25 research outputs found

    Diseases of Edible Oilseed Crops

    Get PDF
    Diseases of Edible Oilseed Crops presents an unprecedentedly thorough collection of information on the diseases of cultivated annual oilseed crops, including peanut, rapeseed-mustard, sesame, soybean, sunflower, and safflower. Written by internationally recognized researchers, this book covers and integrates worldwide literature in the field up to 2014, setting it apart from other books that are only of regional importance. The book focuses on major diseases of economic importance to each crop. Each chapter is devoted to a type of crop and a profile of affecting diseases according to geographical occurrence, epidemiology, symptoms, causal pathogens, host-pathogen interactions, biotechnological aspects, and the latest approaches to understanding host-pathogen interactions. It also includes discussions on developments on controversial subjects in research in order to stimulate thinking and further conversation with an eye toward improvements and resolutions. Research on oilseed crop diseases has expanded tremendously in the past 30 years, primarily as an effort to reduce losses to various stresses, including crop diseases. In the war against hunger and malnutrition, it is necessary to enhance and update knowledge about crop diseases and managing them. By compiling decades of information from previously scattered research into a single globally minded volume, Diseases of Edible Oilseed Crops provides these much-needed updates and enhancements

    Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops

    Get PDF
    Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host–plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing preharvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solutio

    Aflatoxin B1 levels in groundnut products from local markets in Zambia

    Get PDF
    In Zambia, groundnut products (milled groundnut powder, groundnut kernels) are mostly sold in under-regulated markets. Coupled with the lack of quality enforcement in such markets, consumers may be at risk to aflatoxin exposure. However, the level of aflatoxin contamination in these products is not known. Compared to groundnut kernels, milled groundnut powder obscures visual indicators of aflatoxin contamination in groundnuts such as moldiness, discoloration, insect damage or kernel damage. A survey was therefore conducted from 2012 to 2014, to estimate and compare aflatoxin levels in these products (n = 202), purchased from markets in important groundnut growing districts and in urban areas. Samples of whole groundnut kernels (n = 163) and milled groundnut powder (n = 39) were analysed for aflatoxin B1 (AFB1) by competitive enzyme-linked immunosorbent assay (cELISA). Results showed substantial AFB1 contamination levels in both types of groundnut products with maximum AFB1 levels of 11,100 ÎĽg/kg (groundnut kernels) and 3000 ÎĽg/kg (milled groundnut powder). However, paired t test analysis showed that AFB1 contamination levels in milled groundnut powder were not always significantly higher (P > 0.05) than those in groundnut kernels. Even for products from the same vendor, AFB1 levels were not consistently higher in milled groundnut powder than in whole groundnut kernels. This suggests that vendors do not systematically sort out whole groundnut kernels of visually poor quality for milling. However, the overall contamination levels of groundnut products with AFB1 were found to be alarmingly high in all years and locations. Therefore, solutions are needed to reduce aflatoxin levels in such under-regulated markets

    Reducing aflatoxins in groundnuts through integrated management and biocontrol

    No full text
    PRIFPRI1; CRP4; GRP40; Theme 2; Subtheme 2.3; 2020DGO; MTID; A4NHCGIAR Research Program on Agriculture for Nutrition and Health (A4NH

    Etude comparative de l'evolution de la microflore rhizospherique de deux varietes d'arachide (Arachis hypogea L.) au Senegal

    No full text
    SIGLET 54630 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore