system. Moreover, the model predicts desirable characteristics for a buffer protein such as effective removal of excess iron, which keeps intracellular cLIP levels approximately constant even when large perturbations are introduced, and a freely available source of iron under iron starvation. In addition, the simulated dynamics of the iron removal process are extremely fast, with ferritin acting as a first defense against dangerous iron fluctuations and providing the time required by the cell to activate slower transcriptional regulation mechanisms and adapt to iron stress conditions. In summary, the model captures the complexity of the iron-ferritin equilibrium, and can be used for further theoretical exploration of the role of ferritin in the regulation of intracellular labile iron levels and, in particular, as a relevant regulator of transepithelial iron transport during the process of intestinal iron absorption.</p

    Local iron homeostasis in the breast ductal carcinoma microenvironment

    Get PDF
    Abstract BACKGROUND: While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. METHODS: Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. RESULTS: We confirm previous results by showing that breast cancer epithelial cells present an 'iron-utilization phenotype' with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an 'iron-donor' phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. CONCLUSIONS: The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.info:eu-repo/semantics/publishedVersio

    HIF-1 Regulates Iron Homeostasis in Caenorhabditis elegans by Activation and Inhibition of Genes Involved in Iron Uptake and Storage

    Get PDF
    Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hypoxia-inducible factor -1) as a negative regulator of ferritin transcription. HIF-1 binds to hypoxia-response elements (HREs) in the IDE in vitro and in vivo. Depletion of hif-1 by RNA interference blocks transcriptional inhibition of ftn-1 and ftn-2 reporters, and ftn-1 and ftn-2 mRNAs are not regulated in a hif-1 null strain during iron deficiency. An IDE is also present in smf-3 encoding a protein homologous to mammalian divalent metal transporter-1. Unlike the ftn-1 IDE, the smf-3 IDE is required for HIF-1–dependent transcriptional activation of smf-3 during iron deficiency. We show that hif-1 null worms grown under iron limiting conditions are developmentally delayed and that depletion of FTN-1 and FTN-2 rescues this phenotype. These data show that HIF-1 regulates intestinal iron homeostasis during iron deficiency by activating and inhibiting genes involved in iron uptake and storage

    Deciduous Trees and the Application of Universal DNA Barcodes: A Case Study on the Circumpolar Fraxinus

    Get PDF
    The utility of DNA barcoding for identifying representative specimens of the circumpolar tree genus Fraxinus (56 species) was investigated. We examined the genetic variability of several loci suggested in chloroplast DNA barcode protocols such as matK, rpoB, rpoC1 and trnH-psbA in a large worldwide sample of Fraxinus species. The chloroplast intergenic spacer rpl32-trnL was further assessed in search for a potentially variable and useful locus. The results of the study suggest that the proposed cpDNA loci, alone or in combination, cannot fully discriminate among species because of the generally low rates of substitution in the chloroplast genome of Fraxinus. The intergenic spacer trnH-psbA was the best performing locus, but genetic distance-based discrimination was moderately successful and only resulted in the separation of the samples at the subgenus level. Use of the BLAST approach was better than the neighbor-joining tree reconstruction method with pairwise Kimura's two-parameter rates of substitution, but allowed for the correct identification of only less than half of the species sampled. Such rates are substantially lower than the success rate required for a standardised barcoding approach. Consequently, the current cpDNA barcodes are inadequate to fully discriminate Fraxinus species. Given that a low rate of substitution is common among the plastid genomes of trees, the use of the plant cpDNA “universal” barcode may not be suitable for the safe identification of tree species below a generic or sectional level. Supplementary barcoding loci of the nuclear genome and alternative solutions are proposed and discussed

    Evaluating the drivers of and obstacles to the willingness to use cognitive enhancement drugs: the influence of drug characteristics, social environment, and personal characteristics

    Get PDF
    Sattler S, Mehlkop G, Graeff P, Sauer C. Evaluating the drivers of and obstacles to the willingness to use cognitive enhancement drugs: the influence of drug characteristics, social environment, and personal characteristics. Substance Abuse Treatment, Prevention, and Policy. 2014;9(1): 8.Background The use of cognitive enhancement (CE) by means of pharmaceutical agents has been the subject of intense debate both among scientists and in the media. This study investigates several drivers of and obstacles to the willingness to use prescription drugs non-medically for augmenting brain capacity. Methods We conducted a web-based study among 2,877 students from randomly selected disciplines at German universities. Using a factorial survey, respondents expressed their willingness to take various hypothetical CE-drugs; the drugs were described by five experimentally varied characteristics and the social environment by three varied characteristics. Personal characteristics and demographic controls were also measured. Results We found that 65.3% of the respondents staunchly refused to use CE-drugs. The results of a multivariate negative binomial regression indicated that respondents’ willingness to use CE-drugs increased if the potential drugs promised a significant augmentation of mental capacity and a high probability of achieving this augmentation. Willingness decreased when there was a high probability of side effects and a high price. Prevalent CE-drug use among peers increased willingness, whereas a social environment that strongly disapproved of these drugs decreased it. Regarding the respondents’ characteristics, pronounced academic procrastination, high cognitive test anxiety, low intrinsic motivation, low internalization of social norms against CE-drug use, and past experiences with CE-drugs increased willingness. The potential severity of side effects, social recommendations about using CE-drugs, risk preferences, and competencies had no measured effects upon willingness. Conclusions These findings contribute to understanding factors that influence the willingness to use CE-drugs. They support the assumption of instrumental drug use and may contribute to the development of prevention, policy, and educational strategies

    The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock

    Get PDF
    RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered
    • 

    corecore