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Foreword
 
Annual edible field-grown oilseed crops have wide adaptability and are grown under  varied 

agroclimatic conditions. They occupy a special place in agricultural economies all over the world. 

Almost all such crops have a great potential for the diversification of major cropping systems in 

developing countries. In the period 2009–2012, these crops recorded impressive compound growth 

rates in terms of area and production. However, the average yield per hectare is hardly 30%–50% 

of what is obtainable under real-farm situations in rain-fed areas as well as in areas with assured 

 moisture supply in developing countries. One of the major reasons for this huge gap is the occurrence 

of diseases that adversely affect these crops. 

In the war against hunger and malnutrition, it is necessary to enhance and update knowl

edge about these diseases, their occurrence, epidemiology, and disease management, including 

transgenic  technology. To this end, the International Crops Research Institute for the Semi-Arid 

Tropics (ICRISAT) has developed and characterized transgenic peanut (groundnut) lines with afla

toxin resistance conferred by the rice chitinase gene and also lines with bud necrosis virus resis

tance imparted by expressing the viral coat protein gene. Elsewhere, similar approaches in the 

development of stem necrosis virus–resistant transgenic sunflower and Alternaria-resistant trans

genic mustard have been cultivated. Enriched with these recent developments, this book is useful 

as an updated basic reference volume in the conduct of research and development activities toward 

obtaining increased productivity and sustainability of oilseed production in the world. 

In view of this, I appreciate and compliment all three authors for bringing out this important 

book. I hope that readers of this book will contribute to pushing forward the frontiers in the war 

against hunger and malnutrition. 

William D. Dar 
Director General 

International Crops Research Institute for the Semi-Arid Tropics 
Patancheru, Telangana, India 
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Preface
 
The proposal for bringing out this book is the result of the pressing need and demand from edible 

oilseed crop researchers, university faculty members and students, and the interest taken by the 

publishers in the proposed authors based on the previously published book Diseases of Annual 
Edible Oilseed Crops by CRC Press in 1984–1985. The new volume is an improved one covering 

the latest developments in host–pathogen interactions and disease  management, including molecu

lar breeding for disease resistance and developments of transgenics, if any, in edible oilseed crops. 

Accordingly, the proposal was prepared and submitted for review along with the expert opinion of 

scientists as per CRC Press norms and regulations, and was approved after incorporating sugges

tions given by the experts. 

This book deals primarily with the diseases of cultivated annual edible oilseeds, that is, pea

nut (groundnut), rapeseed–mustard, sunflower, sesame, safflower, and soybean. In recent years, 

soybean, though not a high-oil-containing seed, has been identified more as an oilseed crop than a 

bean crop by the United Nations Food and Agriculture Organisation (UN FAO). Diseases of other 

annual crops, for example, cotton, corn, rice bran, and perennial oil palm, which also contribute 

significantly to the world supply of edible vegetable oils and fats, have been excluded. Linseed oil 

is mostly useful for industrial purposes. However, a new edible grade oil crop termed Linola has 

been created (through collaborative research between Australia and the United States) out of con

ventional linseed varieties through mutation breeding, which is likely to expand as a good source of 

vegetable oils for human  consumption. 

A great deal of information has been accumulated on the diseases of peanut, rapeseed–mustard, 

sesame, sunflower, safflower, and soybean since the publication of the 1984–1985 edition. Besides 

a pressing need for such a comprehensive work, the experience of the authors in research in this 

pertinent field has prompted the attempt to bring together the scattered information on the subject in 

a comprehensive manner in order to present it in a useful form. An attempt has been made to  present 

a broader view of the subject than that generally included in bulletins and manuals. Discussions on 

the development of a straightforward and also of a controversial nature have been included to stimu

late thinking especially among graduate students. The information presented represents a careful 

synthesis of research articles. The survey of literature has been made as complete as possible up to 

the beginning of 2014. In most cases, original papers are consulted, and the temptation to use review 

articles or abstracts as a major source of information is avoided. 

The “Introduction” deals with the uses and chemistry of vegetable oils and fats, trends in world 

production and consumption, production constraints, crop management, and disease problems. 

Depending upon the available literature, the treatment of all the previously mentioned crop  diseases 

follows a uniform pattern under headings such as Symptoms, Geographical Distribution and Losses, 

Pathogen, Epidemiology, Disease Cycle, and Diseases Management covering Host Plant Resistance, 

Molecular Breeding, Cultural Control, Biological Control, etc., in each chapter. The aim has been to 

make the subject matter regarding each disease as complete and self-contained as possible. At first, 

the reader is introduced to the respective edible oilseed crop in each chapter with a brief botanical 

description of the crop and its genomics, origin, and distribution. The diseases are arranged under 

each crop on the basis of their global economic importance. 
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1 Edible Oilseed Crops
 

Edible oilseed plants are those whose seeds bear fixed nonvolatile oil, and oilseed crops are grown 

primarily for the oil contained in the seeds. The oil content of small grains (e.g., wheat) is only 

1%–2%, and that of oilseeds ranges from about 20% for soybeans to over 40% for sunflowers and 

canola rapeseed. Crops like rapeseed–mustard, peanut, and sunflower have oil recovery ratio of 

45%, 40%, and 30%, respectively, whereas cottonseed and soybean have oil recovery ratio of 11.5% 

and 17% only (Kumar 2014). Some of the oilseeds like peanut, sesame, sunflower could be con

sumed directly or may be eaten fried, roasted, or pounded and mixed with sugar; or the oil may 

be extracted from such seeds and directly used for cooking food or for confectionery purposes. 

Usually, refining of the oil is done before it is used as food. Edible vegetable oils may, however, 

be used occasionally for industrial purposes, for example, manufacturing of soaps, varnishes, hair 

oils, and lubricants. The residues left, that is, the oil cakes, serve as excellent animal or poultry 

feed. Oil cakes may also be used as manure to increase the fertility status of soils. The demand 

for edible oilseeds for human consumption in different parts of the world is principally derived 

from three categories of cultivated crop plants: (1) primarily cultivated annual oilseed crops, for 

example, peanut (Arachis hypogaea L.), rapeseed–mustard (Brassica campestris L., Brassica napus 
L., Brassica juncea [L.], Czern and Coss. Eruca sativa Lam.), sunflower (Helianthus annuus L. var. 

macrocarpus [DC] Ckll.), sesame (Sesamum indicum L.), safflower (Carthamus tinctorius L.), niger 

seed (Guizotia abyssinica Cass.), and soybean (Glycine max [L.] Merrill); (2) an annual fiber crop 

cotton (Gossypium hirsutum L.) through its seed by-products; and (3) perennial oilseed plants such 

as coconut palm (Cocos nucifera L.) and oil palm (Elaeis guineensis Jacq). Corn (Zea mays L.) also 

contributes significantly to the world edible oil supply. Besides traditionally grown oilseed crops, 

technological innovations in refining, bleaching and deodorization, newer oils like cottonseed and 

rice bran oils have also become popular in the recent times. Thus, the range of plants that could be 

cultivated for edible oils is extensive, but only a few that are included in the first (1) category are 

suitable for large-scale commercial production or produce oil that is required in large quantities. 

In this chapter, only this category of primarily cultivated annual oilseed crops is considered with 

respect to diseases and their management. 

CHEMICAL NATURE OF EDIBLE OILS AND FATS 

Edible oils and fats of vegetable origin are composed of triglycerides that are esters of one molecule 

of glycerol and three molecules of fatty acids. A reaction leading to the formation of a triglyceride 

is shown in Figure 1.1. 

Triglycerides that are solids at room temperature are termed as fats, whereas the liquid ones are 

termed as oils. The latter contain ester-bound unsaturated fatty acids. 

Fatty acids by and large are straight-chain aliphatic monocarboxylic acids. Most of the mem

bers of this series contain an even number of carbon atoms in the molecule. Individual fatty acids 

are distinguished from one another by the nature of the hydrocarbon chain. This chain can vary 

in length from 4 to 24 carbon atoms. When fatty acid contains one or more double bonds in the 

molecule, it is said to be unsaturated. Thus, the fatty acid may be saturated (no double bond) as 

stearic acid, monounsaturated (one double bond) as oleic acid, or polyunsaturated (with two or more 

double bonds) as linoleic acid. The fatty acids are abbreviated according to the number of carbon 

atoms in the molecule and degree of unsaturation (number of double bonds). The common names, 
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4 Diseases of Edible Oilseed Crops 

FIGURE 1.1 A chemical reaction leading to the formation of triglyceride. 

TABLE 1.1 
Common Names, Symbols, Systematics, and Structural Formulae of Certain Important 
Fatty Acids Found in Vegetable Oils 

Common Name Symbol Systematic Structural Formula 

Saturated fatty acids (1–4) 

1. Myristic C14.0 Tetradecanoic C13H27COOH 

2. Palmitic C16.0 Hexadecanoic C15H31COOH 

3. Stearic C18.0 Octadecanoic C17H35COOH 

4. Arachidic C20.0 Eicosanoic C19H39COOH 

Unsaturated fatty acids (5–10) 

5. Palmitoleic C16.1(9) 9-Hexadecenoic C15H29COOH 

6. Oleic C18.1(9) 9-Octadecenoic C17H33COOH 

7. Linoleic C18.2(9,12) 9,12-Octadecadienoic C17H31COOH 

8. Linolenic C18.3(9,12,15) 9,12-Octadecatrienoic C17H29COOH 

9. Gadoleic C20.1(9) Eicosenoic C19H37COOH 

10. Erucic C22.1(13) 13-Docosenoic C21H41COOH 

Sources: Dutcher, R.A. et al., Introduction to Agricultural Biochemistry, John Wiley & Sons, New York, 1951, p. 72; Vaisey-

Genser, M. and Eskin, N.A.M., Canadian rapeseed oil—Properties, processes and food quality, Publication No. 54, 

Rapeseed Association of Canada, Winnipeg, Manitoba, Canada, 1978, p. 13. 

Note:	 Figures in the parenthesis indicate the position of double bonds (=) in the fatty acid chain at carbon numbers  starting 

from carboxyl group. 

abbreviated symbols, systematic, and structural formulae of certain important fatty acids found in 

vegetable oils are given in Table 1.1. The natural configuration of fatty acids is the cis configuration, 

which is considered to be nutritionally more desirable. 

TRENDS IN WORLD PRODUCTION AND CONSUMPTION 
OF VEGETABLE OILS AND FATS 

COMMONLY CULTIVATED ANNUAL EDIBLE OILSEED CROPS 

The oilseeds sector has remained vibrant globally with 4.1% growth per annum in the last three 

decades. The production of annual oilseed field crops has increased considerably since 1960, and 

now constitutes over 50% of the total production of fats and oils in the world. However, the supply 

of vegetable oils from annual field crops tends to remain quite flexible from year to year in rela

tion to the total world supply of vegetable oils and fats (Sharma et al. 2012). The present average 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

 

 

 
 

Per Capita Food Per Capita Food 
Production (kilotons) Growth (%) Use (kg/annum) Use (kg/annum) 

Average Average 
(2010–2012 Projected (2010–2012 Projected 

World/Country Estimated) (2022) 2003–2012 2013–2022 Estimated) (2022) 

World 300,414 400,460 3.13 2.07 18.3 20.0 

Developed countries 165,474 203,242 3.70 1.63 24.0 24.4 

North America 107,682 128,468 2.35 1.13 37.9 32.2 

Canada 18,184 23,367 8.05 1.62 23.9 20.8 

United States 89,497 105,101 1.44 1.03 39.5 33.5 

Europe 52,349 66,678 21.8 23.3 

Oceania developed 2,861 4,130 9.33 2.53 26.4 27.0 

Developing countries 224,040 28,728 2.71 2.39 16.7 19.0 

Africa 10,043 12,910 1.11 2.65 11.4 12.4 

Latin America and 139,470 189,415 4.17 2.84 19.2 22.3 

Caribbean 

Asia and Pacific 175,427 84,893 0.62 1.42 17.7 20.5 

China 44,380 47,951 0.01 1.20 21.9 26.3 

India 23,222 27,165 1.29 1.71 13.3 16.0 

  

5 Edible Oilseed Crops 

TABLE 1.2 
Average World Oilseed Production (2010–2012) and Projected Oilseed Crop 
Production (2022) 

Source: OECD-FAO, OECD-FAO agricultural outlook 2013, Chapter 5—Oilseeds and oilseed products, OECD/FAO 

Secretariats, pp. 139–282. 

per capita consumption of edible oils and fats is 39.5 kg/annum (highest) in the United States, 

13.3 kg/annum (low) in India and other south Asian countries, and 11.4 kg/annum (lowest) in 

Africa. Thus, the consumption of fats and oils in Asia and Africa and in other developing coun

tries is much less as against the required minimum consumption level of 30 kg/annum (Table 1.2). 

This is a serious situation, particularly when it comes to meeting the requirement of an essential 

fatty acid, linoleic (C18.2), and the energy supply for body functions under a  balanced diet pattern. 

Considering the global minimum per capita consumption as required for keeping human health, 

the increasing world population by about 2% every year, the present rate of oilseed production 

on a global scale is not and will not be satisfactory. However, developed countries such as the 

United States, Canada, and the Russian Federation have been and should continue to be the 

major producing areas. Population growth and rising per capita income are expected to lead to 

an average 2.1%/annum growth of food vegetable oil use in developing countries. Annual food 

vegetable oil use per capita is expected to average 19 kg/annum across developing countries, but 

no more than 9.5 kg/annum in least developed countries by 2022. As a group, developed coun

tries are showing a stable consumption level of 24–25 kg/annum, but individual countries differ 

based on tastes and preferences (OEDC-FAO 2013). Biotechnology offers a number of solutions 

to meet the growing need for affordable vegetable oils with improved fatty acid composition 

for food and industrial uses (Lu et al. 2011). The six annual edible oilseed crops, as considered 

in this chapter, are grown in different parts of the world, covering a wide range of geographi

cal areas. Total world’s oilseed production from major oil crops has been 423.55 million tons 

from 205.08 million hectares during 2009–2010. The leading countries in oilseed production 

are the United States, Brazil, Argentina, China, and India (Yadav et al. 2012). The yield of these 

crops is of higher magnitude in the developed countries as compared with the developing ones 

(Table 1.2). For example, the average yield of peanuts in the developed countries, particularly in  the 



 

 

 

 

    

 

 

   

 

 

   

 

 

 

6 Diseases of Edible Oilseed Crops 

TABLE 1.3
 
Edible Oilseed Crop Productivity (q/ha) in India vis-à-vis World (2012)
 

Crop India World Country with Highest Productivitya 

Peanut 11.7 16.7 46.9 (United States) 

Rapeseed–mustard 11.4 18.7 36.9 (Germany) 

Soybean 12.0 23.7 27.8 (Paraguay) 

Sunflower 07.6 14.8 24.9 (China) 

Sesame 04.26 05.1 13.1 (Egypt) 

Safflower 06.5 09.6 14.8 (Mexico) 

Sources:	 FAO, FAOSTAT world oilseed production, 2012, available at: http://faostat.fao.org; Paroda, R.S., The Indian oil-

seeds scenario: Challenges and opportunities, in: The First Dr. M.V. Rao Lecture, Indian Society of Oilseeds 

Research, Hyderabad, India, August 24, 2013, p. 26. 
a Among the countries with >80% global contribution. 

United States, is 46.9 q (quintals)/ha; whereas in India and in other semiarid countries, it is only 

about 11 q/ha as given in Table 1.3 (FAO 2012, Paroda 2013). A similar situation appears to be 

true with respect to the high production of rapeseed (now canola) in Canada and sunflower in 

Russian Federation, compared with the yield performance of these crops in developing countries. 

Safflower production is about 16.4 q/ha in the United States, 16.8 q/ha in Mexico, and only 6.3 q/ha in 

India (FAO 2011, Padmavati and Virmani 2012). The average yield of sesame varies from a high 

of 11.75 q/ha in Egypt to a low of 1.52 q/ha in Sudan (Ranganatha et al. 2012). 

LINOLA: A NEW ANNUAL EDIBLE OILSEED CROP 

There are reports showing that in certain linseed species extent and degree of polyunsaturated fatty 

acids are so low that the oil extracted is perfect for edible purposes. For example, Linum strictum L. 

is largely cultivated for edible oil and fodder purposes in Afghanistan (Richaria 1962). The edible 

oils are characterized by rather having higher content of oleic, palmitoleic, and linoleic acids. The 

linseed oil obtained from the seeds of Linum usitatissimum cannot normally be used for edible 

purposes directly or in the edible products because of its high linolenic acid contents; though in 

certain regions of Chhattisgarh (formerly a part of Madhya Pradesh) and adjoining eastern part 

of Vidarbha Region of Maharashtra State in India, linseed oil is used for cooking food. It is note

worthy that Green (1986a,b) has been successful in obtaining two low-linolenic acid (28%–30%) 

mutants M1589 and M1722 by treating the seeds of the linseed (Linum usitatissimum L.) cultivar 

Glenelg with ethyl methanesulfonate. The two mutants through crossing together have been further 

combined within a single genotype that has only 1% linolenic acid and increase in linoleic acid 

to 50%–70% depending on the temperature during seed maturation. Consequently, through tradi

tional plant-breeding procedures, a joint venture between Commonwealth Scientific and Industrial 

Research Organization (CSIRO) of Australia and United Grain Growers Ltd. of Winnipeg, Canada, 

has led to the development of edible linseed oil (Gunstone 2011). The fatty acid composition of the 

new oilseed crop named linola (a registered trademark of CSIRO) has been changed, and the level 

of linolenic acid substantially reduced from 50%–60% to 2%. This greatly increases the oxidative 

stability of the oil that is a polyunsaturated oil identical to sunflower, safflower, or corn oil in fatty 

acid composition. The oxidative stability of oil of this newly created linseed genotype is equivalent 

to that of sunflower oil and much better than high-linolenic common linseed oil (Green 1986a–c). 

The color of the linola seed is also changed to pale yellow, which allows it to be distinguished from 

brownish traditional flaxseed/linseed. 

The new oilseed crop can be grown wherever flax and linseed varieties are currently cultivated. 

The climate in northern Europe is highly suitable for the production of linola where sunflower and 

http://www.faostat.fao.org
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corn cannot be produced. Linola seed can be processed in existing crushing plants using standard 

procedures, and linola meal can also be used in ruminant feed in the same way as linseed meal. 

Refining of crude linola oil by conventional steps produces a pale-colored oil with good oxidative 

stability. The Food and Drug Administration has given GRAS approval to linola (Solin: the com

mon generic name) oil for use as a general-purpose cooking oil, frying, and salad oil. Thus, linola 

oil and seed of the new oilseed crop appear to have a promising future. Anticipating the adoption 

and likely expansion of acreage of linola as a new edible oilseed crop, the linola crop is likely to 

be affected by the same diseases that affect the traditional nonedible grade linseed/flax (Kolte and 

Fitt 1997). 

PRODUCTION CONSTRAINTS 

BASIC ONSTRAINTS  C

It is true that high-yielding varieties of oilseeds do not have the genetic potential to yield at par with 

cereals, even at the optimum management level. Besides, it could be observed that production of a 

unit quantity of fats and oils by a plant requires more energy than production of carbohydrates by 

cereals. In making comparisons, one should always keep in view the differential energy require

ments for the plants to produce a quintal of oil. If, for example, a plant produces 1 g of glucose, 

the conversion of this results in the formation of 0.83 g carbohydrate, while if glucose is converted 

into lipid, only 0.38 g is formed (Swaminathan 1979). It is because of this high-differential energy 

requirement that oil yield from oilseeds has continued to be restricted. 

OTHER CONSTRAINTS  IN DEVELOPING COUNTRIES 

Poor plant population arising from poor-quality seed, particularly in the case of soybean, peanut, 

and sunflower, inadequate nutrient status of soil and nutrient supply, no rhizobial inoculation or use 

of inefficient rhizobial cultures in the case of soybean and peanuts, poor plant protection measures, 

and poor postharvest technology have been some other constraints for poor yields of oilseeds in 

developing countries. Besides, much of the oilseed acreage in developing countries—particularly 

in India—is rainfed, and therefore, a certain degree of instability is inherent in the production pro

cess. Absence of rain or lack of irrigation water at critical stages of the crop growth before maturity 

causes significant loss in yield. Thus, productivity in developing countries is still low compared to 

other oilseed-producing countries in the world. The main cause is low cultivation of oilseeds on 

account of switchover to other profitable crops and dependence on rainfall rather than on irrigation 

(Narayan et al. 2011). 

CROP MANAGEMENT 

Oilseed crop management must be seriously considered in view of the very low yield of these crops 

in developing countries. Considerable advancement in research has led to an increase in the pro

ductivity of the oilseed crops, both in developed and in developing countries particularly in China 

and India. In some crops, like and safflower, it is now possible to plan on the exploitation of hybrid 

vigor. Higher productivity of the sunflower in Canada and other developed countries is attributed to 

the cultivation of hybrid cultivars. In developing countries, adoption of a package approach (tech

nological package) supported by package of services (seed, fertilizer, chemical supplies, etc.) con

stitutes an important major thrust to intensify oilseed production. There is still considerable scope 

for introduction of short-duration varieties of oilseeds in irrigated as well as in dry-farming systems 

favoring multiple cropping pattern all over the world. 

It becomes necessary to obtain a thorough updated knowledge of a particular crop in terms of 

land preparation, techniques of sowing, varieties, fertilizer requirements, and intensive care during 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  
  

 

 

 

 

 

8 Diseases of Edible Oilseed Crops 

crop-growing season. Preparation of seedbeds, with sufficient conservation of soil moisture, is 

necessary for the most oilseed crops with special reference to peanut, sunflower, and rapeseed 

crops. Seed treatment with most recently recommended fungicides (thiram, carbendazim, or with 

a mixture formulation of such fungicides) at the rate of 2–3 g/kg of seed may be necessary for the 

soybean, peanuts, and sunflowers to get good seed germination and plant stand, directly increasing 

yields through such treatment. Some crops like rapeseed and mustard are still sown by broadcast 

method in India. It has now been demonstrated through planned field experiments and on-farm 

farmers participatory research that the yield of rapeseed–mustard crop can be increased consider

ably by line sowing. It is, therefore, considered best that rapeseed–mustard crop be sown in lines 

through seed drills. The requirements for fertilizers will be determined by the fertility status of 

the soil, the nature of oilseed crop to be grown, and time of sowing. For the peanut crop, applica

tion of calcium through gypsum may be quite important for better pod and seed development. 

Some other nutritional problems with respect to deficiency of boron, zinc, and iron have been 

encountered in oilseed crops in different geographic areas. A direct yield loss of U.S. $1.5 billion/ 

annum is estimated due to low crop yields besides huge loss due to disease concerns arising out of 

Zn malnutrition in the country (Singh 2010, Suresh et al. 2013). Timely steps should be taken to 

correct the aforementioned deficiencies. Other management practices include spraying of suitable 

insecticides and fungicides at the appropriate time for the management of insect pests and diseases. 

In the case of rapeseed–mustard, the crop must be essentially protected from aphid attack under 

Indian conditions. 

DISEASE PROBLEMS 

Peanut, rapeseed–mustard, sunflower, sesame, safflower, and soybean are subject to attack by 

several infectious and noninfectious diseases. The loss in yield of the crop may vary,  depending 

upon the nature of the pathogen and the severity of the attack. Considering all the vegetable oil– 

producing crops, the quantity lost, on a world basis, is estimated to be more than about 14.00 mil

lion tons/year—amounting to a monetary loss of about U.S. $16 million. This excludes the newly 

developed diseases for which loss estimates have not yet been determined. Thus, the overall losses 

may be of a higher magnitude. With an increasing emphasis on oilseed production, it is expected 

that limited land resources through intensive farming, higher cropping intensity, better seeds, and 

greater use of fertilizers and herbicides, the production of oilseeds will increase; however, this 

might create new disease problems under the changed environments, in addition to the already 

existing diseases. Such a shift in the disease situation, as discussed in the following chapters, 

has already taken place in the case of peanuts due to the use of benomyl for early and late leaf 

spot management, consequently favoring more peanut rust and Sclerotium rot development in the 

United States, and with respect to rapeseed–mustard due to the use of Barban® herbicide favoring 

development of Sclerotinia rot in Canada. Use of dalapon herbicide has increased the susceptibil

ity of rapeseed to light leaf spot (Pyrenopeziza brassicae Sutton and Rawlinson) in the United 

Kingdom (Kolte 1985). A similar situation appears to be true with respect to nutrient status and 

susceptibility of rapeseed and sunflowers to fungal diseases at a lower concentration of erucic acid 

and glucosinolates. Derivatives of glucosinolates have been known to be fungitoxic. Some volatile 

derivatives of glucosinolates are reported to be more abundant in light leaf spot–resistant varieties 

than in susceptible types of rapeseed. So, the consequences of this trend, that is, breeding for low 

glucosinolates and for other quality characters, must be thoroughly examined in the general con

text of rapeseed diseases. Although climate change and variability is considered an altering situa

tion and a big challenge to oilseed production, there is sometimes a positive impact of it regarding 

the disappearance of sesame phyllody disease (caused by phytoplasma) in an unusually cool and 

rainy growing season in the west Mediterranean region of Turkey. This is a unique case of influ

ence of climate variability characterized by higher and frequent rainfalls and consequently causing 

lower temperatures but higher humidity on the nonoccurrence of phyllody disease transmitted and 



 

     

 

               

 

              

 

 

             

      

  

  
 

             

9 Edible Oilseed Crops 

spread by leaf hopper vectors (Cagirgan et al. 2013). In contrast to this insect- and vector-borne 

phytoplasma, the fungal pathogen, Sclerotinia sclerotiorum, and several other pathogens find such 

weather conditions with higher rainfalls and lower temperatures most congenial to cause epidemics 

in rapeseed–mustard and sunflowers (Boomiraj et al. 2010, Evans et al. 2010). 

Oilseed crops are affected by foliage diseases such as the rusts, downy mildews, leaf spots and 

blights. The management of these diseases through the use of chemical sprays and host resistance 

has been achieved in a satisfactory manner, but the situation with respect to control of a number of 

soil-borne root diseases, for example, charcoal rot, Sclerotinia rots, Verticillium wilts, and Fusarium 
wilts, is not satisfactory. Oilseed crops have a rather low-yield genetic potential. Therefore, the 

least expensive management measures, such as use of host resistance and cultural control, will find 

favor with farmers and others concerned with more oilseed production. In recent years, the gains 

in productivity of oilseed crops have been achieved primarily through exploitation of genetic vari

ability (Anjani 2012, Azeez and Morakinyo 2011, Zhang and Johnson 1999). Conventional breeding 

coupled with modern tools such as biotechnology should now be the primary focus in crop improve

ment programs. Investigations to develop disease-resistant transgenics are underway all over the 

world. In India, for example, Alternaria-resistant mustard transgenics using antifungal chitinase 

and glucanase genes have been successfully developed. Similarly, transgenic peanuts have been 

developed with coat protein genes for resistance to peanut bud necrosis and peanut stem necrosis 

viruses (Paroda 2013). 
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Section II
 

Peanut 
Peanut (groundnut) belongs to the family Fabaceae (= Leguminosae) and the genus Arachis, derived 

from the Greek a-rachis, meaning without spine, and refers to the absence of erect branches. The 

species name hypogaea is derived from hupo-ge, which in Greek means below the earth. It is an 

allotetraploid having South American origin (Nigam 2000, Wang et al. 2011). Recent studies reveal 

that peanut originated in northern Argentina or southern Bolivia from hybridization between the 

diploid wild species Arachis duranensis and Arachis ipaensis. Cultivated peanut thus has an allo

tetraploid genome (AABB, 2n + 4x = 40). It is an annual herbaceous plant growing to a height of 

30–60 cm with an angular hairy stem and spreading branches. Leaves occur alternately, one at each 

node; they are pinnate with two pairs of ovate leaflets. The peanut flowers are perfect, and self-

pollination is the general rule although natural cross-pollination may occur at times. After pollina

tion, the perianth withers and at the base of the ovary a meristematic region grows into a stalklike 

peg that pushes the ovary into the soil. Groundnut has a taproot system that is often covered with 

root nodules resulting from a symbiosis with nitrogen-fixing bacteria (collectively called rhizobia). 

Among the rhizobia identified on groundnut, Bradyrhizobium species are the most prominent ones. 

The rhizobia penetrate the root tissue, induce cell division, and settle inside root cells where they 

convert atmospheric nitrogen (N2) into ammonia, which in turn is used by the plant. 

Because its ancestors were two different species, today’s peanut is a polyploid, meaning this 

species can carry two separate genomes, designated as A and B subgenomes. A. duranensis serves 

as a model for the A subgenome of the cultivated peanut, while A. ipaensis represents the B subge

nome. Very recently in April 2014, peanut genome has been successfully sequenced as a result of 

the collaborative research done by the International Peanut Genome Initiative (IPGI)—a group of 

multinational crop geneticists from the United States, China, Brazil, India, and Israel. The peanut 

genome sequences will now provide researchers access to 96% of all peanut genes in their genomic 

context and provide the molecular map needed to more quickly breed for peanut disease resis

tance and other economically important traits producing more improved high-yielding peanut cul

tivars all over the world (UGA Today—University of Georgia News Services—October 20, 2014; 

Mallikarjuna and Varshney 2014). 

The varieties in cultivation fall into two main groups: the bunch or erect and the runner or spread

ing types. The basic chromosome number of Arachis hypogaea is 20 pairs (2n = 40) with large 

genome size (2.82 Gb DNA, 2800 Mb/1C). The oil content of the seed varies from 44% to 55%, and 

protein content of the seed is about 25%–28% in different varieties. About two-thirds of the world’s 

production is crushed for oil and the remaining one-third is consumed as food. Today, peanut is 
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widely distributed and is cultivated in more than 80 countries in tropical and subtropical regions of 

the world. Peanut requires warm, sunny climate with a well-distributed rainfall of at least 500 mm 

and temperatures ranging from 25°C to 30°C. It thrives best in well-drained sandy-loam soils with 

a pH ranging from 5.5 to 7.0. Asia with 63.4% area produces 71.7% of the world’s peanut produc

tion followed by Africa with 31.3% area and 18.6% production and North–Central America with 

3.7% area and 7.5% production. Important peanut-producing countries are China, India, Indonesia, 

Myanmar, Thailand, and Vietnam in Asia; Nigeria, Senegal, Sudan, Zaire, Chad, Uganda, Republic 

of Ivory Coast, Mali, Burkina Faso, Guinea, Mozambique, and Cameroon in Africa; Argentina and 

Brazil in South America; and the United States and Mexico in North America (Hegde 2009). The 

most favorable conditions for peanuts are moderate rainfall during the growing season, an abun

dance of sunshine, and relatively high temperature. The plants need ample soil moisture from the 

beginning of blooming up to 2 weeks before harvest. The crop thrives best on sandy-loam, loam, 

and well-drained black soils. The crop is affected by several diseases, causing large losses in both 

yield and quality of seeds. The peanut diseases are described in Chapters 2 through 4 as follows. 



 

 

 

 

 

 

 

   

 

  

 

 

 

2 Fungal Diseases
 

SEED ROT AND SEEDLING DISEASE COMPLEX 

SYMPTOMS 

A wide range of fungi, acting synergistically or in succession, attack the plant from the time seed is 

planted, until a few weeks after emergence to cause the seedling disease syndrome. The symptoms 

may be divided into four categories according to the development stage of the plant when the dam

age occurs. These categories are seed rot, preemergence damping-off, postemergence damping-off, 

and seedling blight. The rotted seeds become soft and mushy, turn brown, shrink, and finally disin

tegrate, often showing the presence of the fungal growth. This gives a patchy stand of the crop. The 

patchy stand of the crop may also be due to infection of seedlings after the seed has germinated but 

before the seedling has emerged above the soil level, which is called as preemergence damping-off. 

They may be killed even before the hypocotyls have broken the seed coat. The radicle and the plu

mule, when they come out of the seed, undergo complete rotting. Since this happens under the soil 

surface, the disease is often not visible except for the resulting patchy stand. In both cases, infection 

takes place before emergence of the seedlings above the soil level. 

The postemergence seedling blight is characterized by the toppling over of infected  seedlings 

any time after they emerge from the soil until the stem of the peanut plant soon becomes  lignified 

and resistant to postemergence damping-off. The fungi that cause seedling blight  symptoms 

infect the cotyledons and leaves as they emerge, either from inoculum carried on the seed or 

when the cotyledons come into contact with contaminated crop residues. Seedlings may also be 

attacked by certain species of fungi at the roots and sometimes at or below the soil line. Such 

seedlings usually show collar rot, root rot, brown root rot (caused by Fusarium solani [Martius] 

Sacc. in Argentina), and wilt-like and damping-off symptoms. In the case of collar rot caused 

by Lasiodiplodia theobromae (Pat.) Griff. & Maubl., the leaflets and stem remain green until 

the seedlings die and black pycnidia are found on the collar region at the soil level (Chi Mai Thi 

et al. 2006). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

These diseases occur all over the peanut-growing countries in the world and can cause serious 

reduction in yield through reduced plant stand. Losses recorded in any one field for a given inocu

lum level will vary from one season to the next depending on crop residues, soil conditions, seed 

quality, and climatic factors during the critical 3–4 weeks after planting. Extensive losses have 

been reported in the range of 25%–50% in Malawi, Senegal, Sudan, Niger, Nigeria, and other West 

African countries (Subrahmanyam et al. 1991, Kolte 1997, Thiessen and Woodward 2012), Southern 

African countries (Subrahmanyam et  al. 1997), Egypt (Wakil and Ghonim 2000), India (Kolte 

1984), and Pakistan (Riaz et al. 2002). Under conducive conditions like drought stress, losses due 

to brown root diseases in peanuts could reach 95% in some fields in Argentina (Rojo et al. 2007). 

Patchy stands of peanuts due to these diseases are the single most important factor for low produc

tion of the crop in almost all peanut-growing states of India. 
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14 Diseases of Edible Oilseed Crops 

PATHOGENS 

The causal fungi associated with the preemergence seed rot, preemergence and postemergence 

damping-off of peanut seedlings, and seedling blights are Rhizoctonia solani Kuhn, F. solani 
(Mart) Apple and Wr., Pythium ultimum Trow., P. myriotylum Drechs, P. debaryanum Hesse 

emend. Middleton, P. aphanidermatum (Edson) Fitzp., and P. butleri Subram (Kolte 1984, Rashid 

et al. 2004, Cavallo et al. 2005, Thiessen and Woodward 2012). 

Both the preemergence and postemergence damping-off of peanut seedlings can also be the result 

of infection of Sclerotium rolfsii Sacc., Rhizoctonia bataticola (Taub.) Butl., a sclerotial stage of 

Macrophomina phaseolina (Tassi) Goid (Chakrabarty et al. 2005), Aspergillus niger van Tieghem, 

and A. flavus (Link) ex Fries. The latter four fungal pathogens have the capacity to cause root rots, 

collar rot diseases beyond the stages of crop growth that could reasonably be considered as seedling. 

Diseases caused by these are described separately in “Sclerotium Stem Rot,” “Aspergillus Collar 

Rot,” “Yellow Mold and Aflarroot,” and “Charcoal Rot” Sections under F. solani causing the 

brown root disease is one of the most serious diseases of peanuts in the southern region of Argentina 

in recent years (Oddino et al. 2008). Collar rot of peanut seedlings caused by L. theobromae (Pat.) 

Griff. & Maubl. (syn Botryodiplodia theobromae Pat.) has been reported to become a major disease 

problem in peanut production in North Vietnam (Chi Mai Thi et al. 2006). Two or more of the afore

mentioned pathogens can act together as a complex of the cause of seedling diseases. 

FACTORS AFFECTING INFECTION 

Normally, the peanut seed contains a tannin-like substance that acts as an antioxidant to retard the 

breakdown of the oil and entrance of the fungi that cause decay of seeds. Fungi associated with 

the peanut seed may decay it, particularly if it is damaged. In the mechanically damaged seeds, 

the seed coat is scratched and broken. Unless done with extreme care, machine-shelled seeds show 

reduction in germination by 25%–75%, as compared with hand-shelled seeds. The scratches on the 

seed surface provide points of entry of fungi. Delayed germination because of deep sowing or lack 

of moisture in the soil or waterlogging conditions may all influence the development of seed rot and 

seedling blight diseases within the first week after planting. 

Soil temperature influences the involvement of the kind of pathogens in seedling disease com

plex and the severity of incidence of seedling diseases. For example, at higher soil temperature 

(>35°C), R. solani isolate from peanuts (a warm weather crop) is more virulent than the isolate 

from wheat (a cool weather crop) (Sreedharan et al. 2010). Thus, soil temperature as affected by 

planting date should be considered in areas where wheat is planted following peanut, if root disease 

caused by Rhizoctonia is a concern. There appear to be biotypes of R. solani capable of causing 

the disease over a wide range of optimum temperature. For seedling disease caused by S. rolfsii 
and R.  bataticola, the optimum temperature is 25°C or above. There is a definite wide range of 

temperature optima for different species of Pythium. P. ultimum requires low soil temperatures, 

while P. aphanidermatum is more damaging at higher temperatures. Interestingly, R. bataticola, 

on the other hand, can survive and its incidence can substantially increase in infected peanut seed 

even at −18°C, a temperature recorded for long-term storage. The implication of these results is 

that for ensuring a high level of germination in peanut seeds under such situations, only dry and 

pathogen (R. bataticola) free or seeds with very low infection grade be used for long-term storage 

(Singh et al. 2003b). 

DISEASE MANAGEMENT 

Though there is a low to high range variation in the degree of susceptibility of peanut genotypes to 

seedling diseases caused by various pathogens, for example, S. rolfsii, there is the least  possibility 

of obtaining acceptable level of seedling blight disease resistance in peanut seeds (Gour and 



 

   

 

 

 

    

 
 

 

 

15 Fungal Diseases 

Sharma 2009). Therefore, a combined management strategy utilizing cultural, biological and chem

ical management practices is important in reducing losses caused by seed rot and seedling diseases 

in peanut crop production. 

Cultural Control 
Only sound seed without any evidence of injury should be used for sowing. Care should be taken 

to avoid injury to seeds during shelling and while the seeds are sown through seed drills. Hand-

shelled seeds, if sown, without injury to the seed coat, give a higher stand of the crop even without 

fungicidal treatment. The loss in the crop stand because of seed rot and seedling blights can also be 

compensated by increasing the seed rate from 60 to 75 kg/ha. The effect appears to be similar to that 

of the fungicidal seed treatment. Crop rotation and tillage practices greatly influence the seedling 

disease complex in peanuts. For example, reduction of brown root rot of peanut seedlings caused by 

F. solani is greater in a 2-year rotation including corn–soybean or soybean–corn prior to peanuts 

than in a 1-year crop rotation, and the tillage system using the paratill subsoiler before seeding pea

nuts in a no-till system is a suitable strategy to improve peanut root growth and reduce the disease 

incidence, which provides a promising alternative in the control of peanut seedling brown root rot 

in Argentina (Oddino et al. 2008). In Egypt, seedling diseases of peanuts caused by F. solani and 

R. solani could be managed by amending the soil with gypsum (500 kg/acre) and by balanced appli

cation of nitrogen (100 kg/acre) and potassium (50 kg/acre) fertilizers as well as by soil moisture 

(55%–70% of field capacity) (El-Korashy 2001). 

Chemical Control: Fungicidal Seed Treatment 
The shelled seeds should be immediately treated with the fungicide rather than treating them after 

lapse of time. It should also be noted that no amount of seed treatment will change poor seeds into 

good ones when they are stored under conditions detrimental to their keeping quality. Therefore, 

seed treatment is not a corrective for improper storage. The seed should be treated with effective 

fungicide, usually a mixture of thiram and carbendazim (2:1) or thiram and carboxin (2:1) at 3% 

that takes care of the variety of seed-borne pathogens (Kolte 1994, 1997, Akgul et al. 2011). Seed 

treatment with a mixture of thiram and carbendazim at 2 g ai/kg seed is recommended as a routine 

treatment in plant quarantine labs in India to prevent the seed transmission of R. bataticola infec

tion from one region to another (Chakrabarty et al. 2005). A mixture of the aforementioned three 

fungicides (thiram + carboxin + carbendazim) is known to be the most efficient seed treatment for 

the control of most seedling diseases of peanuts in Argentina (Cavallo et al. 2005), whereas a mix

ture of thiram and thiophanate methyl is reported to be the best in comparison to other fungicides 

(Meena and Chattopadhyay 2002). A number of other fungicides are recently investigated to be of 

potential use in the management of seedling disease complex of peanuts caused by Basidiomycetes 

such as R. solani (= Thanatephorus cucumeris (Frank) Donk.) and S. rolfsii (= Athelia rolfsii (Curzi) 

Tu & Kimbrough). These are triazole fungicides, like tebuconazole and propiconazole, and fluto

lanil and strobilurins, such as azoxystrobin. But these are not effective in controlling the infection 

caused by Pythium, which can, however, be controlled by seed treatment with phenylamides such 

as metalaxyl. Hence, if Pythium species is involved in the seedling disease complex, a component 

of metalaxyl be included in the mixture of fungicides for seed treatment (Thiessen and Woodward 

2012). A new seed treatment fungicide Stamina (Headline) provides broader spectrum of control of 

seed-borne and seedling diseases caused by species of Rhizoctonia, Pythium, and Fusarium, which 

needs to be investigated for peanut crop. 

Presowing treatment of peanuts with antioxidant hydroquinone (in 20 mM water solution) for 

12 h is reported to be useful in completely inhibiting seed-borne pathogenic fungi and enhancing 

the plant growth parameters producing a 50% increase in yield (El-Wakil 2003). Use of properly 

cleaned seeds and integrating mancozeb seed treatment (3 g/kg seed) is reported to be beneficial 

in getting significantly higher seedling emergence and higher dry pod yield in eastern Ethiopia 

(Tarekegn et al. 2007). 
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Biological Control 
Peanut seed pelleting with Trichoderma harzianum Rifai strain Th-5 is reported to be effective  

in protecting seeds from M. phaseolina infection by 79.6%, resulting in improved seedling vigor 

(Malathi and Doraisamy 2004). Similarly, seed treatment with another isolate of T. harzianum at 

10 g/kg provides maximum protection to peanut seedlings, which is reported to be superior to fungi

cidal seed treatment under similar conditions (Rakholiya and Jadeja 2010). Rojo et al. (2007) have 

also reported the control of brown root rot of peanuts (F. solani) with T. harzianum strain ITEM 

3636 through seed treatment in Argentina. The mass inoculum of the antagonist (T. harzianum) 

could be produced on low-cost agricultural waste products (rice bran, wheat bran, mustard cake) 

for the control of seedling collar rot of peanuts caused by S. rolfsii by seed treatment followed by 

soil application of T. harzianum along with farmyard manure (FYM) (Bhagat and Sitansu 2007). 

A combination of Trichoderma strain 5 MI with Rovral 50 WP fungicide and garlic extract gives 

the best control of seedling diseases caused by R. solani and S. rolfsii (Islam et  al. 2005). The  

presence of Bacillus subtilis (Ehrenberg) Cohn has been naturally observed on peanut kernels. It 

is thus possible that the seeds that show the presence of this bacterium remain free from attack due 

to seed-borne fungi (Kolte 1984). El-Shehaby and Morsy (2005) from Egypt have demonstrated the 

usefulness of soil treatment of four isolates of an antagonist bacterium, Bacillus sphaericus, for the 

management of seedling diseases of peanuts caused by R. solani, F. solani, and S. rolfsii. 
Extracts of leaves of Azadirachta indica A. Juss. (Kadam et al. 2008b) and Moringa seed (Donli 

and Dauda 2003) can be used for treating peanut seed, as alternative methods to fungicidal seed 

treatments for the control of seed and seedling diseases of peanuts. 

EARLY AND LATE LEAF SPOTS 

SYMPTOMS 

Peanut leaf spot diseases, the early leaf spot (ELS) and late leaf spot (LLS), are caused by two dis

tinct, but closely related fungal pathogens. These are Cercospora arachidicola Hori (causing ELS) 

and Phaeoisariopsis personata (Berk. & Curt.) V. Arx. (=  Cercosporidium personatum (Berk. & 

M.A. Curtis) Deighton) (causing LLS); both may occur simultaneously on the same leaf. (Other dis

eases too may cause spots on leaves, but they are not referred to as leaf spots). The ELS appears earlier 

about 10–18 days after emergence than the LLS, which appears 28–35 days after emergence or may 

appear at the time of harvest. In both cases, symptoms become visible as pale areas on the upper sur

face of the leaves. As the spot develops, it becomes yellow; necrosis occurs from the center of the lesion, 

and later the entire spot becomes necrotic. Infection with either leaf spot fungus produces hormonal 

changes in the leaf that cause leaf drop. Defoliation usually starts at the base of the central or lateral 

stem and then progresses upward. Initially, the ELS and LLS are indistinguishable. The distinguish

ing features, as the spots are fully developed, become quite evident as described under ELS and LLS. 

ELS: Circular to irregular, larger, measures 1–10 mm in diameter; spots are characterized by a 

yellow halo of visible width (Figure 2.1). At maturity, the spots are reddish brown to black on 

upper surface but the lower surface of spot is distinctly orange in color. Cushions of conidio

phores are formed at first on the upper surface (epiphyllous), but sometimes these are found on 

the lower surface of older spots and during periods of heavy cloud cover and frequent showers 

particularly when defoliation is at the peak (Figure 2.2); masses of clear to olive colored spores 

may be seen with the use of a hand lens on the upper surface of the spot; thus, the intensity of 

sporulation usually on the upper surface of the spot becomes a visible sign of the causal fungus. 

LLS: Tends to remain distinctly round, 1.5–5.00 mm in diameter; yellow halos are not visible 

around the newly formed spots but are found only with mature spots. Spots are almost black 

on both surfaces, but lower surface of the spot is distinctly carbon black (Figure 2.3). 

Conidiophores are always found confined to the lower leaf surface (hypophyllous), 
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17 Fungal Diseases 

FIGURE 2.1 ELS of peanuts. 

FIGURE 2.2 Defoliation of the peanut crop at harvest due to ELS. 

and these are usually in the plainly visible concentric circles. Because the LLS pathogen 

produces many spores especially on the lower surfaces, the lesions usually have a raised or 

tufted appearance. Spots on stem, petiole, and pegs are similar and are irregular or ellipti

cal in shape, when defoliation occurs (Figure 2.4). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Berkeley (1875) from the United States was the first to describe peanut leaf spot. Later, Woodroof 

(1933) gave a clear account of the existence of two distinct spots: ELS and LLS. Presently, the two 

diseases have been reported throughout the world wherever peanuts are grown. The two diseases, 



 

 

 

 

  

  

 

 

  

 

 

18 Diseases of Edible Oilseed Crops 

FIGURE 2.3 LLS of peanuts. Note the carbon black color of the undersurface of the spot. 

FIGURE 2.4 Defoliation of the peanut crop at harvest due to LLS. 

though occur simultaneously in the same area, differ quite considerably in their relative preponder

ance from one region to another, depending upon the prevailing weather conditions and type of pea

nut varieties under cultivation (Kolte 1984, Das and Roy 1995, Sawargaonkar et al. 2010). Reduction 

in yield is largely due to loss in photosynthetic tissue and defoliation (Naab et al. 2005, Singh et al. 

2011a,b). Spots on the pegs also tend to decrease the yield by restricting translocation of food to 

the seeds. Annual crop losses in the range of 10%–50% or more are common worldwide particu

larly in the peanut-growing regions in Australia (Kelley et al. 2012), the southeastern United States 

(Nutter and Shokes 1995), and savanna zones in Nigeria (Izge et al. 2007, Iwo and Olorunju 2009) and 

Ghana (Nutsugah et al. 2007a,b); in other areas of West Africa (Waliyar 1991, Waliyar et al. 2000), 

DR Congo and Central Africa (Tshilenge 2010, Tshilenge-Lukanda et al. 2012), sub-Saharan Africa 

(Hamasselbe et  al. 2007), and Malawi (Kisyombe et  al. 2001); and in South Asia covering India  

(Sarkar and Chowdhury 2005, Gopal et al. 2006a), Pakistan (Ijaz et al. 2008), Bangladesh (Hossain 

et al. 2010), and Nepal (Thakur et al. 2013). The leaf spots have been a serious problem in case of 

early-season rains and near maturity of the peanut crop in the northern parts of Vietnam, while in the 



 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

19 Fungal Diseases 

southern parts of that country, it causes damage from the beginning of the crop (Mehan and Hong 

1994). Losses of great magnitude have been documented by comparing yields in plots in which the 

leaf spot diseases have been controlled with fungicides to those in untreated check plots in which the 

diseases have been allowed to progress. Plants not treated with fungicides may shed most of their 

leaves (90% in severe cases) prematurely, causing significant yield losses. Since there are established 

negative relationships between biomass and disease rating or defoliation and between pod yield and 

disease rating or defoliation, the visual rating of disease and measured defoliation could be used as a 

rapid and inexpensive tool to initially assess yield losses caused by the ELS and LLS diseases (Naab 

et al. 2005). Of several disease assessment methods, the best is proved to be percent main-stem defo

liation above the fourth node and percent diseased leaf area estimated from visual leaf spot score 

(Adomou et al. 2005). Besides the loss in yield of kernels, the value of the hay that may be used as 

fodder for cattle is also adversely affected. When the leaf spots occur in combination with rust (caused 

by Puccinia arachidis), the losses involved are still more and need more attention (Gughe et al. 1981, 

Vidyasekaran 1981). The relative importance of each of the leaf spot disease varies from place to place 

and from season to season, depending on the cropping system and the environmental conditions. 

The ELS and LLS lower the peanut haulm yield and quality (Pande et al. 2003). Crude fiber, 

crude protein, fat, and dry matter content of haulm are significantly lower in severely infected 

haulm, whereas ash, moisture content, and nitrogen-free extracts get increased with increasing leaf 

spot severity (Bdliya 2006, 2007). 

PATHOGENS: C. arachidicola HORI (PERFECT  STAGE, Mycosphaerella  
arachidis  DEIGHTON) AND  P. personata (BERK. & M.A. CURTIS) ARX  
(PERFECT  STAGE, Mycosphaerella berkeleyi W. JENKINS) 

Classification 
Kingdom: Fungi 

Phylum: Ascomycota 

Class: Dothideomycetes 

Subclass: Dothideomycetidae 

Order: Capnodiales 

Family: Mycosphaerellaceae 

Genus: Mycosphaerella 
Species: arachidis or berkeleyi 

C. arachidicola: The perfect stage of this fungus is M. arachidis. Its mycelium is septate. In 

plant tissue, initially, it is intercellular and then it becomes intracellular. Mycelium pen

etrates directly in plant cell and does not form haustoria. Conidiophores are supported by 

dark-brown stromata of 25–100 μ in diameter. In the early stages of development, conidio

phores mostly are epiphyllous, but in the later stages of disease development, these become 

amphigenous. Conidiophores arise from stroma and are fasciculate and geniculate, of yel

lowish-brown color. Conidiophores are usually continuous but may also be with several 

septations. These measure 20–45 μ × 3–6 μ. Conidiospores are obclavate to clavate, mostly 

curved, and subhyaline to olivaceous in color. These measure 35–108 μ × 2–5.4 μ, having 

4–12 septa with rounded to distinctly truncate base and subacute tips, and germinate by pro

ducing germ tubes from different cells. Secondary conidiospores and conidia are seen on 

slide made from host tissue kept under extremely favorable environmental conditions (Kolte 

1984). In case of teleomorphic state, perithecia are scattered mostly along margins of lesions 

produced by spores of imperfect state. These are amphigenous, somewhat embedded in leaf 

tissue, erumpent, ovate to nearly globose, and black in color. These are of a size 47.6–84 μ 
× 44.4–74 μ. Ostiolem is slightly papillate. Asci are cylindrical, club-shaped short stipitate, 



 

  

  

 

 

  

 

  

   
 

  

   

  
    

 

 

 

 

 

 

 

 

 

 

 

 

20 Diseases of Edible Oilseed Crops 

fasciculate, aparaphysate, and bitunicate with eight ascospores. Asci measure 27–37 μ × 

7–8.4 μ. Ascospores are uniseriate to biseriate in the ascus. These are bicellular with upper 

cell slightly curved and hyaline. Their sizes range from 7 to 15.4 μ × 3 to 4 μ (Kolte 1984). 

P.	 personata (= C. personatum): The mycelium of P. personata is septate and exclusively 

intercellular. Its haustoria puncture into the palisade and mesophyll tissue. Dense, globular, 

brown to black stromata measuring a diameter of 20–30 μ are produced. Conidiophores are 

mostly hypophyllous, but sometimes amphigenous. In the later stages of disease development, 

conidiophores arise in clearly concentric tufts from heavy stromatic base. These are  fasciculate, 

geniculate, and reddish brown in color with mostly hyaline tips and nonseptate or severally 

septate. Conidiophore sizes range from 24 to 54 μ × 2 to 8.2 μ. Conidia or conidiospores of the 

fungus are obclavate with attenuated tips and pale-brown dilutely olivaceous color measur

ing 18–60 μ × 5–11 μ with one to nine septa and bluntly rounded top cells. In P. personata, 

secondary conidia and conidiophores are not reported. The perithecia, asci, and ascospores of 

teleomorphic stage of P. personata only differ from C. arachidicola in size. The sizes of peri

thecia, asci, and ascospores are 84–140 μ × 70–112 μ, 30–40 μ × 4–6 μ, and 19.6 μ × 2.9–3.83 μ, 

respectively (Kolte 1984). The teleomorphic stage of the LLS pathogen, M. berkeleyi Jenkins, 

is rarely seen on  peanuts (Shokes and Culbreath 1997). Molecular variation in the pathogen 

has been studied (Kumari et al. 2009a,b, 2012). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The fungi that cause ELS and LLS reproduce and infect by means of asexual spores conidia. Both fungi 

are capable of producing tremendous numbers of conidia on infected plant parts. Conidial production 

is favored by high humidity. The primary inocula that cause the initial leaf spot infections during 

the growing season are spores produced on infested peanut residues in the soil. Visible spots develop 

10–14 days after infection. New conidia are produced in spots on infected leaves. These conidia will 

subsequently infect plants and produce secondary infections. Conidia are spread by wind, splashing 

rain, and insects. Leaf spot can increase rapidly under favorable conditions as several secondary cycles 

may occur per season. The ELS/LLS stage characterized by the higher level of symptom expression is 

found not associated with the plant phase of highest emerged leaves, but the disease symptoms reach the 

peak only after the phase of intense leaf development in peanut crop (Tshilenge-Lukanda et al. 2012). 

When enough precipitation of monsoon rains makes a film of water on leaves or a relative humid

ity more than 90% prevails with a temperature of 20°C–29°C for 6–7 days, peanut crop is severely 

affected by the ELS and LLS. Disease incidence and severity may vary depending on prevailing 

climatic conditions. Intermittent rains from flowering to pod development stage of the crop favor 

the infection and development of leaf spots (Pande et al. 2000). The maximum temperature range 

of 31°C–35°C and minimum temperature range of 18°C–33°C favor leaf spot outbreak on peanuts. 

The influence of climatic elements like temperature and relative humidity on the development of 

ELS and LLS of peanuts has extensively been studied (Dubey 2005, Kadam et al. 2008a, Ijaz et al. 

2011). Abundant peanut residue in fields where peanuts are cropped continuously often results in 

early and rapid development of leaf spot. The first appearance of leaf spot and its continuous prog

ress throughout the growing season are heavily dependent upon weather conditions. Environmental 

conditions required for both types of leaf spots are warm temperatures and long periods of high 

humidity or leaf wetness (Pande et al. 2004). Wet periods of sufficient duration to support infection 

usually consist of dew periods at night or extended rainy periods. When adequate moisture is pres

ent, leaf spot infections may occur in a relatively short period when temperatures are warm, but a 

longer wet period is required when temperatures are cool. For these reasons, potential for damage 

from leaf spot is greater where levels of humidity and rainfall are high (Muhammad et al. 2008). 

Frequent irrigation with small amounts of water can also create prolonged periods of high humidity 

and leaf wetness favorable for infection. A model has been developed by taking into consideration 

the relative humidity of more than 95% and the minimum temperature of 22°C and maximum 
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30°C. The model is used or compared with a calendar-based schedule in the United States (Smith 

1986), Argentina (Pezzopane et al. 1998), and Brazil (Moraes et al. 2002). Based on prediction of 

favorable weather conditions and application of high-resolution Weather Research and Forecasting 

model, the model for ELS control in peanut crop has been developed. The short-term prediction of 

weather parameters and their use in management of the leaf spot diseases is a viable and promising 

technique, which could help the growers make accurate management decisions through optimum 

timing of fungicide applications (Olatinwo et al. 2012). 

There appears to be a reduction in lesion size and intensity of sporulation (inoculum potential) of 

ELS pathogen due to infection (Subhalakshmi and Chowdhury 2008). 

DISEASE MANAGEMENT 

Host Plant Resistance 
In Cultivated Arachis hypogaea 
Host resistance to both ELS and LLS diseases is reported in A. hypogaea, and it is quite variable 

(Varman 2001, Izge et al. 2007, Padi 2008, Giri et al. 2009, Tallury et al. 2009, Dolma et al. 2010, 

Visnuvardan et al.2011). Generally, late-maturing alternately branched cultivars are either runner or 

spreading bunch type with dark-green foliage possessing very high degree of resistance to the leaf 

spot pathogens, whereas early forms with sequential branching are usually erect bunch type with 

light-green foliage showing a high degree of susceptibility to the disease (Kolte 1984). Sequentially, 

branched early cultivars are more susceptible to Cercospora, possibly because there are a greater 

proportion of stomata of penetrable size (more than 13.4 μ) on the upper leaf surface. In alternately 

branched forms, there is thicker palisade tissue in the leaf, which may partly explain the slower 

rate of lesion growth on them as well as account for their dark-green foliage (Hemingway 1957, 

Gibbons and Bailey 1967). Because of the reduced infection rate characterized in part due to lower 

infection frequencies, smaller lesions, lower sporulation index, longer latent periods, and lesser leaf 

area damage and disease score in resistant varieties, the resistance in these varieties is considered to 

be a partial one (Hossain and Ilag 2000, Dwivedi et al. 2002, Pande et al. 2002, Cantonwine et al. 

2008b). Selection based on components of resistance to LSS may not lead to plants with higher 

retained green leaf area. The remaining green leaf area on the plant should, therefore, be the major 

selection criteria for resistance to LLS in breeding programs (Dwivedi et  al. 2002). Improving 

levels of resistance along with foliar application of fungicides to manage the disease in locally 

adapted varieties would substantially increase peanut yields in developing countries (Waliyar et al. 
1993, 1995, 1998). Currently, there are only a few varieties possessing tolerance to foliar diseases. 

However, one to two sprays depending upon the suitable time of application increase the pod yield 

significantly (Waliyar et al. 1998). A Bolivian land race cultivar Bayo Grande and several other 

Bolivian-derived genotypes show promise for use in a reduced fungicide and/or conservative tillage 

system with a potential to lessen fungicides compared to standard production practices (Gremillion 

et al. 2011a). Some of the most promising genotypes resistant or moderately resistant (tolerant) to 

either or both of the leaf spots are given in Table 2.1. High heritability coupled with high genetic 

variation is usually noticed for LLS and rust and pod yield indicating that additive gene effects are 

functional for these characters (Venkataravana and Injeti 2008). 

Two genotypes of peanut, namely, cv 850 and cv 909, are reported to be resistant to P. personata 
(C. personatum) and show symptoms similar to hypersensitive response (HR) lesions, and the pro

duction of HR lesions is due to a novel O′-methyltransferase gene (Nobile et al. 2008). Higher 

amount and greater accumulation rate of total free phenol and stilbene phytoalexin production 

are the most possible biochemical mechanisms of resistance in peanuts against the two leaf spot 

pathogens (Motagi et al. 2004, Sobolev et al. 2007, Bhaskar and Parakhia 2010). The isoenzyme 

variability, for example, the presence of phosphatase band and two esterase bands, and stilbene phy

toalexins are found to be specific to resistant cultivars, which can possibly be used as biochemical 



Genotype Country R/MR Reference(s) 

ICGV 98369 South Africa R Mathews et al. (2007) 

ICGV SM99529 Malawi 

ICGV 91225 Sub-Saharan Africa R to ELS Hamasselbe et al. (2007) 

Samnut II Sub-Saharan Africa R to LLS 

Golden Mutant 96 C Pakistan R to CLS Naeem-ud-Din et al. (2009) 

INS-1-2006, AIS-2006-11 India R to LLS Sheela (2008) 

ICGV-IS-96805 R to ELS + LLS Iwo and Olorunju (2009) 

C689-2, Georgia-01R, C12-3 Southern United States R to ELS Li et al. (2012) 

114-58, C11-154-6, Tifguard, 

and Georganic 

Charmwon, HyQ(CG)S-10 Korea R to ELS Pae et al. (2008) 

(A. hypogaea ssp. fastigiata) 

ICGV 05033, ICGV 03037, India R to LLS + rust Venkataravana and Injeti (2008) 

ICGV 05099, ICGX020063-P11, 

ICGV 04093, ICGV 03016, 

ICGV 04071, ICGV 86031, 

ICGV 03157, PAFRGVT60 

ICGV 99057, ICGV 00228, India MR or R to LLS Venkataravana et al. (2008) 

ICGV 99068, ICGV 99057, 

ICGV 00169 

259/88, 262/88 Bangladesh High R to LLS + ELS Hossain et al. (2007) 

269/89 Bangladesh MR to ELS Hossain et al. (2007) 

DP-1, Georganic United States R to ELS + LLS Cantonwine et al. (2008) 

Georgia-01R, Georgia-05E United States R to ELS + LLS + TSW Branch and Culbreath (2008) 

CV100, PI648033 United States R to ELS + LLS + TSW Holbrook and Culbreath (2008) 

ICGV-IS-96808 Nigeria R to ELS/LLS Izge et al. (2007) 

CV 850, CV 909 High R to LLS Nobile et al. (2008) 

PI 390590 India R to LLS Suryawanshi et al. (2006) 

R8972 India R to LLS + rust Gopal et al. (2006b) 

ICGV 92099, ICGV 90084 Ghana R to ELS + LLS Frimpong et al. (2006) 

TFDRG1, TFDRG2, TFDRG3, India R to LLS + rust Badigannavar et al. (2005) 

TFDRG4, TFDRG5, VG9514 

N96076L (GP-125, PI641950) United States Multiple disease Isleib et al. (2006) 

resistance including LLS 

Nkatiesari Ghana R to ELS + LLS Padi et al. (2006) 

SP 8638 Korea R to LLS Pae et al. (2005) 

Huayu 22 China R to LLS + web blotch Chen et al. (2005) 

Kokwang Korea R to ELS Park et al. (2004) 

Jakwang Korea R to ELS Pae et al. (2004) 

FDRS-10 India R to LLS Jyosthna et al. (2004) 

Zhonghua 9 Hubei Province of China R to LLS + rust Liao et al. (2004) 

GPBD-4 India R to LLS + rust  Gowda et al. (2002a) 

Mutant 28-2 India R to LLS Gowda et al. (2002b) 

C-99R United States R to LLS + stem rot + Gorbet and Shokes (2002a) 

TSW 

Florida MDR 98 United States  MR-R to LLS + stem rot + Gorbet and Shokes (2002b) 

TSW 
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TABLE 2.1 
Peanut Genotypes Resistant (R) or Moderately Resistant (MR) to ELS and/or 
LLS as Reported from Different Countries in the World
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Genotype Country R/MR Reference(s) 

ICGV 92267 ICRISAT, India MR to LLS + rust Upadhyaya et al. (2002) 

Georgia-01R United States R to ELS + LLS + rust Branch (2002) 

GP-NCWS11, GP-NCWS12, United States R to ELS + LLS  Stalker et al. (2002) 

GP-NCWS-13, GP-NCWS14, 

GP-NCWS15 

VRI Gn 5 India R to LLS + rust Vindhiyavarman and 

Mohammed (2001) 

ICGV 92080, ICGV 92093 India R to LLS Mohammed et al. (2001) 

Huayu 17 Shandong Province, High R to LLS Yu et al. (2000) 

China
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TABLE 2.1 (Continued ) 
Peanut Genotypes Resistant (R) or Moderately Resistant (MR) to ELS and/or 
LLS as Reported from Different Countries in the World 

ELS, early leaf spot; LLS, late leaf spot; TSW, tomato spotted wilt.
 

markers in the identification of the leaf spot pathogen–resistant cultures in peanuts (Jyosthana et al. 
2004, Sobolev et al. 2007). In order to be effective in improving the efficiency of identifying genes 

of interest of ELS/LLS resistance in the entire germplasm collection, core collection as developed 

in the United States could be of immense value (Holbrook and Dong 2005, Gremillion et al. 2011b). 

As resistance to ELS and LLS is inherited independently (Higgins 1935) and in some genotypes, 

duplicate complementary recessive genes are reported to control the LLS resistance (Motagi et al. 

2000), and these diseases vary in their relative preponderance in different regions based on preva

lent cropping system and spectrum of locally prevalent races, a separate breeding program may 

have to be used, if survey work reveals that only one of these is only important in a particular area. 

In Wild Arachis Species 
The cultivated peanut (A. hypogaea L.) is an allotetraploid with an AABB genome and low genetic 

diversity. Because of its limited genetic diversity, this species lacks resistance to a number of important 

pests and diseases. In contrast, wild species of Arachis are genetically diverse and are rich sources of 

disease-resistant genes (Varman et al. 2000, Fávero et al. 2009). The genus Arachis is native to South 

America and consists of 22 described species and possibly more than 40 undescribed. Collections are 

maintained in Brazil, the United States, and India. Many of these accessions have been screened for 

resistance to pathogens and insect pests, and it is demonstrated that sources of resistance are available 

in the wild species belonging to the taxonomic section Arachis with either A or B (or non-A) genomes 

and these can be used for introgression of resistance genes against two leaf spot diseases and other 

diseases (Mallikarjuna et al. 2004, 2012, Yadav et al. 2007, Fávero et al. 2009). International Crops 

Research Institute for the Semi-Arid Tropics (ICRISAT) is currently using diploid species of section 

Arachis, which are cross compatible with the tetraploid-cultivated peanut to transfer useful genes 

through interspecific hybridization. Thus, stable, tetraploid interspecific hybrids with resistance to 

the LLS and rust showing high yield potential have been developed (Yadav et al. 2007). Twenty-nine 

percent (29%) of interspecific derivatives from the cross A. hypogaea (2n = 40) × A. kempff-mercado 
(2n = 20) at the BC2 F2 generation have been established to show resistance to both ELS and LLS 

(Mallikarjuna et al. 2004). Hybrids formed between cultivated and wild species are generally alter

nately branched, giving low yield, but these may provide the basis for selection in a breeding program. 

Resistance to P. personata is found in accessions of different species of Arachis, from 

A genome species, namely, A. stenosperma, A. kuhlmannii, A. helodes, A. simpsonii, A. diogoi, 
A. aff. diogoi, A. microsperma, A. linearifolia, and A. cardenasii, and non-A genome species, 
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namely, A. cruziana, A. hoehnei, A. magna, A. valida, A. batizocoi, and A. williamsii. Differential 

gene expression in A. diogoi upon interaction with P. personata reveals that the pathogen induces 

cyclophilin-like proteins (Kumar and Kirti 2011). Similarly, resistance to C. arachidicola is found 

in accessions of different species of Arachis, from A genome species, namely, A. kuhlmannii, 
A. helodes, A.  cardenasii, A. kempff-mercado, A. linearifolia, and A. stenosperma, and from 

non-A genome species, namely, A. hoehnei, A. magna, and A. batizocoi (Fávero et al. 2009). The 

resistance to LLS and rust (P. arachidis) studied by Pande and Rao (2001) in the 74 accessions of 

wild species of Arachis revealed the accession KG3006 of A. hoehnei immune to either of the two 

leaf spot diseases. Thus, there is resistance to P. personata and C. arachidicola in many acces

sions of wild species, and these accessions may be different among accessions of the same species. 

Interestingly, molecular markers for resistance genes (R genes) that encode a putative nucleotide-

binding site (NBS) domain and a leucine-rich repeat (NBS-LRR genes) have been developed to 

generate resistance gene analogues (RGAs) in wild Arachis spp. in Brazil (Guimarães et al. 2005, 

Garcia et al. 2006). Inclusion of these RGAs in Arachis genetic map will be of paramount impor

tance in breeding for disease resistance not only to ELS and LLS diseases but also to rust and other 

economically important diseases of peanuts. 

Molecular Breeding and Transgenic Peanuts for ELS and LLS Resistance 
Genetic transformation has launched a new era in peanut breeding and germplasm creativity through 

transformational methods including Agrobacterium tumefaciens–mediated, particle bombardment, 

and nontissue culture techniques (Wei et al. 2008). Comparison of molecular profile among peanut 

cultivars and breeding lines with differential reaction against LLS and other diseases is facilitated 

by the use of random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) 

markers (Dwivedi and Gurtu 2002, Dwivedi et al. 2003, Mondal et al. 2008a, 2009, Khedikar et al. 

2010). For example, transgenic peanut plants constitutively expressing the mustard defensin gene  

have been generated by cloning the complete cDNA containing an open reading frame (ORF) of  

243 bp of a defensin of mustard (defensins are small positively charged antimicrobial peptides, 5 kDa 

in size, and show potent antifungal activity). Such transgenic peanut plants show enhanced resistance 

against both the leaf spot diseases (Anuradha et al. 2008). The ISSR marker UBC810 (540) has been 

found associated with LLS + rust resistance but UBC810 (500) only with LLS resistance (Mondal 

et al. 2009). Leal-Bertioli et al. (2009) have identified candidate genome regions that control disease 

resistance and placed candidate disease-resistant genes and quantitative trait loci (QTLs) against LLS 

disease on the genetic map of the A genome of Arachis, which is based on microsatellite markers 

and legume anchor markers enabling mapping of a total of 34 sequence confirmed candidate disease-

resistant genes and 5 QTLs. Among the polymorphic sclerotium stem rot (SSR) markers developed 

through crossing LLS-susceptible cultivar TMV-2 and LLS-resistant genotype COG-0437, the primer 

PM 384(100) has association with resistance and could therefore be utilized in the marker-assisted 

breeding program over a wide range of genetic background (Shoba et al. 2012). A double-gene con

struct with Solanum nigrum osmotin-like protein (SniOLP) and Raphanus sativus antifungal protein 

2 (Rs-AF2) genes under separate constitutive 35S promoters has been developed to  transform peanut 

plants. Such transgenic peanut plants expressing the SniOLP and Rs-AF2 genes show enhanced resis

tance to LLS based on reduction of number and size of lesions on leaves and delay of the onset of the 

LLS (Gowda et al. 2010, Vasavirama and Kirti 2012). The molecular diversity analysis using SSR 

reveals high level of genetic polymorphism for resistance to LLS and rust diseases, which provides 

valuable information for peanut breeders designing strategies for incorporating and pyramiding LLS 

and rust resistances and creating inbred line populations to map these traits (Mondal et al. 2005, 

Mace et al. 2006). Similarly, RAPD assays using 10 oligonucleotide primers have revealed existence 

of DNA-level variation within the LLS and rust-resistant genotypes. The susceptible lines can be 

clustered distinctly away from the resistant group, and clustering of genotypes based on phenotyping 

of LLS and rust can serve as basis for tagging resistant genes (Reddy et al. 2004). Marker-assisted 

backcross breeding should be able to minimize the linkage drag as it greatly facilitates monitoring of 
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introgressed chromosome segments carrying disease-resistant genes from wild species to cultivated 

peanuts. Transgenic peanuts with resistance to biotic stresses as ELS and LLS and others have been 

reported to be produced and in various stages of characterization under containment and/or controlled 

field conditions (Dwivedi et al. 2003, Luo et al. 2005). For example, fertile transgenic plants of peanut 

cv TMV-2 expressing tobacco (Nicotiana spp.) chitinase and neomycin phosphotransferase (nptII) 

genes have been generated using A. tumefaciens–modified transformation system, and peanut plants 

containing transgenically increased activity of chitinase are resistant to attack by C. arachidicola to 

different degrees (Rohini and Rao 2001). Similarly, transgenic peanut plants possessing rice chitinase 

gene expressing resistance to ELS pathogen have been obtained through Agrobacterium mediation 

(Iqbal et al. 2012). Such strategies are of great potential for the control of the leaf spot diseases. 

Chemical Control 
Fungicides 
The economic benefit of using fungicides to control the leaf spot diseases depends on the climatic 

conditions, the variety of peanut grown, the relative importance of the fungus species affecting the 

crop, and the general pattern of farming in the area concerned (Johnson et al. 2007a, Hoque et al. 

2008, Naab et al. 2009, Muhammad and Bdliya 2011, Wann et al. 2011). Better results with increase in 

yield have been reported on early-maturing sequentially branched varieties compared with alternately 

branched late varieties. The reason is that early-maturing sequential type cannot produce branches 

and leaves at the end of growing season; consequently, all the assimilates produced at this stage 

are available for the growth of the nuts so that when the disease is controlled, there is considerable 

increase in the kernel yield. Conversely, the alternate forms continue to produce many new branches 

and leaves even up to the end of the season, and therefore, the effect on kernel yield as a result of dis

ease control is proportionately less. The time of the first application may be dependent on the suscep

tibility of the variety. In long-duration varieties like 28-206 and 47-16, it is better to apply fungicides 

at the later stages of growth. Both of these lines produced 3.16 and 2.94 tons/ha pod yield when fungi

cide is applied at 70 days after sowing (DAS) (Waliyar et al. 1993, 1995, 1998). A new Australian cul

tivar Sutherland has significantly higher resistance to LLS and would need reduced or fewer number 

of fungicide spray in the management of the disease (Kelley et al. 2012). Research results obtained by 

Carley et al. (2009) reinforce the value of controlling ELS and LLS (and web blotch) with timely fun

gicide applications and importance of digging at optimum pod maturation of peanuts contradicting 

the general recommendation or belief that the percentage of canopy defoliation justifies early digging 

to prevent the yield loss. Similarly, such experimental evidence has been obtained in relation to fun

gicide application in refinement harvest timing guidelines based on the distribution of pod maturity 

as defined by mesocarp color categories (Chapin and Thomas 2005). An interaction of number and 

properly timed fungicide sprays for the control of ELS and LLS can result in substantial monetary 

gains for peanut farmers in West Africa (Waliyar et al. 2000). Several fungicides that have been effec

tive in the control of the ELS and LLS are given in the following paragraphs. 

During the initial stages of the development of fungicides, elemental sulfur (sulfur dust,  wettable 

sulfur) and copper compounds (Bordeaux mixture, copper oxide, copper oxychloride) were in 

use for the control of the leaf spot diseases of peanuts (Kolte 1984). Later as many modern com

pounds like dithiocarbamates (maneb, zineb, mancozeb) and chlorothalonil became available, these 

then largely replaced copper-based compounds as protective fungicides. However, currently, both 

copper-based and elemental sulfur fungicides are considered to be organically acceptable fungicides 

on cultivars with partial resistance to one or both the ELS and LLS pathogens (Cantonwine et al. 

2006, 2007a, 2008). Chlorothalonil spray at 0.2% has been found better than mancozeb and copper 

oxychloride, which is proved to be an economical fungicide (Culbreath et al. 1992a,b). Organotin 

compounds, though performing better than dithiocarbamates, could not become a commercially 

successful class of fungicides for the control of ELS and LLS. In 1968, a systemic fungicide, beno

myl, was introduced and registered for better and efficient control of both the leaf spots through its 
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protective and curative effects. Consequently, similar other two systemic fungicides, for example, 

carbendazim (0.05%) and thiophanate methyl (0.05%), found a commercially successful use all over 

the world for the control of the leaf spot diseases (Kolte 1984, Noriega-Cantú et al. 2000, Biswas 

and Singh 2005). All these systemic fungicides are reported to give better control of the leaf spots 

than mancozeb or copper oxychloride (Vidyasekaran 1981, Bolonhezi et al. 2004, Biswas and Singh 

2005). However, curative action of systemic fungicide, that is, carbendazim when combined with 

a dithiocarbamate (mancozeb), has given good control of the leaf spots at longer intervals at vari

ous locations in the peanut-growing regions in different countries (Joshi et al. 2000, Srinivas et al. 

2002, Biswas and Singh 2005, Satish et al. 2007, Johnson et al. 2007a, Lokesh et al. 2008). The first 

spray of mancozeb on initiation of the leaf spots followed by the carbendazim spray 10 days after 

mancozeb and again the spray of mancozeb 10 days after carbendazim give maximum control of the 

leaf spot disease, avoiding the possibility of development of fungicide resistance (Sawant 2000). The 

continued use of sprays of benomyl or benomyl-like compound carbendazim resulted in the develop

ment of resistant strains of C. arachidicola and P. personata in the mid-1970s. Consequently, use 

of benomyl on peanuts in the southeastern United States was discontinued, but chlorothalonil still 

proved to be an effective standard fungicide and is used extensively for the control of ELS and LLS 

diseases not only in the United States but also in Malawi (Kisyombe et al. 2001, Culbreath et al. 

2002). Both mixtures and alternate applications of chlorothalonil and benomyl are effective for the 

management of the leaf spot in fields where benomyl alone did not provide season-long leaf spot 

control due to fungicide resistance (Culbreath et al. 2002). Additional options became  available for 

the leaf spot control in the 1990s with registration of the demethylation inhibitors (DMIs), that is, 

sterol (ergosterol) biosynthesis–inhibitor (SBI) fungicides, which are triazole fungicides, namely, 

difenoconazole, propiconazole, hexaconazole, cyproconazole, tebuconazole, and epoxiconazole for 

use on peanut crops. These fungicides improved the management of one or both leaf spot diseases 

compared to chlorothalonil alone (Moraes et  al. 2001). They control not only the leaf spots but 

peanut rust also (Culbreath et al. 1992b, Dahmen and Staub 1992, Jadeja et al. 1999). Similarly,  

quinol oxidation (Qo site) inhibitor (QoI) fungicides, also referred to as strobilurin fungicides, first 

launched in 1996, are very effective for the control of the leaf spots. The three most commonly used 

strobilurin fungicides used for the ELS and LLS on peanuts are azoxystrobin, pyraclostrobin, and 

trifloxystrobin. Recently, the new pyrazole carboxamide fungicide penthiopyrad at 0.20 kg ai/ha is 

reported to have excellent potential for the management of the LLS and may complement current 

SBI and QoI fungicides (Culbreath et al. 2009). Prothioconazole applied alone (0.18–0.20 kg/ha) or 

in combination, that is, 0.085 kg ai/ha of prothioconazole + 0.17 kg ai/ha of tebuconazole or mixtures 

of prothioconazole at 0.063 kg ai/ha with trifloxystrobin at 0.063 kg ai/ha, gives similar or better leaf 

spot control than chlorothalonil (Culbreath et al. 2008). Pyraclostrobin (Chapin and Thomas 2005, 

Culbreath et al. 2006), azoxystrobin (Bowen et al. 2006, Hagan et al. 2006), tebuconazole (Hossain 

et al. 2005, Culbreath et al. 2006, Nutsugah et al. 2007), and a new systemic fungicide Nativo (Khan 

et al. 2014) have been found as effective fungicides for the control of leaf spot diseases of peanuts in 

different countries around the world. Weather-based fungicide advisory sprays of these fungicides in 

the United States reflect the improved disease control, consequently improving the yield of the peanut 

crop (Grichar et al. 2005). The cost–benefit analysis of fungicidal control of the leaf spots of peanuts 

in the Sudan savanna region of Nigeria revealed positive returns per hectare from the use of fungi

cides. Application of Bentex T (benomyl + thiram), for instance, has been found to give 78.13% seed 

yield increase over untreated plants, which could be translated into a mean net profit in the range of 

U.S. $387–$909/ha depending on the number of effective efficacies of sprays (Bdliya and Gwio-Kura 

2007a,b). Similarly, high incremental cost–benefit ratio has been obtained with hexaconazole (1:4.72) 

followed by propiconazole (1:2.05), difenoconazole (1:1.29), and chlorothalonil (1:1.13) in the control 

of leaf spot diseases in India (Gururaj et al. 2002, 2005a). In some other studies, however, the high

est cost–benefit ratios (1:6.9–1:675) with 0.1% difenoconazole spraying at 30, 50, and 70 DAS (Gopal 

et al. 2003) and with hexaconazole at 60 and 75 DAS (Johnson and Subramanyam 2003) and effective 

control with single spray (Chandra et al. 2007) have been obtained in India. Rainfall-based advisories 
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for the chemical control of LLS in Brazil reveal that tebuconazole sprays at an interval of 15 days show 

higher efficiency in controlling the LLS in comparison to a scheme of control with chlorothalonil 

sprayings at five fixed dates (the first at 49–50 days after planting and the following ones at intervals 

of 14–15 days) besides promoting an average reduction of one to three sprayings (Moraes et al. 2002). 

When the proportion of ELS- and LLS-affected leaves exceeds 10% and the wet index total exceeds 

the threshold value (<2.3), the first application of fungicide is advised, followed by at least two succes

sive sprays at a 14-day interval (Butler et al. 2000). 

Nonconventional Chemicals 
Among nonconventional chemicals using inorganic and metal salts, catechol at 10(-3M) (Maiti et al. 

2005), nickel chloride, and cupric sulfate at 10(-3M) (Kishore et al. 2001b) have been found signifi

cantly effective in controlling the ELS and LLS infection through induction of host resistance in 

peanuts. Resistance interaction is correlated with early and rapid induction of phenylalanine ammo

nia lyase (PAL) enzyme regulating the biosynthesis of antifungal phytoalexin medicarpin (Kale and 

Choudhary 2001). Similarly, the effect of salicylic acid (SA) on induction of resistance in peanuts 

against LLS through foliar application of SA at a concentration of 1 mM is observed to be due to 

the enhanced activity of PAL, chitinase, β-1,3-glucanase, peroxidase (PO), and polyphenol oxidase 

(PPO) (catechol oxidase) enzymes and in total phenolic contents in peanuts after application of SA 

and inoculation with P. personata (Meena et al. 2001a). 

Cultural Control 
Since the ELS and LLS pathogens have a very restricted host range and largely to Arachis species, 

effective crop rotation of a 2–3-year duration of peanuts with nonsusceptible crops, such as cotton 

or corn or soybean or maize alternating with peanut or not following peanut with peanut, has been 

found useful in delaying the initial infections by both leaf spot fungi and reducing the incidence 

of the disease early in the season by 88%–93% (Kucharek 1975). This level of reduction permits 

growers to take some of the pressure off of a fungicide spray and delay the first fungicide applica

tion where crop rotation is followed requiring fewer or at least less expensive fungicide applica

tion. Though there can be regional differences based on different cropping schemes, rotation into 

nonhost crops is essential to sustainable, long-term production of peanuts. About 72%–86% more 

yield has been reported by following crop rotation. Eliminating volunteer peanut plants in the fields 

that follow peanut main or forage crops immediately after harvest of the peanut is a critical compo

nent of successful crop rotation program. Keeping the peanut crop free from weed (weeding once 

at either 4 or 6 weeks after planting) is also helpful in minimizing the severity of the leaf spots 

(Abudulai et al. 2007) in Ghana. Clewis et al. (2001) from the state of North Carolina in the United 

States provided evidence as to how high density of common ragweed (Ambrosia artemisiifolia) in 

peanut fields increases the incidence and severity of LLS on the peanut crop. 

The relationship between disease severity and yield increase at different plant spacings is 

reported. Lower incidence and severity of the leaf spots is reported at a 50 × 30 cm intrarow spac

ing in comparison to 50 × 20 cm in Nigeria (Garba et al. 2005). Reduced tillage, the strip-tilled 

peanut crop with the presence of cover crop residue at the soil surface of strip-tilled fields in the 

United States, is less severely affected by ELS epidemics than conventionally tilled fields. The 

strip tillage delays ELS epidemics due to a fewer initial infections, most likely due to cover crop 

residue interfering with the dispersal of primary inoculum from overwintering stroma in the soil 

to the peanut plant (Cantonwine et al. 2007b). Consequently, the number of fungicide applications, 

if any, could be reduced without compromising the control of ELS when reduced tillage is used 

especially when combined with moderately resistant cultivars (Monfort et al. 2004). Intercropping 

of millet (Bdliya and Muhammad 2006) and that of maize (Ihejirika 2007) in Nigeria and of pearl 

millet in India (Srinivas et al. 2002) with peanut show significantly lower ELS/LLS severity on 

peanut in comparison with sole peanut crop without adversely affecting the yield of inter crops. 

NPK fertilizer rates and peanut plant population per hectare significantly influence the severity 
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of ELS, the least severity of the ELS being at the density of 250,000 peanut plants/ha in compari

son to 1,000,000 plants/ha (Ihejirika et al. 2006a). Among several methods of irrigation studied 

(Jordan and Johnson 2007, Woodward et al. 2008), subsurface drip irrigation is useful in avoiding 

the increase and spread of the ELS compared with overhead sprinkler irrigation (Lanier et  al. 

2004). 

Depending on the more frequent occurrence of the disease in a particular area, a choice of suit

able planting dates (either early or late) and a choice of using early- or late-maturing variety may 

be important in reducing the severity of the disease (Reddy and Reddy 2000, Naidu and Vasanthi 

2002). The least incidence and severity of the leaf spots is noted when the crop is planted in the 

first week of May in the state of Gujarat in India (Hazarika et al. 2000). Planting date and maturity 

of the variety then also significantly influence the effectiveness of fungicide spray application. For 

example, fungicide spraying in early-sown crop in the state of Chhattisgarh in India is reported 

to be uneconomical because reduction in pod yield due to the leaf spots in the early-sown crop is 

not significant. In contrast, two sprays (or even only one spray) are economical for late-sown crops 

under similar conditions (Tiwari et al. 2005). Interestingly, long-duration (120 days) variety (F-mix) 

of peanuts when sown early and treated with fungicide for the leaf spot control under optimum and 

timely crop management practices is reported to have produced greater yield than short-duration 

(90 days) variety (Chinese) under both with and without fungicide-treated environments and more 

than three- to fourfold increase over the average peanut yields in Ghana (Naab et al. 2005). Deep 

burying of crop residues in the soil by mold board plow and destruction of crop residues by burn

ing have been recommended as additional aids for the control of the leaf spot diseases of peanuts. 

Biological Control 
Biological control of leaf spot diseases using antagonistic fungi or bacteria may be an alter

native approach to use of chemical fungicides. This appears to be desirable in view of the 

development of resistance against the most effective systemic chemicals and side effects from 

frequent use of chemicals, as is evident from the increase in population of phylloplane myco

flora and foliar mites as a result of the spray of chemicals. In India, a mycoparasite, Hansfordia 
pulvinata, has been found parasitizing C. arachidicola and C. personatum (Krishna and Singh 

1980, Siddaramaiah and Jayaramaiah 1981). Hansfordia sp. (exact species not mentioned) 

has also been reported from the United States to be parasitizing only C. personatum and not 

C. arachidicola (Taber and Pettit 1981). It is observed that the leaf spots, which are parasitized 

by the aforementioned fungus, do not show conidiophores and conidia of the respective causal 

fungus species. Among several isolates of Pseudomonas fluorescens screened for their efficacy 

for the control of the LLS, the strain Pf1 has been found to be effective in reducing the LLS 

disease index through seed treatment (10 g/kg seed) combined with soil application of P. flu
orescens strain Pf1 (2.5 kg/ha at 30 and 45 DAS) or foliar spray application of talc-based powder 

formulation (1–2.5 kg/ha) of the strain Pf1 (Meena et al. 2000, 2002, 2006, Zhang et al. 2001, 

Johnson and Subramanyam 2009, Meena 2010, Meena and Marimuthu 2012). Following the 

seed treatment, the antagonist colonizes soil in the peanut rhizosphere. All such treatments also 

show increase in plant height with enhanced yield of pod possibly due to the production of IAA 

and induction of P. fluorescens–mediated systemic resistance against the leaf spot pathogens. 

P. fluorescens–treated peanut plants show increase in the activity of PAL, phenolic content, and 

lytic enzymes. Chitin-supplemented application of antifungal and chitinolytic bacteria Bacillus 
circulans GRS 243 and Serratia marcescens GPS 5 effectively results in the control of LLS 

(Kishore et al. 2005a) through enhanced activity of four defense-related enzymes such as chi

tinase, β-1,3-glucanase, PO, and PAL (Kishore et al. 2005b). The nonchitinolytic Pseudomonas 
aeruginosa GSE 18 (Kishore et al. 2005b) and chlorothalonil-tolerant P. aeruginosa have also 

given effective control of the LLS (Kishore et al. 2005b). Kondreddy and Podile (2012) reported 

a new integrated approach, where both direct antagonism and induced resistance got combined 

to reduce the incidence of the LLS in peanuts. Chlorothalonil-tolerant chitinolytic bacterium 
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has been genetically engineered to secrete elicitor protein harpin Pss of Pseudomonas syringae 
pv. syringae for the dual benefit of growth promotion of peanut plants and the control of LLS. 

Mycorrhizal (Glomus sp. and Gigaspora sp.) symbiosis with peanut roots increases the 

resistance of plants to leaf spot pathogens reducing the severity of the leaf spot diseases by 54% 

(Zachée et al. 2008). 

Effect of Plant Extracts 
Seed extract of A. indica (Srinivas et al. 2000, Alabi and Olorunju 2004, Nandgopal and Ghewande 

2004, Ambang et al. 2007, 2011, Badliya and Alkali 2010a,b); aqueous leaf extracts of A. indica 
(Aage et al. 2003, Ihejirika et al. 2006b); Hemi Fern, that is, Hemionitis arifolia (Sahayaraj et al. 

2009), Prosopis juliflora at 2% (Kishore and Pande 2005b), Polyalthia longifolia at 10% (Adiver 

2004), Lawsonia inermis at 5%, and Datura metel at 2% (Kishore et al. 2001a, 2002, Kishore and 

Pande 2005a); seed extract of Thevetia peruviana (Ambang et al. 2007, 2011); and Mahogany bark 

extract (Salaudeen and Salako 2009), when sprayed on peanut plants, give reductions in the leaf 

spot disease index on peanuts. Aqueous leaf extracts of A. indica and that of D. metel and neem 

(A. indica) seed could be of potential economical and eco-friendly alternative usages for the control 

of the leaf spots particularly in areas where farmers cannot afford to use fungicides particularly in 

the Sudan savanna region of Nigeria. 

RUST DISEASE OF PEANUTS 

SYMPTOMS 

Orange-red to chestnut-brown elliptical raised uredo pustules appear on the abaxial surface of the 

leaves (Figure 2.5). The pustules are 0.3–2.00 mm in diameter and usually surrounded by a yellow 

halo. The adaxial surface of the leaf might present a gray appearance due to the formation of flecks 

that correspond to the position of the uredo pustules below. The uredo pustules are either isolated 

or in groups; they are formed subepidermally on compact stomata but soon burst through the epi

dermis and become exposed. Consequently, a reddish-brown mass of spores becomes visible on the 

FIGURE 2.5 Peanut rust symptoms on the leaflet. Note the numerous small-sized uredo pustules. 
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FIGURE 2.6 Field view of peanut rust–affected crop. 

surface of the leaves. The uredo pustules are also formed on the adaxial surface at advanced stages 

of infection. They may also be formed on stipules, petioles, and stem. As the infection advances, the 

pustules turn dark brown and frequently coalesce to cover larger areas. Eventually, the leaflets may 

curl and drop off resulting in defoliation. Severely affected plants appear as light-brown patches in 

normal green plants in the field and can be easily seen from a longer distance (Figure 2.6). Pods of  

severely affected plants are low in number and mature 2–3 weeks early. The seeds of such plants 

remain small in size. The sequence of the development of symptoms has been studied on artificially 

inoculated plants (Mallaiah and Rao 1979). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Peanut rust has been known since 1884 from specimens on cultivated peanut plants collected in 

Caaguazu, Paraguay (Spegazzini 1884). It has now become a disease of major economic impor

tance in almost all peanut-growing areas in North, Central, and South America, the Caribbean 

Islands, the West Indies, Asian and West and East African countries, and Australia (Kolte 1984, 

Subrahmanyam et al. 1985). In recent years, peanut rust has spread to and become established in 

South Africa (Mathews et al. 2007). In the United States, rust causes considerable economic losses 

in South Texas, and earlier rust, as such, had not been considered a serious problem in peanut pro

duction (Hammons 1977), but in recent years, the disease has been recorded to occur and impact 

yields in the southeastern United States (Gremillion 2007). 

Since the appearance of the rust coincides with the appearance of ELS and LLS, several work

ers have adopted the method of estimating the loss in yield due to the disease by controlling the 

leaf spots by spraying plants first with benomyl or carbendazim and then superimposing this treat

ment with another fungicide (tridemorph or chlorothalonil or hexaconazole) effective against the 

rust. Thus, information on loss in yield due to rust or the leaf spots alone or due to both has been 

obtained. The loss in pod yield due to rust alone has been reported in the range of 14%–70%, 

depending on the variety and geographical region and climatic conditions (Kolte 1984, Gururaj 

and Kulkarni 2006). It is reported that early establishment of the disease in Australia may advance 
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harvesting of the crop by up to 28 days. Significant yield loss to the extent of 100% is observed in 

most rust-affected peanut crops in Northern Australia in every season (Middleton and Shorter 1987). 

A serious outbreak of peanut rust appeared in 1973 in northern Territory in Australia (O’Brien 1977) 

and in the Maharashtra State of India in 1976–1977, and the crop yield then declined by 35% 

(Mayee 2009, Tashildar et al. 2012). 

In Nicaragua, the commercial crop cost for peanuts has increased by 48% because of measures 

to control peanut rust and leaf spots in nonrotated fields. In the P.R. of China, losses due to rust are 

estimated to be 49%, 41%, 31%, and 18% at flowering, pegging, pre-pod-forming, and mid-pod

forming stages, respectively (Zhou et al. 1980). 

In India, the combined infections of rust and leaf spots cause losses to the extent of 29%–70% 

in pod yield and 27% in kernel weight depending on the variety (Ghuge et al. 1981, Tashildar et al. 

2012). In addition to direct yield losses, rust can lower down seed quality by reducing seed size and 

seed viability and oil content (Subrahmanyam et al. 1991, 1997). The loss in oil content due to rust 

infection alone has been estimated to be about 7%–10% (Kenjale et al. 1981). 

PATHOGEN: P. arachidis SPEG. 

Classification 
Kingdom: Fungi 

Phylum: Asidiomycota 

Class: Urediniomycetes 

Subclass: Incertae Sedis 

Order: Uredinales 

Family: Pucciniaceae 

Genus: Puccinia 
Species: arachidis Speg. 

Usually, the pathogen is observed in the uredial stage on peanut plants. Uredosori are subepi

dermal, amphigenous, and scattered. Each sorus contains numerous uredospores. The uredospores 

are round to oval and pedicellate. The pedicel of the uredospore is short, fragile, and hyaline. The 

epispore is thin walled, echinulate, and cinnamon colored. The germ pores are 2–3 or 3–4 and are 

located equatorially in the spore. The spores measure in the range of 18.56–33.00 × 17.47–26.48 μm, 

with an average size of 24.96 × 21.22 μm. 

The telial stage is reported on the peanuts in Brazil (Spegazzini 1884) and India (Chahal and 

Chohan 1971), but its presence has been found to be quite rare. It is interesting that Chahal and 

Chohan (1971) have reported only the telial stage and not the uredial stage of peanut rust while not

ing that it is the first report of peanut rust occurrence in India. Such a situation could be attributed to 

possible differences in variability in the isolates of P. arachidis, for example, out of several isolates 

collected from the state of Karnataka in India, only one Gadag isolate shows a rare phenomenon 

of teliospore formation (Tashildar et al. 2012). Aecia and pycnia are not known. An alternate host, 

if any, is also not known. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Little new information on epidemiology and disease cycle of peanut rust has become available in the 

last three decennia. The sexual stage (teleutospore formation) is rare in the main areas of peanut cul

tivation and is epidemiologically insignificant, and the absence of an alternate host or a collateral host 

indicates that in the endemic areas, the fungus perennates in the uredinial stage on either volunteer 

self-sown plants or autumn-sown crops. There has been a large swing to autumn and spring crops 

in many peanut-growing countries including India, and this combined with the increased number of 

peanut crops has favored the pathogen survival. Uredospores, as such, without the living host have a 
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very short life except at very low temperature. Uredospores can be stored at low temperature without 

loss of viability, but at 40°C temperature, they rapidly loose viability. For instance, uredospores in 

the exposed crop debris lose all viability within 4 weeks under postharvest conditions at Hyderabad 

under Indian conditions. It thus appears that in tropical and subtropical countries, the pathogen does 

not survive uredospores per se from year to year. Hence, survival and development of the disease 

are limited by both temperature and survival of host tissues. Such epidemiological studies on peanut 

rust have also been carried out in detail in Mexico (Noriega-Cantú et al. 2000). Logistic model for 

prediction of the rust of peanuts under Karnataka conditions has been given by Gururaj et al. (2006). 

Similar prediction model has been developed by Narayana et al. (2006). 

The possibility of the pathogen being carried through seed as a surface contaminant has been indi

cated, as introduction of rust on the peanuts in the United States, Brunei, Australia, and Papua New 

Guinea is reported to be the result of seed transmission of the pathogen through imported seed (Kolte 

1984). Usually, the primary infection is attributed to uredospores transported by wind from short or 

long distances where the volunteer or self-sown rust-affected peanut plants are located or where the 

unexposed affected plant debris is present (Gururaj and Kulkarni 2007). In the southern part of India, 

there is an extensive and continuous cropping of peanuts at all times of the year, and thus, there is 

an easy availability of uredospores as primary inoculum from one season to another. It is clear that 

peanut rust is now well established in India and that it shows a clear pattern of spread from one or two 

origins where the crop circumstances permit inoculum buildup. Thus, the infection appears in July– 

August in southern India, in September and October in central India, and in November and December 

in the northeast. It appears, therefore, that the initial inoculum infecting peanuts in northern Andhra 

Pradesh and Maharashtra is derived from southern states and that, in turn, central Indian crops serve 

to provide the initial inoculum infecting those in West Bengal and Assam (Mayee et al. 1977). In the 

United States, the fungus does not overwinter but blows in from subtropical areas (Van Arsdel 1974). 

After deposition of the uredospores on the leaves of the peanut plants, they germinate by giv

ing rise to a germ tube at the temperature range of 15°C–30°C, with an optimum range being 

20°C–25°C (Kono 1977). For spores to germinate on a leaf surface, the presence of free water is 

a must. The uredospores do not germinate at a relative humidity below 100%. Relative humidity 

above 80% supports the germination when spores are placed in a thin film of water (Cook 1980b). 

After germination, the germ tube grows and forms an appressorium over stomata. Cook (1980a) 

has studied the infection process in detail. According to him, close adhesion of the germ tube leaf 

surface is essential for appressorium formation. From the appressorium, the infection hypha arises 

and penetrates the tissue through stomata. After transversing the length of the stomatal passage, the 

infection peg swells and forms a vesicle in the substomatal chamber. Several infection hyphae then 

arise from such a vesicle, and the subsequently formed mycelia become intercellular by producing 

knob-shaped haustoria into the cells. Most infections take place successfully at 22°C–26°C. About 

8–10 days after incubation, symptoms become visible with the production of a new crop of spores 

that become wind borne and cause secondary infection. 

The factors that directly affect the spore germination have an indirect effect on disease develop

ment. Light inhibits uredospore germination and germ tube elongation (Subrahmanyam et al. 1980). 

Thus, it appears that there are more chances of getting a crop infected with the pathogen during eve

ning or night hours than through the day. The density of spore concentration also affects the spore 

germination and subsequent infection process. Spores do not germinate in clumps and dense patches 

because of a high concentration of self-inhibitor within them and in surrounding water. The self-

inhibitor has been isolated by Foudin and Macko (1974) and identified as methyl cis-3,4-dimethoxy 

cinnamate. It is found that P. arachidis is more sensitive to self-inhibitor chemicals than any other 

rust fungus. Leaf surface influences the infection, probably because of the differences in wettability 

of the leaf surfaces. It is usually seen that the abaxial surface of the leaf is more wettable compared 

with adaxial surface, and therefore, more infection sites develop on abaxial surface. 

Under conditions of high rainfall and humidity in the postrera planting season in Honduras 

and Nicaragua (Central America), the disease becomes devastating, and it then becomes difficult 
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to control (Arneson 1970). In Venezuela, the rust becomes severe when the rainy season is nearly 

over or when dew is abundant (Hammons 1977). In India, a continuous dry period characterized by 

high temperature (>26°C) and low relative humidity (<70%) is reported to delay rust occurrence and 

severity, whereas intermittent rain, high relative humidity, and 20°C–26°C temperature favor dis

ease development (Siddaramaiah et al. 1980). Aerial dissemination of uredospores has been studied, 

and diurnal periodicity with peak occurrences around noon was reported under Indian conditions 

(Mallaiah and Rao 1982), and currently changing scenario of prevalence of rust in the late 1990s 

from the three important southern states Andhra Pradesh, Karnataka, and Tamil Nadu has been 

described by Pande and Rao (2000). 

In India, during summer months (May/June) when incidence of the rust is low, the incubation 

period is long (18 days), while in winter, when the rust is abundant, the incubation period is only 

7 days (Mallaiah 1976). More or less similar observations, with respect to incubation in summer and 

winter seasons, have been reported from Taiwan (Fang 1977). 

Susceptibility of the plants appears to be related to age, with plants becoming susceptible to 

disease at 5–6 weeks of age (McVey 1965). 

There appears to be a relationship between altitude and appearance of the rust on peanuts. In 

lowveld areas (altitude 430 m) in Zimbabwe, the crop is severely affected, whereas in highveld 

areas of that country, rust appears quite late and in less severe form. A close relationship in the 

climatic requirements of rust and LLS has also been noted, as both are favored at lower elevations 

(Rothwell 1975). A similar situation appears to be true with the development of rust and LLS in 

Malawi (Sibale and Kisyombe 1980) and perhaps in southern parts of India. Though the pathogen 

is mainly restricted in its host range to A. hypogaea, it has recently been found to naturally infect 

Arachis repens with the formation of both uredospores and otherwise rarely formed teliospores in 

Brazil (Rodrigues et al. 2006). 

DISEASE MANAGEMENT 

Host Plant Resistance 
In Cultivated Arachis Species 
Screening has been conducted on large scale under both natural conditions and artificial inoculation 

of plants (4–5 weeks old) with uredospores to locate the sources of resistance especially at ICRISAT 

where a range of techniques have been developed (Subrahmanyam et al. 1982, Waliyar et al. 1993, 

Sudhagar et al. 2009). 

On the basis of the percentage of leaves infected due to rust or percentage of defoliation due to 

rust, rating scales for discriminating resistant and susceptible genotypes have been used. No symp

toms of rust, leaves showing slight infection, and less than 25% of leaves showing severe symptoms 

or defoliation due to rust disease have been taken as criteria for determining resistance. 

It is found that highly and moderately rust-resistant genotypes are characterized by higher cuticu

lar and epidermal cell thickness, lesser and smaller epidermal cells, lower number of stomata, and 

more wax content at the later stages of crop growth (Gururaj and Kulkarni 2006). Differences in the 

degree of and development of rust mycelium in the substomatal cavities are manifested in resistant 

and susceptible reactions. In highly resistant and immune types, the germ tube dies after penetration 

through stomata without the further development (Nevill 1980). In the nonphysiological resistant 

types, chloronemic flecks are formed without the formation of uredia and uredospore release, but in 

the physiological type of resistance, less than half of the chloronemic flecks are developed into uredia 

as in NCI3 cultivar (Cook 1972, 1980a). In nonphysiological resistant cultivars, resistance is related 

to leaf wettability, which in turn determines the spore retention capability of the cultivar. Cultivars 

with thin and less waxy leaves are generally affected earlier than those with thick and waxy leaves 

(Chen et al. 1981). Sudhagar et al. (2009) reported that the activity of PO and PPO is maximum at 80 

DAS and that ascorbic acid oxidase and chitinase enzymes exhibit their maximum activity at 80 DAS 
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TABLE 2.2 
Peanut Genotypes Resistant (R) or Moderately Resistant (MR) to Rust Disease of Peanuts 
as Reported from Different Countries in the World 

Genotype Country R/MR Reference(s) 

DH22 (red), DH22 (tan), GPBD-4, India MR (partial resistance) Gururaj and Kulkarni 

K-134, R8808, R9214, R9227, (2008) 

R2001-1, R2001-2, and R2001-3 

ICGV 93207 (named as Sylvia) Released for Mauritius R Reddy et al. (2001a) 

(ICRISAT) 

ICGV 94361 India (ICRISAT) MR (early) Upadhyaya et al. (2001a) 

ICGV 87354 India (ICRISAT) R Reddy et al. (2001b) 

ICG 8954 (A. kuhlmannii) India (ICRISAT) Immune (asymptomatic) Pande and Rao (2001) 

ICGV 87853 (Venus) India (ICRISAT) R Reddy et al. (2000) 

M-5, 255/88 Bangladesh MR Hossain et al. (2007) 

JALW-20, JL-501 India MR to rust + LLS Deshmukh et al. (2009) 

VL-1 India R Kumar et al. (2012) 

ICGV 98383 India R Patil et al. (2010) 

ICGV 99003, ICGV 99005, ICGV India (ICRISAT) R Singh et al. (2003a), 

99012, ICGV 99015 Dwivedi et al. (2002) 

NC17090 — R Pensuk et al. (2003) 

with prominent expression of a 56 kDa protein in rust-resistant genotypes of peanut. The potential 

amount and activity of these are genetically determined, and such changes in the quantity of isozyme 

and protein can be relied for screening rust-resistant/rust-tolerant genotypes. Induction and accumu

lation of phenols and PPO enzyme have been found to be at a faster rate in rust-resistant genotypes 

ICG 1697 and ICG 10053 on inoculation with uredospores (Kumar and Balasubramanian 2000). 

Marked sources of resistance in the cultivated peanut have been reported by several workers 

(Tables 2.1 and 2.2). Some genotypes are resistant to both rust and LLS. Some peanut genotypes 

such as GPBD-4, DH22 (red and tan), and R9214 (Gururaj and Kulkarni 2008) and genotypes such 

as ICGVs 99003, 99005, 99012, and 99015 (Dwivedi et al. 2002) show the slow-rusting ability 

characterized by longer incubation period, low sporulation index, lesser number of pustules per unit 

area, and smaller pustule size. In such cases, the resistance is controlled by several genes. A new 

Australian peanut cultivar Sutherland has significantly higher level of resistance to rust (and also to 

LLS) under the Queensland conditions in Australia (Kelly et al. 2012). 

In Wild Arachis Species 
The genus Arachis is native to South America and also consists of 22 described species and more 

than 40 undescribed. Gene banks are maintained in Brazil, the United States, and India. Many 

germplasm accessions have been screened and several peanut genotypes with immunity or high 

level of resistance to peanut rust have been identified, with sources for resistance mainly originat

ing from Peru, Bolivia, and India (Wynne et al. 1991, Varman et al. 2000, Yadav et al. 2007).  

A very high degree of rust resistance in wild species of the genus  Arachis has been reported. 

Such species are A. duranensis (PI 219823, section Arachis), A. correntia (PI 331194, section 

Arachis), A. cardenasii (PI 262141, section Arachis), A. chacoense (PI 276235, section Arachis), 
A. chacoense × A. cardenasii (F1 hybrid), A. pusilla (PI 338448, section Triseminalae), A. sp. 9667 

(PI 262848, section Rhizomatosae), A. sp. 10596 (PI 276233, section Rhizomatosae), A. glabrata 
(PI 118457, 231318, 262287, 262801, section Rhizomatosae), A. villosulicarpa (PI 336985, section 

Extranervosae), and A. villosa (Subrahmanyam et al. 1982). A. stenosperma accession V 10309 

is resistant to rust and LLS and the experimental evidence reveals that in A. stenosperma, infection 

is hampered at the stage of penetration (Leal-Bertioli et al. 2010). 
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Resistance to rust in some wild species has been found to be mostly recessive and governed 

by monogenic (3:1), digenic (15:1), and trigenic (63:1) F2 segregation ratios (Joel et  al. 2006). 

Susceptibility is dominant to resistance and F2 population segregates in the ratio of 3:1 with resis

tance governed by a single recessive gene (Paramasivam et al. 1990). However, rust resistance in 

peanuts is also reported to be controlled by both additive and nonadditive gene actions and additive 

gene effects are predominant (Ghewande 2009). Thus, wild germplasm accessions of both A and 

B genome types are available to be used for the introgression of resistance genes against rust fungal 

pathogen (Fávero et al. 2009). 

Molecular Breeding and Transgenic Peanuts for Rust Disease Resistance 
Comparison of molecular profile among different peanut cultivars, genotypes, and breeding lines 

with differential disease reaction against rust has been carried out using RAPD (Mondal et  al. 

2005, 2008a,b) and ISSR marker analysis (Varma et  al. 2005, Mace et  al. 2006, Mondal  et  al. 
2008a, 2009). Of the two markers, ISSR reveals higher polymorphism (74.5%) than RAPD (47.1%) 

with the average number of polymorphic bands per assay unit being 5.4 in ISSR and 3.3 in RAPD 

(Mondal et al. 2008b). Mondal et al. (2008b) have been the first to report on the identification of 

RAPD markers linked to rust resistance in peanuts in India and that RAPD marker J71300 is reported 

to be applicable for marker-assisted selection in the peanut rust resistance breeding program. The 

ISSR primer UBC 810540 is found to be associated with both rust and LLS resistances (Mondal 

et al. 2009). A study has been conducted by Mace et al.  (2006) using ISSR analysis to identify 

diverse rust disease–resistant germplasm for the development of mapping populations and for their 

introduction into breeding programs. Twenty-three SSRs have been screened across 22 groundnut 

genotypes with differing levels of resistance to rust and LLS. Rust resistance in peanuts is associ

ated with two SSR alleles (pPGPseq3A1271 and pPGPseq3A1390) in ICGV 99003 × TMV-2 and seven 

SSR alleles (pPGPseq5D5270, pPGPseq5D5295, pPGPseq5D5325, pPGPseq16F1315, pPGPseq16F1424, 

pPGPseq7F6128, and pPGPseq13A7292) in ICGV 99005 × TMV-2. SSR markers associated with rust 

resistance should facilitate the rapid identification and transfer of chromosomal region(s) into elite 

breeding lines by using marker-assisted backcross breeding in peanuts (Varma et al. 2005). 

QTL analysis using inbred lines of a mapping population TAG 24 × GPBD-4 segregating for 

rust reaction reveals 12 QTLs for rust. Interestingly, a major QTL associated with rust (QTLrust01), 

contributing 6.90%–55.20% variation, has been identified by both composite interval mapping and 

single-marker analysis. A candidate SSR marker (IPAHM 103) linked with this QTL has been 

validated using a wide range of resistant/susceptible breeding lines as well as progeny lines of 

another mapping population (TG 26 × GPBD-4). Therefore, this marker is considered to be use

ful for introgressing the major QTL for rust in desired lines/varieties of peanut through marker-

assisted backcrossing (Khedikar et al. 2010). Similarly, the two more SSR markers pPGpseq4A05 

and gi56931710 have been found to show significant association with the rust reaction, and these 

flank the rust resistance genes at map distances of 4.7 and 4.3 cM, respectively, in linkage Group 2 

(Mondal and Badigannavar 2010, Mondal et al. 2012). Thus, tagging of the rust resistance locus 

with linked SSR markers can be useful in selecting the rust-resistant genotypes from segregating 

populations and in introgressing the rust resistance genes from diploid wild species. 

Chemical Control 
In order to ensure elimination of infection from the surface-contaminated seeds, treatment of seed 

with thiram or captan at 3–4 g/kg of seed or with any effective seed treatment fungicide is advisable. 

Mancozeb and Calixin (chlorothalonil, fentin hydroxide, tridemorph, triadimefon, and ben

odanil) have had been the fungicides of choice for peanut rust control through foliar sprays in the 

past (Kolte 1984). Chlorothalonil appears to be more effective than mancozeb. In recent years, 

some newer fungicides such as hexaconazole (Johnson and Subramanyam 2003, Hossain et  al. 

2010), difenoconazole (Gopal et al. 2003, Kalaskar et al. 2012), tebuconazole (Besler et al. 2006, 

Hagan et al. 2006), and azoxystrobin (Hagan et al. 2006) have been found to be more effective in 
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controlling the peanut rust in comparison to mancozeb and chlorothalonil. In case the rust-resistant 

or partially resistant peanut cultivar is used, for example, the use of peanut cultivar Sutherland in 

Australia or in years with low rust disease pressure, few or reduced number of fungicide application 

will be needed to manage the disease (Kelly et al. 2012). 

In order to control both rust and leaf spots, a mixture of two chemicals has been found effec

tive. A mixture of systemic fungicide benomyl or carbendazim (0.05%) and mancozeb (0.2%) or a 

mixture of benomyl (0.05%) and mancozeb (0.2%) (Kolte 1984, Ghewande 2009) or a mixture of 

chlorothalonil (0.2%) and hexaconazole or a combination of tridemorph plus carbendazim (Mathur 

and Doshi 1990) has been reported to be superior in bringing about the control of rust and leaf spot 

diseases of peanuts with increase in peanut yield by 30%–40%. 

Among the inorganic and metal salts, ammonium dihydrogen orthophosphate (monoammonium 

phosphate) and cobalt chloride have been found to be effective in controlling rust infection caused 

by P. arachidis (Kishore et al. 2001b). 

Cultural Control 
Cultural practices that destroy volunteer peanut plants or crop debris are an important measure to limit 

primary sources of inoculum. This is particularly important in Caribbean and Central American coun

tries. In Australia, in the Atherton Tableland region, growers are encouraged to eliminate volunteer 

plants within 2 months before sowing to reduce the amount of inoculum early in the season. It has also 

been possible to introduce a degree of uniformity in planting time in Australia to minimize the prob

ability of late plants being close to an early planted rust-affected crop. Under Indian conditions, early 

planting (15 days earlier than normal), plant spacing of 45× 10 cm, and intercropping with red gram 

(Cajanus cajan) and castor (Ricinus communis) (Kodmelwar and Ingle 1989, Ghewande 2009) and with 

sorghum and pearl millet (Reddy et al. 1991) have been effective in reducing the peanut rust incidence 

and severity. Care should be taken to use seeds for sowing from healthy plants and noninfested regions. 

Biological Control 
The possibility of biological control of the disease by the use of antagonistic microorganisms has 

been indicated. Uredosori on peanut leaves have been found to be parasitized by mycoparasites 

such as Darluca filum (Biv.) Bem. ex. Fr, Eudarluca caricis (Fr.) O. Erik, Daluea phylum Byv and 

Tuberculina cos-traricana Sy, Verticillium lecanii (Zimm.) Viégas, and Penicillium islandicum. 

Mycophagous thrips, Euphysothrips minozzi Bagnall and Dipteron maggots (Patil et al. 2000) have 

also been reported to feed on uredospores of P. arachidis (Kolte 1984). However, no serious attempt 

has been made to use mycoparasites in the control of rust in peanuts, though sprays of culture filtrate of 

V. lecanii and P. islandicum were demonstrated to be effective in reducing the rust severity under field 

conditions (Ghewande 1993, 2009). A new fungal antagonist, Fusarium chlamydosporum Wollenw. 

& Reinking, has been isolated from the pustules of peanut rust significantly reducing the rust infec

tion by P. arachidis using conidia and culture filtrate of the antagonist in artificial infection studies 

(Mathivanan and Murugesan 2000). Similarly, antagonistic isolate of F. solani has also been isolated 

from peanut rust pustules, and its antagonistic activity against P. arachidis is found to be due to chi

tinase and β-1,3-glucanase enzymes (Mathivanan 2000). 

Effect of Plant Extracts 
Foliar application of neem (Azadirachta indica) seed kernel extract (NSKE) at 3% (Gururaj et al. 
2005b, Ghewande 2009) and aqueous leaf extracts of Azadirachta indica (Zade et al. 2005, Ghewande 

2009) at 2% spray and that of Prosopis juliflora at 2% (Kishore and Pande 2005b), Lawsonia inermis 
at 5%, and Datura metel at 2% (Kishore et al. 2001, 2002, Kishore and Pande 2005, Zade et al. 2005) 

give reduction in the severity of rust disease index by 65%–74%. Aqueous plant extracts (30–40 g/L) 

of Lippia multiflora, Boscia senegalensis, and Ziziphus mucronata, the three local plants from the 

vicinity of Burkina Faso, show very strong antifungal activity against P. arachidis in vitro, and these 

have been found to be as good as or superior to fungicides in controlling the P. arachidis infection 
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on peanut leaves (Koϊta et al. 2012). Integrating neem leaf extract (2%) with potassium (1.0% K2O) 

(Hossain and Rahman 2007) and the NSKE (5%) or leaf extract (2%) of D. metel with fungicide chlo

rothalonil or difenoconazole is more effective in disease control (Kishore and Pande 2005, Kalaskar 

et al. 2012). More recently, flaxseed oil has been found to be effective in the control of peanut rust 

by adversely affecting the uredospore germ tube length and by completely suppressing appressorium 

formation, which is essential for pathogen (P. arachidis) to form an infection peg to pass through the 

stomatal aperture and infect the host tissue (Chen and Ko 2014). All such measures may be more eco

nomical, eco-friendly, and useful in improved control of the rust with lesser dependence on fungicides 

particularly for the resource-poor farmers in less developed countries. 

Sclerotium STEM ROT 

SYMPTOMS 

All the aboveground and underground plant parts can be affected. Several kinds of symptoms of the 

disease become visible depending upon the stage of plant growth, but the stem rot is more common. 

Usually, the disease appears more frequently as the plant approaches maturity. Infection may take 

place on the stem just above the soil surface or at the foot of the plant 1–2.5 cm below the ground 

level. In the beginning, the symptoms become visible in the form of a deep-brown lesion around 

the main stem at the soil level. It may occur on the stem below the soil surface under dry conditions 

or above the ground in wet weather. Soon after, the lesion becomes covered with white radiating 

mycelium that encircles the affected portion of the stem. The distinct rot occurs beneath the fungal 

weft leading to wilt-like symptoms characterized by yellowing and browning of the foliage that 

show drooping while remaining attached on the plants. Such plants remain upright in the row under 

field conditions. The entire plant or one or two branches may be killed. Death of the aboveground 

portion of plant sometimes takes place very rapidly, particularly in extremely hot weather. Coarse 

white strands of the pathogenic fungus growing in a fan-shaped pattern may be present on the sur

face of the affected plant parts or on the soil surface or leaf litter adjacent to affected plants. Later, 

brown-colored mustard seed–like sclerotia are often noticed intermingled with the fungal strands on 

affected plant parts or around the affected plants on soil surface (Figure 2.7). This facilitates spread 

of the disease on plants sown in rows, and thus, the row effect becomes evident under field conditions. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The Sclerotium stem rot or SSR of peanuts is variously named as southern blight, sclerotium wilt, 

sclerotium blight, white mold, crown rot, foot rot, sclerotial disease, and sclerosteosis. The disease 

occurs throughout peanut-growing areas of the world in the tropics and in warmer parts of the tem

perate zones (Kolte 1984, Subrahmanyam et al. 1991, Momotaz et al. 2009, Shakil and Noor 2012). 

It is the most important disease on peanuts in India, Israel, and the southeastern United States, and 

the average annual peanut crop losses due to SSR are usually in the range of 25%–27% in India 

(Kolte 1984), Israel (Bowen et al. 1992), the United States (Damicone and Melouk 2009, Thiessen 

and Woodward 2012), and Australia (Middleton 1980). The disease incidence in the farmer’s fields 

may be in the range of 0%–60%, and yield losses usually do not exceed 25% but may be as great 

as 80%. The losses are usually greater than what are apparent from field observations, as peg decay 

severs many nuts from the plant and they are left in the soil at harvest. The disease occurs in dis

tinct foci as it spreads to adjacent plants in the row, and the number of disease foci is reported to 

be linearly related to yield loss in peanuts as reported by Rodriguez-Kabana et al. (1975). However, 

yield loss models from data from selected fungicide treatments indicate that the loss caused by 

SSR at low disease incidence may be proportionately greater than the yield loss at higher disease 

incidence and indicate that the relationship between SSR incidence and peanut yields may be non

linear (Bowen et al. 1992). The SSR is, however, becoming a greater threat to irrigated peanut crop 
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FIGURE 2.7  SSR of peanuts. Note the mycelial growth and small mustard seedlike bodies of the fungus on 

rotted parts of the peanut plant. 

in tropical countries. The temperature relation in the development of the disease and growth of the 

fungus seems to be the limiting factor in geographical distribution of the disease. More recently, the 

disease has spread in a more severe form over 80% in the heavily infested fields in the main peanut  

production regions of Henan Province in the P.R. of China (Xu et al. 2011) and to the extent of 25% 

in central Vietnam (Le 2011), and its prevalence is increasing in Indonesia (Taufiq et al. 2007). 

PATHOGEN: ASEXUAL  ANAMORPH  STAGE (S.  rolfsii SACC);  SEXUAL  STAGE  
(TELEOMORPH, A.  rolfsii (CURZI) TU & KIMBROUGH) 

Classification 
Kingdom: Fungi 

Phylum: Basidiomycota 

Subphylum: Agaricomycotina 

Class: Agaricomycetes 

Order: Atheliales 

Family: Atheliaceae 

Genus: Athelia 
Species: rolfsii (Curzi) C.C. Tu & Kimbr. 

S. rolfsii does not produce conidia and is a deuteromycete in the group mycelia sterilia. The 

mycelium is septate and hyaline with conspicuous branching at right angles. A bud-like struc

ture forms at the growing tip. It continues to grow and gives rise to a branch. The main branch 

hyphae are relatively large (5–9 μ in diameter) compared to many fungi that are more typically 
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with hyphal diameter of 2–4 μ. The well-developed mycelium, which forms the main vegetative 

body of the fungus, is in cord-like strands and grows as a creeping mycelium. The hyphae show 

the presence of clamps. Many a time, a number of hyphae are found to anastomose among them. 

Clamp connections in the form of forks and hooks or H-like in shape can be noticed. The young 

growing mycelial mass on the host surface, as well as on the medium, is generally snow-white 

with a silky luster. 

Smaller-diameter (2–4 μ) hyphal cells called feeding branches arise from the main branches 

and penetrate the plant tissue. The well-developed mycelium growing in strands at its tips initi

ates the sclerotial formation in about 6–12 days, either on a host surface or on a medium. Sclerotia 

arise singly or quite close to each other, so as to assume a cluster or group at the tips of the growing 

mycelium. Initially, the sclerotia are whitish, but later they become yellowish white. A water drop is 

given out from the sclerotium during the course of its development, which on drying becomes dark 

brown and forms an outer coating. As the sclerotia age, they become dark brown to chocolate brown 

in color and are like mustard seed in appearance and size. The outer dark-brown ring of sclerotium 

consists of thickened cells followed by the formation of pseudoparenchymatous tissue. 

The development of the perfect (sexual) stage is very rarely found in nature, and it has been 

the common practice to use the name of the sclerotial stage. Interestingly, the fungus is known to 

occur in its perfect stage as A. rolfsii causing the collar rot phase of the disease in the Marathwada 

Region of Maharashtra in India (Kadam et al. 2011). The development of perfect stage consists of 

the formation of a structure called a basidium in which meiosis occurs. Four haploid basidiospores 

are produced at the tips of small structures on the basidium called as sterigmata. A. rolfsii produces 

basidia in an unprotected layer (hymenium) that develops under humid conditions at the margins 

of lesions. Hymenial production consists of aerial, button-like loosely formed white growth, and 

it measures 0.1–0.75 mm. Basidia are club shaped and slender. They measure 20–25 μ × 4–6 μ. 

The sterigmata are shorter but more stout and measure 1.5–3 μ and vary from 1 to 4 in number. 

Basidiospores are hyaline, smooth, obclavate and measure 4–4.8 μ × 2–3.5 μ; when mature, the 

basidiospores are forcibly discharged. 

Epidemiology and Disease Cycle 
The pathogen is a facultative parasite found on a wide range of soils. The fungus can affect plants 

in about 100 families representing about 500 plant species. Most of these plants are dicotyledons 

comprising mainly composites and legumes. Members of the Gramineae family are regarded less 

susceptible. 

Several investigators have compared the morphology and host range of different isolates from 

various hosts and concluded that the differences are small. Geographical variability among S. rolfsii 
populations is demonstrated. The importance of variability has been realized in the light of the 

discovery of pentachloronitobenzene (PCNB) tolerant strains of S. rolfsii isolated from a Texas 

peanut field in 1985 (Nelin 1992, Shim et al. 1998, Sharma and Singh 2002). There exists a vari

ability among isolates of S.  rolfsii in their ability to produce oxalic acid, which is correlated with the 

mortality of the seedlings; the lower the oxalic acid production by the isolate, less pathogenic it is 

in causing the seedling mortality (Palaiah and Adiver 2004). The variability in population structure 

of S. rolfsii isolates from peanut fields in Japan reveals the presence of four mycelial compatibility 

groups (MCGs). These are MCGs A, B, C, and D, and most isolates of the same MCG are proven 

to be clonal (Okabe and Matsumoto 2000). Similarly, in Vietnam, three distinct groups among 

isolates of S. rolfsii have been identified to display their diversity of genetic and phenotypic traits in 

mycelial compatibility, growth rate, and sclerotial characteristics (Le et al. 2012a). Based on inter

nal transcribed spacer (ITS) ribosomal DNA sequence analyses, three distinct groups have been 

identified among field isolates of S. rolfsii from peanuts, tomatoes, and taros in India, and these 

show differences in aggressiveness, suggesting thereby that the most aggressive isolates be used 

in a consortium for the development of sick field plots for screening of resistance (Bagwan 2011a). 
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S. rolfsii survives through sclerotia or mycelium on plant debris in the top 6 cm of soil. It has a 

high oxygen demand and soil aeration affects survival; hence, viable sclerotia are found at greater 

depths in lighter sandy soil compared to heavier soils. Mycelia from germinated sclerotia first col

onize dead or senescent plant tissue on the soil surface before infecting healthy plants. Colonized 

food bases supply energy for invasion of living plant organs and bridge distances between ger

minated sclerotia and the host. The fungus is most active at the soil surface and a mat of hyphae 

is formed over the basal portion of peanut. It clings to the epidermis but does not apparently 

penetrate living cells. It grows into host cells killed in advance by metabolites such as oxalic acid 

and/or pectolytic or cellulolytic enzymes produced by the fungus as it grows over the host tissues 

(Kolte 1997). Warm (30°C–35°C) aerated conditions in the upper few centimeters of the soil favor 

the development of the fungus. Generally, temperatures remaining at 29°C–35°C during most of 

the day and seldom dropping below 23°C during the night are more favorable for disease devel

opment. A soil moisture content of 40%–50% of water-holding capacity is optimum for disease 

development. 

Sclerotial germination throughout the growing season is favored by low humidity and particularly 

by alternate drying and wetting (Porter et al. 1984). The accumulation of dried leaves around the 

peanut plants following defoliation due to leaf spots, insect damage, and drought creates optimum 

conditions for disease development by providing a food base for S. rolfsii. Phosphorus fertilization is 

reported to increase disease incidence but this is decreased by potassium. Peanut plants treated with 

benomyl often exhibit greater SSR problems, primarily because benomyl reduces the soil popu

lation of antagonistic Trichoderma. Rodriguez-Kabana et al. (1979) reported that 1,2-dibromo-3

chloropropane (DBCP) is stimulatory for the germination of dormant sclerotia in soil by producing 

mycelium that can use available organic debris to produce new sclerotia. This therefore leads to 

the production of more sclerotia leading to a higher inoculum density in DBCP-treated soil, subse

quently resulting in higher incidence of the disease. Peanut plants infected by S. rolfsii emit a blend 

of organic compounds such as methyl salicylate and linalool, which appear to be inhibitory to the 

growth of S. rolfsii in vitro, suggesting thereby that the emission of these compounds by infected 

plants may constitute a direct defense against S. rolfsii (Cardoza et al. 2002). It has been shown that 

S. rolfsii can be seed borne in the peanut. But the possibility of survival and subsequent infection 

from this source is greatly overshadowed by soilborne inoculum. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Significant negative correlation between SSR incidence and yield per unit area reveals the impor

tance of the development of SSR-resistant cultivars in obtaining higher yield under pathogen stress 

conditions (Krishnakanth et al. 2005). Several workers have attempted to spot out resistant varieties 

of peanuts to SSR. Peanuts of the bunch type are killed outright, but plants of runner peanuts are not 

killed by the disease, since portions away from the attack on runner peanuts are usually supported 

by the adventitious root system. It is probably because of this behavior that runner peanuts have 

been reported as less susceptible (Garren 1966). 

Although the development of resistant cultivars to S. rolfsii is rather difficult, in recent years, 

a few peanut cultivars that have been registered to be resistant to tomato spotted wilt disease 

(caused by tomato spotted wilt virus [TSWV]) are also known to be resistant to SSR (Branch and 

Brenneman 2009). Such cultivars are Georgia-07W, Georgia-03L, and AP-3 (Gorbet 2007, Branch 

and Brenneman 2008, 2009), Florida-07 (Gorbet and Tillman 2009), DP-1 (Gorbet and Tillman 

2008), Andru II (Gorbet et al. 2006a), and Carver (Gorbet et al. 2006b). Ashok et al. (2004a,b) 

from India confirmed through artificial infection studies that 11 genotypes, 3 belonging to Virginia 

bunch (A. hypogaea var. hypogaea; TCG 1525, PI 269710, NCAc 38), 2 belonging to Virginia run

ner (A. hypogaea var. hypogaea; Haryanawadi, ND 8-2), 4 belonging to vulgaris (A. hypogaea var. 
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fastigiata; SS 34, VRR 472, Tai son, and PI 1268559), and 2 belonging to Spanish (A. hypogaea 
var. vulgaris; NCAc18019 and RR5290), are highly resistant to SSR. 

Moderate resistance to SSR is reported in registered peanut cultivars such as Tamrun OL 02 

(Simpson et al. 2006), Phule Unap (Patil et al. 2005), Dh 8 (Krishnakanth et al. 2003, 2005), C-99R 

(Gorbet and Shokes 2002a), Florida MDR 98 (Gorbet and Shokes 2002b), GG-11 and GG-13 

(Rakholiya and Jadeja 2010), R9227 (Pujar et al. 2011), JL-365 (Thakare et al. 2007), and Local 235 

(Abd-El-Moneem et al. 2003). Root exudates of the moderately resistant Local 235 cultivar from 

Egypt are characterized by the presence of arabinose, lysine, and tryptophan (Abd-El-Moneem 

et al. 2003). Host genotype and biocontrol treatment combinations have established that the biologi

cal control using T. harzianum is more convenient, less costly, eco-friendly, and more effective in 

partially resistant genotypes (Krishnakanth et al. 2003). The same conclusion should be valid when 

chemical control using propiconazole is combined with the partial resistance of the peanut cultivars. 

Chemical Control 
The application of sterol biosynthesis inhibitors (SBI) also referred to as DMIs and quinone out

side inhibitor (QoI) fungicides are now known to be more effective than previously recommended 

fungicides such as quintozene and carboxin for the control of SSR (Johnson and Subramanyam 

2000, Besler et  al. 2006, Grichar et  al. 2010, Augusto and Brenneman 2011, 2012). The SBI tri

azole systemic fungicides, namely, diniconazole, propiconazole, tebuconazole (Minton et al. 1990, 

1991, Culbreath et al. 1992, 2009, Adiver and Anahosur 1995), cyproconazole (Culbreath et al. 1992, 

Adiver and Anahosur 1995), hexaconazole (Johnson et  al. 2007b), difenoconazole (Cilliers et  al.  

2003), and prothioconazole (Augusto and Brenneman 2012), and the QoI strobilurin fungicides, that 

is, azoxystrobin (Johnson and Subramanyam 2000, Rideout et al. 2002, Bowen et al. 2006, Sconyears 

et al. 2007, Hagan et al. 2010) and pyraclostrobin (Hagan et al. 2007, Grichar et al. 2010), have been 

proved to give very efficient and effective control of SSR of peanuts. The QoI fungicides should be 

applied preventively or as early as possible in the disease cycle as these are effective in inhibiting 

early mycelial growth. Once the fungus is growing inside the plant tissues, QoI fungicides have 

little or no effect. The strobilurins act at one specific site in the cytochrome system in the fungus 

and inhibit the mitochondrial respiration and are in the same cross-resistance group (same mode of 

action) and belong to Fungicide Resistance Action Committee (FRAC) Code 11. Similarly, SBI fun

gicides belong to FRAC Code 3, which include triazoles. Although these fungicides pose less risk to 

human health and/or environment than alternative pesticides, they appear to be vulnerable to rapid 

buildup of resistance in fungal population, and hence, their use must be managed carefully to avoid 

appearance of fungicide resistance (Vincelli 2002). Mixing triazole (SBI fungicides) or strobilurins 

(QoI fungicides) with other fungicides that have different mode of actions is desirable in minimizing 

the development of fungicide resistance. Fontelis (penthiopyrad), the new pyrazole carboxamide, is 

recently established to show excellent control of SSR of peanuts in the United States and may comple

ment current SBI and QoI fungicides. Fontelis would be an acceptable rotation partner for resistance 

management purposes with SBI triazole (Group 3) and strobilurin (Group 11) fungicides (Culbreath 

et al. 2009, Hagan 2012) in the management of SSR of peanuts. These chemicals are most frequently 

applied as granules at the pegging stage but may also be directed as sprays (Hagan et  al. 1991). 

Flutolanil, a benzanilide systemic compound, has been found to show protective and curative effect 

for the control of SSR of peanuts in the United States (Csinos 1987, Timper et al. 2001) and Nicaragua 

(Augusto et al. 2010c). Seed treatment with triadimenol, another systemic triazole-type fungicide, or 

insecticide chlorpyrifos or carboxin, or ipconazole or azoxystrobin is also reported to be effective 

in controlling the SSR in the seedling stage of peanuts (Bowen et al. 1992, Rodriguez-Kabana and 

Kokalis-Burelle 1997, Rakholiya and Jadeja 2010, Akgul et al. 2011, Rakholiya et al. 2012). 

Presowing treatment of susceptible peanut seeds for 24  h using 10−4 to 10−7 M dilute solu

tions of four  growth-regulating chemicals, that is, indoleacetic acid, Cycocel (chlormequat), 

2,4- dichloroacetic acid, and 2,4,5-trichloroacetic acid, significantly inhibits the development 

of sclerotium blight symptoms and reduces mortality in 2-week-old plants inoculated with the 
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S. rolfsii (Chowdhury 2003). Chitosan, a deacylated product of chitin, when used as seed treatment at 

0.05%–1%, gives effective control of collar rot phase of the disease caused by S. rolfsii (Chowdhury 

2002). Peanut plants raised from seeds treated with the aforementioned growth- regulating chemi

cals and chitosan show increased activity of PO and PPO enzymes  producing more phenols and 

proteins. A combination of soil applications of insecticide and fungicide such as aldicarb + flutolanil 

(Minton et al. 1991) and chlorpyrifos + quintozene (Hagan et al. 1988) has been found to be more 

effective than either alone in the control of SSR. 

Cultural Control 
Deep burial of surface organic matter and crop debris by plowing it to a depth of 8–10 in. in soil 

during land preparation can improve the yield of peanuts by more than 50%, largely due to elimina

tion of the food base of the pathogen and subsequent reduction of disease incidence (Kolte 1984, 

Desai and Bagwan 2005). The nondirting of peanuts during cultivation (as an interculture opera

tion) likewise has been shown to reduce losses from SSR in the peanut crop, and a similar effect can 

be achieved by planting the peanut on slightly raised beds. 

Since the pathogen is omnivorous, there is little chance of any control of the disease by follow

ing crop rotation. However, inoculum buildup of the pathogen in soil can be brought under control 

by rotating peanuts with less susceptible crop plants belonging to Gramineae family. For example, 

when maize precedes the peanut crops and the crops are under conservation tillage, population 

of biocontrol agents becomes higher, which then appears to be an important practice in the SSR 

management strategies as per the investigations carried out in Argentina (Vargas Gil et al. 2008). 

Crop rotation of maize, pearl millet, sorghum, garlic, and onion with peanut may be useful for the 

management of SSR of peanuts and also for the reduction of soil population of S. rolfsii due to the 

presence of certain antifungal compounds in the root exudates of these crops (Bagwan 2010, Vinod 

Kumar et al. 2012). The SSR incidence can be reduced to 62% with increase in pod yield by 15.5% 

when onions precede peanuts in the crop rotation (Zeidan et al. 1986). 

Nondirting cultivation in combination with minimizing defoliation due to the leaf spot control can 

bring about significant control of SSR of peanuts in the subsequently planted crop. Soil amendment 

with basal application of gypsum at 500 kg/ha (additional to the normal practice of gypsum applica

tion at flowering) followed by neem cake at 150 kg/ha has been found to be useful in reducing the SSR 

of peanuts by 31%–39%, resulting in increase in pod yield by 200–260 kg/ha (Johnson et al. 2003). 

Among different forms of nitrogen and potassium fertilizers, application of calcium ammonium 

nitrate results in minimizing the incidence of SSR (Johnson et al. 2007b). Interaction of fungicide 

application timing and postspray irrigation is significant for SSR control and peanut yield. Applying 

fungicides at night when the leaves are folded and using irrigation water after fungicidal spray have 

both been shown to increase deposition of fungicides in the lower plant canopy, which subsequently 

improves control of SSR (Augusto and Brenneman 2011). Mulching the soil surface with wheat straw 

(80%–90% soil coverage) helps in restricting the increase in the SSR incidence, despite the reported 

increase in the density of S. rolfsii inoculum in such soils (Ferguson and Shew 2001). 

Soil solarization is a nonchemical method for controlling the disease by means of solar heating of 

the soil. In this method, naturally infested soil when mulched for 6 weeks during July–August with 

transparent polyethylene (TPE) sheets raises the temperature of soil to 40°C–53°C, enabling killing 

or inactivation of the fungus. When such a field area is sown with peanuts, the following spring, the 

disease in the spring-planted crop is kept to minimum level, giving 52% more yield compared with the 

crop raised on untreated plots. This method has become more useful in Israel (Grinstein et al. 1979) 

and can be used in most tropical and subtropical countries including India (Reddy et al. 2007a,b). 

Biological Control 
Biocontrol agents particularly the fungi (T. harzianum, Trichoderma viride) and bacteria (B. subtilis, 
Ps. fluorescens, Ps. aeruginosa, Ps. chlororaphis) are seen to be an alternative and viable option 

for the management of SSR of peanuts as these have been found antagonistic to the growth of 
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S. rolfsii reducing its inoculum potential (Biswas and Sen 2000, Ray and Mukherjee 2002, Abd-

Alla et al. 2003, Sahu and Senapati 2003, Desai et al. 2004, Pal et al. 2004, Saralamma and Reddy 

2004, Abd-Allah 2005, Kishore et al. 2005c, Saralamma and Reddy 2005, Bagwan 2011b, Sharma 

et al. 2012). But the newly introduced biocontrol agents should be able to survive in the new eco

logical niche (Podile et  al. 2002). For this purpose, low-cost local agricultural waste products 

such as wheat bran; oil cakes like mustard cake, castor cake, and neem cake; and FYM or com

post can be used as the substrate for supporting the growth of effective antagonists as well as for 

retention of appropriate population (×108 cfu/g) of antagonists under field conditions (Vikram and 

Hamzehzarghani 2001, Nandagopal and Ghewande 2004, Bhagat and Pan 2007, Thiruvudainambi 

et al. 2010). Thus, combined soil application of 2.5 kg T. viride + 6 kg compost + 500 kg neem 

cake/ha gives effective control of SSR (Dandnaik et al. 2006), and oil cakes (mahua cake, neem 

cake, pungam cake) in combination with T. viride or Ps. fluorescens, each at 5 kg/ha of soil, give 

best degree of SSR control in peanuts (Varadharajan et al. 2006). Soil application of T. harzianum 
or T. viride in combination with thiophanate methyl + neem cake or with wheat bran saw dust 

+ carboxin results in sustaining the antagonist population in soil giving better control of SSR 

(Patibanda et al. 2002, Saralamma and Reddy 2005). Similarly, lowest SSR incidence is reported 

when soil application of Ps.  fluorescens is combined with FYM and tryptophan (Johnson et al. 
2008a,b). A combined application of Rhizobium and T. harzianum is also beneficial in reducing 

the incidence of SSR (Ganesan et al. 2007). A diatomaceous earth with granules impregnated in 

a 10% molasses solution has been found suitable for the growth and delivery of T. harzianum to 

peanut fields. Granules coated with the growth of T. harzianum are applied 70 and 100 days after 

planting to the infested soil; this brings about significant disease control (Backman and Rodriguez-

Kabana 1975, 1977). Besides antagonistic effects of T. harzianum or T. viride and that of Ps. fluo
rescens, plants treated with these biocontrol agents do show additional enhanced activity of plant 

defense-related enzymes, that is, PO and polyphenol oxidase (Varadharajan et al. 2006), whereas 

Ps. aeruginosa inhibits the plant cell wall–degrading enzymes (polygalacturonase and cellulose) 

of S. rolfsii and reduces the severity of peanut SSR (Kishore et al. 2005c). Some other strains of 

Ps. chlororaphis are, however, known to produce phenazines and lipopeptide surfactants—the 

thanamycin inhibiting the hyphal growth of S. rolfsii and suppressing the incidence of SSR (Le 

2011, Le et al. 2012a,b). Some other strains of Pseudomonas sp. (strain BREN6) and Bacillus 
sp. (strain CHEP5) are capable of mobilizing infection-induced cellular defense responses (prim

ing) in peanut plant. Inoculation of these strains increases the activity of PAL and PO enzymes, 

after challenge inoculation of peanut plants with S. rolfsii, and reduces the severity of the disease 

(Tonelli et al. 2011), indicating the induction of induced systemic resistance (ISR). Similar report 

on ISR against S. rolfsii infection has been made using fungal components of S. rolfsii in the form 

of fungal culture filtrate and the mycelial cell wall (Durgesh et al. 2010). Talc-based bioformula

tion mixture consisting of Beauveria bassiana (B2 strain) + Ps.  fluorescens (strain TDK 1) + Ps. 
fluorescens (strain Pf1) amended with chitosan when applied through seed, soil, and foliar spray 

has been found to give effective control of S. rolfsii infection in peanuts (Senthilraja et al. 2010). 

ISR in peanuts also becomes functional in response to use of certain arbuscular mycorrhizal 

fungi such as Glomus caledonium or G. fasciculatum when used alone or in combination with 

Trichoderma species for the control of SSR of peanuts (Ozgonen et al. 2010, Doley and Jite 2012). 

In case of the seed treatment, T. harzianum or T. viride can be combined with compatible fun

gicides iprodione (Raihan et  al. 2003, Manjula et al. 2004, Saralamma et al. 2004, Islam et  al. 

2005), thiophanate-methyl (Saralamma and Reddy 2005), difenoconazole (Cilliers et al. 2003), and 

chlorpyrifos (Rakholiya and Jadeja 2010) for the control of SSR in peanuts. Peanut seed treatment 

with Ps. cf. monteilii has been found to decrease the SSR incidence by 45%–66% (Rakh et al. 2011). 

Water-soluble substances that occur naturally in the oat suppress the growth of S. rolfsii. Soil 

microorganisms that decompose oat residue also become more numerous and active during the 

decomposition process and suppress or destroy S. rolfsii. Based on this information, rotation of 

peanut with oat or rye to reduce the incidence of the disease is suggested (Webb 1971). 



  

 

 

    

 

44 Diseases of Edible Oilseed Crops 

Effect of Plant Extract 
Aqueous leaf and seed kernel extracts of neem (A. indica) (Ume-Kulsoom et al. 2001), aqueous 

leaf extract of P. juliflora and Agave americana (Kiran et al. 2006), and garlic, onion, pearl millet, 

sunflower, and sorghum at 5% (Vinod Kumar et al. 2009) show inhibitory effect on mycelial growth 

and sclerotial formation of S. rolfsii, indicating their potential uses in the management of SSR. 

Aspergillus COLLAR ROT OR CROWN ROT 

SYMPTOMS 

Collar rot or crown rot of peanut seedling is essentially a postemergence disease, but the preemer

gence phase where the seeds may rot and become covered with sooty black masses of spores can 

occur. On germination, the emerging hypocotyl is rapidly killed by the lesion below ground, result

ing in rotting of the seedlings before their emergence from the soil. In the postemergence phase, 

crown rot is characterized in the field by wilting and death of seedlings accompanied by rotting 

of the hypocotyl. Under relatively moist conditions, accompanied by the high atmospheric humid

ity and high temperature prevailing during the monsoon period, hypocotyl rot itself is seen first 

as a yellowish-brown lesion that extends into the plant tissue, and affected collar region becomes 

shredded with a lapse of time and shows profusely sporulating, black growth of the causal fungus. 

Eventually, the hypocotyl becomes blackened and rotten. Most affected plants die within 30 days 

of planting, which leads to patchy crop stand. As plants develop woody stems and taproots, the 

disease is less likely to occur. However, later in the season, individual branches or entire plants 

may develop similar symptoms. Splitting the crown and taproot of affected plants reveals an inter

nal discoloration of the vascular system that is dark gray in color. The dried branches are readily 

detached from the disintegrated collar region and are blown away by wind. Under dry conditions, 

the lesion in the collar region remains restricted, bringing about slow wilting and death of shoots in 

the proximity of lesions, and the rest of the shoots survive. If plants escape early infection, that is, 

immediate postemergence phase, the plants reach maturity, and crown rot symptom may develop. 

Occasionally, rotting is continued to the lower portion of the main root, in which case the plants 

produce adventitious roots above the diseased area. Such plants seldom thrive and usually die dur

ing dry weather (Kolte 1997). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Collar rot or crown of peanuts caused by A. niger van Tieghem was perhaps first reported from 

Sumatra in 1925 (Jochem 1926). It was then reported from all over the peanut-growing countries in 

the world (Kolte 1984, Cantonwine et al. 2011). Since the disease causes considerable seedling mor

tality in the early stages of crop growth, crop yield is directly affected by reduction in the stand of 

the crop. The disease may cause an average 5% loss in yield but in some areas it may cause as high 

as a 40% loss. Collar rot is a more serious problem in sandy soil (Gibson 1953, Chohan 1965). In 

Punjab (India), the mortality losses of plants due to the disease may amount to 40%–50% (Aulakh 

and Sandhu 1970). Similarly, Ghewande et  al. (2002) reported that losses in terms of mortality 

of plants due to collar rot range from 28% to 50%. Plant stand losses as high as two plants due to 

the disease per meter of planted row have been recorded in the North Territory (Queensland) in 

Australia. 

A serious incidence of the disease was reported in Australia in 1951 (Morwood 1953) and in the 

United States, resulting in serious stand deterioration, in Georgia in 1961 (Jackson 1962), in Texas 

in 1962 and 1963 (Ashworth et al. 1964), and in New Mexico in 1965 (Hsi 1966). With increasing 

interest in producing organic peanuts in traditional peanut production areas in the southeastern 

United States, postemergence phase of collar rot (A. niger) has become the major obstacle regard

less of the peanut cultivar being used in organic peanut production, though the disease along with 



 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

45 Fungal Diseases 

other seedling diseases could be controlled by standard chemical seed treatments (Ruark and Shew 

2010, Cantonwine et al. 2011). Infection occurring within 50 days of sowing from untreated seed 

causes serious losses and can kill up to 40% of the plant stand. 

PATHOGEN 

The disease is known to be caused by the fungus A. niger van Tieghem. (In some instances, 

Aspergillus pulverulentus (McAlpine) Thom has been found as the cause of the disease.) 

Classification 
Domain: Eukaryota 

Kingdom: Fungi 

Phylum: Ascomycota 

Subphylum: Pezizomycotina 

Class: Eurotiomycetes 

Order: Eurotiales 

Family: Trichocomaceae 

Genus: Aspergillus 
Species: niger van Tieghem 

A. niger is a member of the genus Aspergillus that includes a set of fungi that are generally consid

ered asexual, although perfect forms (forms that reproduce sexually) have been found. Conidial heads 

are globose and black and measure 700–800 μm in diameter; conidiophores have thick smooth walls 

and measure 1.5–3.00 mm × 15–20 μ and show colorless to brownish shades in the upper half, with 

sterigmata in two series; primary sterigmata vary with the strain and with the age of the conidial heads 

and measure 20–30 μ × 5–6 μ at the beginning of sporulation, but often reach 60–70 μ × 8–10 μ at 

maturity; secondary sterigmata are more uniform, ranging usually from 7 to 10 μ × 3 to 3.5 μ; conidia 

are globose at maturity, echinulated, somewhat variable in size, and mostly measure 4–5 μ in diameter. 

Sclerotia are produced in some strains and may dominate the colony character; sclerotia are globose to 

subglobose, 0.8–1.2 mm in diameter (Kolte 1984). 

A. niger has a total genome size that ranges from 35.5 to 38.5 Mb and is composed of about 

13,000 genes. Of these genes, about 8000–8500 genes have functional assignments. In addition, 

about 14,000 ORFs have been identified in the genome that could potentially encode a protein. The 

DNA sequence of A. niger consists approximately of 33.9 million base pairs. The possible function of 

6500 genes could be established, which is only about 45% of its total gene count (Debets et al. 1990). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

A. niger is a saprophyte found in almost every type of tropical soil. It can tolerate low soil moisture 

and develops best at temperature between 30°C and 35°C. It can survive on seed or in the soil. It may 

be carried in or under the seed testa (Kolte 1984, Desai and Bagwan 2005). Seeds become infected 

during the last days of maturation in the soil and also during harvesting, shelling, and handling. Both 

soilborne and seed-borne inocula serve as primary sources of infection and adversely affect the seed 

germination (Mohapatra 2011). The fungus enters the host through a wound on the seed coat (testa) 

or through the stem, and the cotyledons usually act as the site for primary infection. It is interesting 

that conidia alone are not capable of causing infection of uninjured tissues. The presence of myce

lium is essential for the infection of the uninjured tissue (Nema et al. 1955). Conidia can cause infec

tion only when the testa of the seed is broken, and infection through conidia as the inoculum source 

occurs only to the extent of 25%, whereas the combination of mycelium and conidia can cause 

100% infection through injured seeds. If the injury is extended to the cotyledons, the infection is 

so rapid that seedlings die before emergence. No spread of the disease in a particular crop season is 

seen. This is probably because of the absence of secondary infection and critical stages of infection 
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46 Diseases of Edible Oilseed Crops 

period. A seed carrying infection gives rise to cotyledons with the development of the lesion, which 

in turn affects the hypocotyl or stem of the seedlings. The pathogen present in the soil infects either 

the cotyledons or the hypocotyls directly. What is usually observed is that peanut seedlings grow 

out of soil in such a way that their cotyledons remain slightly covered with a thin layer of soil. Even 

if they are not covered with the soil just after germination, they get covered immediately thereafter 

by the wind-blown soil. The soil-covered cotyledons of the peanut seedlings form a good substrate 

and are in proper environment for the growth of A. niger already present in the soil. Once the fungus 

is established on cotyledons, it grows into the collar region and causes collar rot of seedlings. In 

most of the cases, infection takes place within 30–35 days after planting. This period corresponds to 

maturity of the hypocotyl and shedding of the cotyledons. 

The incidence of the disease is positively correlated with high soil inoculum levels and is more 

prevalent in fields continuously cropped with peanuts than in fields grown with nonhost crops. The 

main carryover from season to season is through plant debris in soil. Predisposition is a major factor 

in the development of Aspergillus crown rot. Adverse weather conditions, extreme fluctuations in 

soil moisture, poor seed quality, seedling damage from pesticides or fertilizer application, and any 

other factor that delays emergence are associated with the disease (Kolte 1997). Young plants are 

particularly susceptible especially if the seeds are planted too shallow (<3 cm) or too deep (>8 cm) 

and the soil is exceptionally wet or dry. High soil temperatures also increase the risk of infection. 

As plants mature and the soil cools, plants become less susceptible and the mortality rate declines. 

A. niger produces oxalic acid and pectinase (polygalacturonase) enzyme in vitro and in vivo. This 

indicates that oxalic acid and pectinase enzymes are involved in the pathogenesis, which is further 

substantiated by the fact that only virulent isolates of the fungus produce oxalic acid and avirulent 

ones are not capable of doing so. At a soil moisture level of 13%–16%, peanut seedlings are affected 

most by collar rot. Sandy or sandy-loam soil and amendment of soil with sulfur, FYM, and gypsum 

have been found to increase the incidence of collar rot. 

Etiolated plants are more susceptible to the disease, and high light intensity has been found to 

render seedlings almost immune to infection (Ashworth et al. 1964). Lesions induced by drought 

stress and high temperatures predispose the plant to infection. This type of predisposition can occur 

in the field during the early period of crop growth by partially covering seedlings with hot sand 

(Ashworth et al. 1964, Kokalis-Burelle et al. 1997). 

DISEASE MANAGEMENT 

Host Resistance 
Breeders have not actively selected and bred for peanut resistance to A. niger in cultivar development 

perhaps because the disease is successfully brought under control due to fungicidal seed treatment 

and only partial resistance has been reported in cultivated peanut germplasm. For example, geno

types, namely, EC 21115 (U-4-47-7), B-4, B-21, B-60, B-76, B-101, B-18L, Asiriya Mwitunde (Kolte 

1984), N03081T (Bailey), Perry5 (Ruark and Shew 2010), J-11, and GG-2 (Gajera et al. 2013), have 

been found to be moderately or partially resistant to the disease. The runner types of peanut geno

types are less susceptible to collar or crown rot in comparison to bunch types (Wynne et al. 1991). 

CHEMICAL CONTROL 

Effects of Fungicides 
Many seed-dressing fungicides are reported to be effective against collar rot of groundnut 

(Gangopadhyay et al. 1996, Karthikeyan 1996). Seed treatment with thiram at 0.5% or captan at 

0.25% or Vitavax 200 (carboxin 37.5% + thiram 37.5%) at 0.4% has been found effective for the 

control of both the phases of the disease under field conditions almost all over the world (Purss 

1960, Jackson 1964, Sidhu and Chohan 1969, Agnihotri and Sharma 1972, Rakholiya et al. 2012). 



  

 

  

 

 

              

                 

                 

              

 

                 

  

 

 

 

47 Fungal Diseases 

The better efficacy of thiram and carboxin is related to its fungitoxic ability and its influence in 

increasing the population of T. viride antagonistic to A. niger around the treated seed. Among the 

newer fungicides, azoxystrobin alone (Rideout et  al. 2002, 2008) or Dynasty PD (a mixture of 

azoxystrobin + fludioxonil + metalaxyl-M) at 2.5 g/kg of peanut seed in dry form can be used, using 

equipment specifically designed to apply a dust seed treatment to peanut seed (Australian Govt: 

Australian Pesticides and Veterinary Medicine Authority Permit No.: Per 13513). 

Effects of Nonconventional Chemicals 
Copper hydroxide at 0.25 g/kg of peanut seeds could provide an option for growers in organic 

peanut production for the control of the disease (Tarekegn et al. 2007, Ruark and Shew 2010). Seed 

treatment with nonconventional inorganic salt chemicals such as barium sulfate, zinc sulfate, and 

zinc chloride has been found to be effective in the control of collar rot of peanuts (Dasgupta et al. 
2000). Supplementing zinc ions as an antioxidant treatment during peanut seed germination has 

been found to be effective in controlling the hyper increase of reactive oxygen species (ROS) in 

certain peanut varieties (as GG-11 and GG-24), which then imparts host resistance to A. niger infec

tion due to the formation of oligomeric protein of 110 kDa. It, therefore, reveals that control of ROS 

could control the A. niger infection in peanuts (Jajda and Thakkar 2012). 

CULTURAL CONTROL 

Only sound, undamaged healthy seeds should be selected and treated with thiram or captan before 

sowing. The seeds should be sown in good soil moisture conditions, avoiding deep sowing (pref

erably not more than 2 in.) so that the emergence of seedlings is hastened and cotyledons come 

above the soil soon, and the pathogen is less liable to cause infection, thereby escaping the disease 

(Chohan and Kapoor 1967). During interculture operations, care should be taken to avoid injury to 

seedlings and deposition of soil particles on cotyledons. If cotyledons and the collar region remain 

exposed to aeration and light under field conditions, the symptoms of collar rot do not develop on 

peanut seedlings. This constitutes another important measure to control the disease, which can be 

achieved by ordinary hand hoe during the hoeing operation. 

In India under the Punjab conditions, mixed cropping with short-stature crops like moth 

(Phaseolus aconitifolius) in alternate rows has been found useful in decreasing the incidence of 

collar rot caused by A. niger. Moth is a leguminous short-stature crop, and it does not compete with 

peanut, with regard to both nutrients and light (Chohan and Kapoor 1967). 

A. niger fungal populations are rich in soils where continuous cultivation of peanut is a regular 

practice or peanut is included in the cropping system (Emmanuel et al. 2011). Therefore, it is appro

priate that crop sequence of chickpea peanut or wheat peanut has been suggested for reducing the 

intensity of collar rot under Indian conditions (Chohan and Kapoor 1967). Planting of peanuts on 

land that has been kept fallow or cropped with grain sorghum the year before (or for longer periods) 

has been suggested under the U.S. conditions in New Mexico area (Hsi 1966). Irrigation of the fields 

within 28 days of sowing has been reported to be useful in protecting plants from severe damage in 

China (Lin 1982). Soil solarization with TPE tarping at 0.05 or 0.10 mm during April for 30 days is 

useful in reducing the crown rot incidence by 70%–95% (Reddy et al. 2007a,b). 

BIOLOGICAL CONTROL 

Treatment of premoist peanut seed with talc and 0.5% carboxymethyl cellulose (CMC)-based for

mulation of antagonistic fungi T. viride, particularly strain 60, and T. harzianum at 3–4 g/kg seed 

alone and/or soil application of T. harzianum or T. viride at 25–62 kg/ha preferably in conjunction 

with organic amendment such as castor cake or neem cake or mustard cake at 500 kg/ha has been 

found to be effective in the management of collar rot disease (Raju and Murthy 2000, Rao and 

Sitaramaiah 2000, Sheela and Packiaraj 2000, Kishore et al. 2001c, 2006, Devi and Prasad 2009, 



 

  

 

  

   

   
  

 
 
 

 

 

 

 

 

 

    

    

  

  
                 

              

 

 

 

 

48 Diseases of Edible Oilseed Crops 

Mohapatra and Sahoo 2011, Gajera et al. 2011, 2013, Bagwan 2011b, Gajera and Vakharia 2012). 

T. viride is also reported to be tolerant or compatible with seed treatment fungicides like thiram 

and captan, and seed treatment with T. viride can be combined with reduced half dose of thiram or 

captan, which gives better control of the disease (Kishore et al. 2001c, Devi and Prasad 2009) than 

either of the Trichoderma or fungicidal seed treatment. 

At least six plant growth-promoting rhizobacteria (PGPR) have been successfully investigated as bio

control agents for the control of Aspergillus crown rot disease of peanuts. These are (1) fluorescent pseu

domonads like P. fluorescens (Dilip et al. 1999, Haggag and Abo-Sadera 2000, Sheela and Packiaraj 

2000, Dey et al. 2004, Anand and Kulothungan 2010), (2) P. aeruginosa strain GSE 18 (Achira et al. 
2002, Kishore et al. 2005c, 2006), (3) B. subtilis strain G303 formulated for commercial seed treatment 

use as Kodiak FL (Ruark and Shew 2010, Cantonwine et al. 2011), (4) biofilm-producing Paenibacillus 
polymyxa (Haggag 2007, Haggag and Timmusk 2008), (5) other Bacillus species (Prabakaran and 

Ravimycin 2012, Yuttavanichakul et al. 2012), and (6) Methylobacterium sp. (Madhaiyan et al. 2006). 

Out of those, Kodiak, a flowable formulation (Bayer Crop Science) that contains a select strain of 

B. subtilis G303 (not less than 5.5 × 1010 viable endospores), is worth mentioning. It is designed to use 

in combination with other registered seed-applied fungicides such as thiram, captan, and carboxin to 

extend window of protection. Within 4–8 h of planting, the bacterial endospores in Kodiak begin to 

reproduce, reaching a population of up to 1 million cells/g of root, and the actively growing bacteria 

surround the growing roots blocking the intrusion of pathogen, A. niger, into the plants. They also 

produce a chemical inhibitor that can slow the growth of the pathogen. Thus, B. subtilis or Kodiak is 

often effective and can be considered as standard bioagent seed treatment at 2.5 g/kg of seed for the 

control of crown rot and peanut stand establishment not only in intensive peanut crop production but 

also in organic peanut crop production (Ruark and Shew 2010, Cantonwine et al. 2011). 

Postulated mechanism for better crown rot control due to the aforementioned biocontrol agents 

(Trichoderma, Pseudomonas, Bacillus, and Methylobacterium species) includes inhibition of growth 

of the pathogen by lytic enzymes (β-1,3-glucanase, chitinase, protease) produced by the antagonists 

and induction of systemic host resistance followed by promoted plant growth in terms of plant 

height, increased plant vigor, and efficient rhizosphere colonization and biofilm formation (Sailaja 

et al. 1998, Lashin et al. 1989, Haggag and Abo-Sadera 2000, Kishore et al. 2005d, 2006, Haggag 

et al. 2007, Haggag and Timmusk 2008, Devi and Prasad 2009, Anand and Kulothungam 2010, 

Gajera and Vakharia 2012, Yuttavanichakul et al. 2012). Interestingly, biocontrol of Aspergillus 
crown rot (dry rot) disease has been reported by using transconjugants obtained by the horizontal 

gene transfer from P. fluorescens to Rhizobium, and the percentage control efficacy has been found 

to be better due to the application of transconjugants (Ade and Gangawane 2010). 

EFFECTS  OF PLANT EXTRACTS 

Seed treatment with Calotropis procera leaf extract at 10 mL/kg seed alone or in combination with 

T. viride at 4 g/kg seed has been reported to give significant control of Aspergillus collar rot of pea

nuts (Srinivas et al. 2005). Essential oils (Kishore et al. 2007) and Xenorhabdus metabolites (Vyas 

et al. 2005) are also reported to be inhibitory to A.niger pathogen causing the collar rot disease. 

YELLOW MOLD AND AFLAROOT 

SYMPTOMS 

Yellow Mold Phase 
Because of the fungal growth and its secretion, the peanut seed disintegrates within 4–8 DAS, and the 

seed becomes yellowish brown in color. The testa loses its natural color, turns dark purple to black, and 

becomes brittle. The seeds become rancid, shrivelled, and turn leathery in texture (Figure 2.8). When 

the seeds are split open, the mycelium and sporulation of the fungus are clearly visible in the cavity 



 

 

 

 

49 Fungal Diseases 

FIGURE 2.8 Yellow mold of peanuts caused by A. flavus. 

between the cotyledons of the seeds. Under low soil moisture conditions, the decay is very rapid, since  

the activity of the fungus gets prolonged, owing to the delay in emergence of seedlings. Seedlings and  

ungerminated seeds shrivel to become a dried brown to black mass covered by yellow or green spores. 

Aflaroot Phase 
The germinating seeds, which escape the yellow mold phase, may show symptoms on the cotyle

dons. It is interesting that the hypocotyl is not affected. The pathogen is first seen on cotyledons,  

and from there it inhibits the growth of the plumule and the root. Cotyledon surfaces are covered 

with masses of yellow-green spores. The affected cotyledons show necrosis of the central tissues 

by forming reddish-brown lesions. Necrosis of the cotyledons terminates at or near the coty

ledonary axis. The true leaves, which emerge from the affected seedlings, become reduced in 

size, with pointed tips, and show much variation in shape (Figure 2.9). The color of the affected 

FIGURE 2.9 Aflaroot disease of peanuts caused by  A. flavus. 



 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

    

 

 

 

 

 

50 Diseases of Edible Oilseed Crops 

leaves is yellowish green in comparison with the deep-green color of the leaves of healthy plants. 

The leaflets also show vein-clearing symptoms. The auxiliary branch arising from the side of 

affected cotyledons does not grow normally, but remains quiescent. If both the cotyledons are 

affected, plants remain quite stunted and show great variation in shape and size of the leaflets. 

The leaves remain thin with a shortened petiole. Leaves are rough to the touch and leathery and 

appear to be deficient in chlorophyll. When the affected plants are pulled out and examined, it 

becomes evident that the radicle is without secondary root development denoting the condition 

described as aflaroot by Chohan and Gupta (1968). Under field conditions, the diseased plants 

can be easily spotted because of their reduced growth and general chlorosis. Since the necrosis of 

the seedlings does not proceed to the hypocotyl, the aflaroot disease-affected seedlings continue 

to live till maturity. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

These diseases occur in most peanut-growing countries of the world particularly in Egypt, India, 

and Sudan (Mehan et al. 1991, Kolte 1997). Incidence of Aspergillus (A. flavus) contamination of 

peanut seeds favoring potential occurrence of seedling infection (aflaroot) is recently highlighted 

from Ethiopia (Mohamed and Chala 2014). Yellow mold was first observed in 1984 in a commercial 

peanut farm in South Texas in the United States (Subrahmanyam et al. 1987). Losses of 10%–20% 

in seedling emergence due to yellow mold phase and 5%–11% due to the aflaroot phase have been 

reported from India (Chohan and Gupta 1968). 

PATHOGEN: A. flavus (LINK) EX. FRIES 

Classification 
Domain: Eukaryota 

Kingdom: Fungi 

Phylum: Ascomycota 

Subphylum: Pezizomycotina 

Class: Eurotiomycetes 

Order: Eurotiales 

Family: Trichocomaceae 

Genus: Aspergillus 
Species: flavus (Link) ex. Fries 

The fungus is ubiquitous and saprophytic, and it grows rapidly on a variety of media. Conidial 

heads typically radiate measuring 500–600 μ in diameter, with the conidiophore coarsely rough, 

heavy walled, and usually less than 1 mm in length—but it may measure up to 2–2.5 mm— 

sterigmata are either uniseriate or biseriate with the two conditions rarely occurring in the 

same heads. Primary sterigmata measure 6–10 μ × 4–5.5 μ. Secondary sterigmata measure 

6.5–10 μ × 3–5 μ. Uniseriate sterigmata are variable in size from 6.5 to 14 μ × 3 to 5.5 μ with 

conidium forming tips that are usually phialiform; conidia are globose to subglobose and incon

spicuously echinulate and vary in diameter size from 3 to 6 μ, but most measure 3.5 to 4.5 μ. 

Sclerotia are produced in many strains and sometimes these dominate the colony characters. 

Sclerotia are globose to subglobose and red brown in color and measure about 400–700 μ. The 

toxigenic isolates produce more aflatoxin B and show stronger pathogenicity, whereas nontoxi

genic isolates are poor producers of the aflatoxin (Tang et al. 2002). Maximum production of 

the aflatoxin is produced by toxigenic isolate at 25°C. It is reported that highly toxigenic isolates 

produce abundant sclerotia in culture media. 
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EPIDEMIOLOGY  AND DISEASE CYCLE 

The pathogen is seed borne as well as soilborne and survives in crop debris, and its ability to cause 

disease is related to strong saprophytic competitive ability. The pathogen is very active when soil 

moisture is below the field capacity and the atmospheric relative humidity is high. It can grow 

over a temperature range of 17°C–42°C and the optimum temperature for aflatoxin production is 

25°C–35°C. The population of A. flavus propagules remains high in the top 5 cm of soil and gradu

ally decreases with soil depth. Vertisol soils support a smaller population of A. flavus than the 

alfisols. Damage to pods by the lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), exacer

bates the disease (Kolte 1997). The development of infection is related to the production of afla

toxin. Nontoxigenic isolates of the fungus are not pathogenic to seedlings. However, no correlation 

between mycelial growth and aflatoxin production is observed (Lisker et al. 1993). The extent of yel

low mold damage and aflatoxin is dependent on the environmental conditions, production, harvest

ing, and storage practices. Following harvest, further infections may develop with fungal growth 

covering the seed surface and invading the seed itself. A yellow or brown discoloration of pods and 

weight loss of pods result in subsequent losses (Satish Kumar and Popat 2010). 

DISEASE ANAGEMENT  M

Since the fungus is a weak parasite, agronomic practices that favor rapid germination and vigor

ous growth of the seedlings will reduce the chances of A. flavus infection. Peanut germplasm lines 

possessing thick seed testa structure and protein characteristics can resist the infection by A.flavus. 
(Shan et al. 2006, Upadhyay et al. 2001a,b, Wang et al. 2010). Seed treatment with some of the 

fungicides, for example, carbendazim, captafol, mancozeb, or thiram, at 3–3.5 g/kg peanut seed has 

been found to manage the disease significantly under field conditions (Kolte 1984). The yellow mold 

and the possibility of controlling the aflaroot by the use of antagonistic isolates of T. viride and T. 
harzianum have been studied (Desai et al. 2000, Anjaiah et al. 2006, Bagwan 2011b); besides, there 

exists a potential of using certain isolates of plant growth-promoting fluorescent pseudomonads for 

the control of the infection caused by A. flavus and yield enhancement attributes in peanuts (Dey 

et  al. 2004), whereas biocontrol of aflaroot disease has been reported by using transconjugants 

obtained by the horizontal gene transfer from P. fluorescens to Rhizobium, and the percentage con

trol efficacy has been found to be better due to application of transconjugants (Ade and Gangawane 

2010) and transgene over-expressing a tobacco β-1,3-glucanase in peanut (Sundaresha et al. 2010). 

Gamma-ray peanut mutant resistant to A. flavus infection has been reported (Azza et al. 2003). 

CHARCOAL ROT 

SYMPTOMS 

The symptoms of the disease appear in different phases. The development of water-soaked lesions 

on the hypocotyl near the soil surface is a characteristic symptom of this disease. After the hypo

cotyl is girdled, the seedling dies. Usually, the plants show typical symptoms when they approach 

maturity. Initial symptoms become visible in the form of the development of a red-brown water-

soaked lesion on the stem just above the soil surface. Gradually, the lesion then becomes dark 

and spreads upward as well as downward, covering larger areas of the stem and root. The stem 

rot symptoms develop partially or completely by girdling of the stem by the lesion. If the stem is 

completely girdled by the lesion, the affected plants show wilting, followed by rapid colonization of 

the branches, which might result in defoliation. The plant then turns brown and subsequently dies. 

Usually, rotting of the stem is associated with the rotting of the roots also. The root rot symptoms, 

independent of stem rot symptoms, appear rarely. If the root alone is affected, the taproot shows rot

ting, which becomes visible by a shredded appearance of the tissue. The dead tissue is covered with 

abundant minute black sclerotia, giving a charcoal or ashy-gray appearance to the tissue. Although not 

normally classified as a foliar pathogen, M. phaseolina does cause leaf spots (Gupta and Kolte 1982). 
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GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Charcoal rot of peanuts has a wide geographical distribution and is especially found in tropical and 

subtropical countries with arid to semiarid climates in Africa, Asia, and North and South America. 

It is particularly important in Burma, Gambia, India, Israel, Kenya, Malawi, Mauritius, Nigeria, 

Senegal, Sudan, Syria, and Venezuela, but is of minor importance in the United States (Kolte 1997). 

All phases of the disease are economically important. Reduction in yield of the crop may be because 

of poor stand due to seedling rot or by killing of the plant at maturity. The percent incidence of mor

tality due to the disease may be as high as 65%–72% as reported from India and from Argentina. 

About 10% loss in yield due to the root rot phase of the disease has been reported from India and 

Palestine (Kolte 1997). 

PATHOGEN: M. phaseolina (TASSI) GOID (SYNS. M. phaseoli (MAUBL.)  
ASHBY, R. bataticola (TAUB.) BRITON-JONES, Sclerotium bataticola  
(TAUB.),  AND  Botryodiplodia phaseoli (MAUBL.) THRIUM) 

Classification 
Kingdom: Fungi 

Phylum: Ascomycota 

Class: Dothideomycetes 

Subclass: Incertae Sedis 

Order: Botryosphaeriales 

Family: Botryosphaeriaceae 

Genus: Macrophomina 
Species: phaseolina (Tassi) Goid 

M. phaseolina is an anamorphic fungus in the ascomycete family Botryosphaeriaceae. It is nor

mally being without an observable sexual stage, but many isolates have been shown to be anamorphs 

with sexual teleomorphs so they are generally grouped as mitosporic fungi (Coelomycetes) that have 

enclosed conidia. It is highly variable, with isolates differing in microsclerotial size and the pres

ence or absence of pycnidia. Microsclerotia are of uniform texture and jet black in color and appear 

smooth and round to oblong or irregular. Across isolates, microsclerotia vary on size and shape and 

on different substrates. They are made up of anastomosing mycelial cells that are thick walled and 

dark brown, and several such cells compose an individual microsclerotium. The pycnidial stage is 

common on peanuts. Pycnidia are initially embedded in host tissue, then erumpent at maturity. They 

are 100–200 μm in diameter; dark to grayish, becoming black with age; globose or flattened globose; 

and membranous to subcarbonaceous with an inconspicuous or definite truncate ostiole. The pycnidia 

bear simple, rod-shaped conidiophores, 10–15 μm long. Conidia (14–33 × 6–12 μm) are single-celled 

hyaline, elliptical, or oval. Despite its wide host range and wide phenotypic diversity among isolates, 

the genus Macrophomina contains only one species M. phaseolina (Edraki and Banihashemi 2010). 

Molecular studies using species-specific probes and primers and RFLP and RAPD techniques show 

no variation among isolates from different hosts in restriction pattern of DNA fragments amplified 

by PCR of ITS region and also confirm that M. phaseolina constitutes a single species (Su et al. 

2001, Babu et al. 2007). Sequencing of 92.3% of the genome of M. phaseolina has been done, and 

about 14,249 ORFs, that is, protein-encoding genes, are predicted and 9,934 validated by transcrip

tome (Islam et al. 2012). It has an abundance of oxidases, POs, and hydrolytic enzymes for degrading 

cell wall polysaccharides and lignocelluloses to penetrate into the host tissues. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The causal fungus is both seed borne and soilborne. Mycelium in seed and mycelium and micro

sclerotia or pycnidia in plant debris in soil are primary sources of inoculum. The pathogen can be 



 

 

 

 

 

 

 

 

 

  

 

   

 

53 Fungal Diseases 

detected in the seed coat, cotyledons, and embryo of peanuts (Chakrabarty et  al. 2005). Peanut 

germplasm stored for various durations at 4°C commonly shows 10%–29% infection of this patho

gen. Infected seeds do not germinate or produce seedlings that die soon after emergence (Singh et al. 

2003b). The microsclerotia can remain viable in dry soils for many years, but rapidly loose viability 

in wet soils. The microsclerotia are black and spherical to oblong in structure that are produced in 

the host tissue and released into the soil as the infected plant decays. These multicelled structures 

allow the persistence of the fungus under adverse conditions such as low soil nutrient levels and tem

perature above 30°C. Microsclerotial survival is greatly reduced in wet soils surviving no more than 

7–8 weeks and mycelium no more than 7 days. Germination of the microsclerotia occurs throughout 

the growing season when temperatures are between 28°C and 35°C. Sclerotia are then stimulated to 

germinate by giving rise to the mycelium that grows in the direction of the host surface. A certain 

amount of vegetative growth on the host surface appears to be essential prior to penetration, and then 

penetration occurs through cotyledons during emergence and through rootlets. Peanut seedlings are 

infected more rapidly and severely at 29°C and 35°C than at 18°C or 24°C, with plumules being 

invaded more frequently than roots. The intact pods are invaded most rapidly at 26°C–32°C. Mature 

pods are invaded, whereas actively growing pods remain free of the disease. When dry pods are 

allowed to hydrate over a 6-day period at 26°C, 32°C, or 39°C, pods are penetrated by the fungus 

quite extensively. Microsclerotia germinate on the root surface and germ tubes form appressoria that 

penetrate the host epidermal cell walls by mechanical pressure and enzymatic digestion or through 

natural openings. The hyphae grow first intercellularly in the cortex and then intracellularly through 

the xylem colonizing the vascular tissue (Okwulehie and Okpara 2002). Once in the vascular tissue, 

M. phaseolina spreads through the taproot and lower stem of the plant producing microsclerotia that 

plug the vessels. The rate of infection increases with higher soil temperatures, and low soil moisture 

will further enhance disease severity. Hot, dry weather promotes infection and development of char

coal rot. The charcoal rot is a greater problem when the plant is under drought stress. It is reported 

that incidence of the disease is higher in shallow cultivated fields than in those planted at a depth 

of 9 in. Damaged pods and kernels during harvesting and shelling are liable to be affected more by 

M. phaseolina. The fungal growth in pods is increased by rain after harvest. The mechanical plug

ging of the xylem vessels by microsclerotia, phaseolinone toxin production, hydrolytic and lignocel

lulose enzymatic action, and mechanical pressure during penetration lead to disease development 

(Islam et al. 2012). The population of M. phaseolina in soil will increase when susceptible hosts are 

cropped in successive years and can be redistributed by tillage practices. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Some of the peanut lines possessing less susceptibility or tolerance to the disease have been identi

fied. For example, Spanish bunch peanut (A. hypogaea subsp. fastigiata var. vulgaris) cultivar TG 38 

developed by irradiating with 300 Gy gamma-ray F1 seeds of the cross Girnar 1 × TG 26 has been 

released as resistant cultivar to charcoal rot in India (Kale et al. 2007). Drought-, waterlogging-, and 

PStV-tolerant peanut cultivar Huayu 16 is also resistant to M. phaseolina, and the same is released 

for wider adaptability in northern China (Li and Qiu 2000). 

Chemical Control 
Seed treatment with captafol or captan (0.38%) or thiram (0.45%) or Rizolex T (50%) has been 

found effective in improving seed germination and seedling stand. This results in the reduction of 

the disease incidence, increasing the yield by 13%–23%. However, the effect of seed treatment does 

not persist for so long period as to check the development of the disease at maturity or on develop

ing pods. Soil treatment with benomyl drench (0.1%) followed by quintozene drench (0.5%) or with 

Rizolex T (50%) during the growth period is helpful to control the disease at a later period of crop 
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growth (Kolte 1997, El-Wakil and Ghonim 2000). If the seed colonization is <20%, seed treatment 

with a mixture of carbendazim and thiram (1:1) at 2 g ai/kg is used, routinely in plant quarantine 

laboratories to eliminate M. phaseolina (= R. bataticola) from peanut seeds, and seed samples 

having >20% colonization are rejected (El-Habbaa et al. 2002, Chakrabarty et al. 2005). 

Cultural Control 
Late sowing of the crop is suggested to reduce the incidence of the disease, but late sowing should 

not be done in areas where rosette is an important disease problem. Deficiency in soil moisture 

affects the physiology of peanut plants influencing the increase in the incidence of the disease that 

can, however, be reduced by irrigating the crop field (Okwulehie 2000, 2004, Chougule and Kore 

2004). Balanced fertilization inclusive of trace elements such as copper, manganese, and zinc and 

insect pest control ensure good vigorous growth of the plants and help in the reduction of incidence 

of charcoal in peanuts. Application of gypsum at 150 kg/ha in severe cases results in a significant 

reduction of the disease (Kolte 1997). 

Biological Control 
The use of fungal antagonists Trichoderma virens/Gliocladium virens (Maheshwari et  al. 2001, 

Christopher et  al. 2008), T. viride (Malathi and Doraisamy 2004), T. harzianum (Malathi and 

Doraisamy 2004), T. hamatum (Vimala et  al. 2000), and bacterial antagonist B. sphaericus 
(El-Shehaby and Morsy 2005) has been investigated to be useful in the control of charcoal of pea

nuts. Generally, seed treatment with the fungal antagonist at 4 g/kg of peanut seed in conjunction 

with soil application of the antagonist at 100 g/m2 at the time of sowing and 30 DAS combined 

with FYM shows maximum reduction in the charcoal rot incidence (Christopher et al. 2008). Seed 

bacterization with talc-based formulation of PGPR such as P. fluorescens strain Pf1 or GRC strain 

(Meena et al. 2001b, Gupta et al. 2002, Shanmugam et al. 2002, 2003, Ramesh and Korikanthimath 

2010) and Bradyrhizobium sp. (Deshwal et al. 2003) results in reduction of incidence of charcoal 

rot, making the PGPR as potential biocontrol agents for the control of the disease. With a view to 

understanding the broader aspects of control of the disease, the qualitative and quantitative aspects 

of rhizosphere mycoflora of peanuts as influenced by seed bacterization or seed-dressing fungicides, 

sprays of chemicals on the crop, and inorganic and organic soil amendments have been studied. 

Effects of Plant Extracts 
Cold-water extracts of Allium sativum, Polyalthia longifolia, and thyme have been proved to be 

effective in significantly reducing the incidence of charcoal of peanuts (El-Habbaa et  al. 2002, 

Udhayakumar et al. 2008). 

Sclerotinia BLIGHT 

SYMPTOMS 

Sclerotinia species are causing the disease often referred to as stem rot, but the disease is truly a 

blight, characterized by sudden and serious damage to all aerial parts of the plant. Usually, the pegs 

are invaded first at the soil level, facilitating the colonization of the lateral branches. Light-tan to 

brown lesions demarcating the healthy and affected tissue appear on the lateral branches. The lesions 

then become dark brown, and shredding of the tissue becomes evident from an affected branch, and 

the fungus moves into and colonizes the main branch also. Leaves of such plants become chlorotic, 

turn brown, and wither, resulting in defoliation and death of the lateral branches or of the whole plant. 

Pods of severely affected plants also show rotting. The taproot becomes necrotic and turns black 

in color. Abundant white fluffy mycelium appears on the soil surface in close proximity of the 

affected parts or debris in the field. Sclerotia of the fungus are also produced on the surface and 

within the affected branches, in the central portion of the taproot, on the pegs, on the surface of the 

pods, on the interface of the shell, and inside the seed. 



 

 

  

 

 
  

 

 

 

 

   

  

 

  

 

55 Fungal Diseases 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Occurrence of the disease is likely to be restricted only to such areas in temperate regions and under 

cool tropical conditions where the mean temperature drops below 25°C during the growing season 

of the crop often at intermediate altitude. The first report of occurrence of the disease caused by 

Sclerotinia sp. on peanuts was from Argentina in 1922 by Marchionatto (1922). Subsequently, the 

disease was reported from Australia, China, India, Israel, Japan, Australia, Mauritius, Taiwan, and 

the United States (Kolte 1984, Thiessen and Woodward 2012). The first reports of Sclerotinia minor 
causing the disease in the United States were made in Virginia in 1971 and then in North Carolina 

in 1972. Since its inception in the United States, the fungal disease has become widespread, hav

ing moved to Oklahoma, Texas, and New Mexico as well as becoming severe in Virginia and 

North Carolina. S. minor is more prevalent in most peanut-growing states in the United States, 

but Sclerotinia sclerotiorum has also been reported to be associated with the disease in Oklahoma 

(Wadsworth 1979), Georgia (Woodward et  al. 2006), New Mexico (Sanogo and Puppala 2007), 

and Texas (Woodward et al. 2008) in the United States and in Argentina (Kolte 1984). Epidemic 

outbreaks of Sclerotinia blight of peanuts caused by S. minor have been of regular occurrence from 

1994 to 1999 in Argentina (Marinelli et al. 2001). 

Under low-temperature conditions, the disease can be quite destructive. Yield losses of up to 50% 

for peanut producers in the southwestern United States, particularly in Oklahoma, North Carolina, 

and Virginia, have been reported (Chenault et  al. 2006). Pod yield losses have been correlated 

with aggravated disease incidence resulting from damage done to the plant. Midseason onset of a 

crown infection has the greatest impact on plant productivity, causing a severe decrease in pod yield 

and seed quality. Yield losses of near 80% in some areas have been reported in some areas in the 

United States. The requirement of calcium and intensive use of fungicides for disease control cause 

producers in the Virginia–North Carolina regions to have a higher production cost than most other 

growers in the United States (Partridge et al. 2006). Consequently, peanut crop production acreage 

in Virginia reduced from 23,473 ha in 2002 to only 6,880 ha in 2006. 

PATHOGEN(S):  S. minor JAGGER  AND  S. sclerotiorum (LIB.)  DE BARY 

Classification 
Kingdom: Fungi 

Phylum: Ascomycotina 

Class: Leotiomycetes 

Subclass: Leotiomycetidae 

Order: Helotiales 

Family: Sclerotiniaceae 

Genus: Sclerotinia 

Species: minor Jagger and sclerotiorum (Lib.) de Bary 

Small sclerotia type, for example, S. minor Jagger, and large sclerotia type, for example, 

S. sclerotiorum (Lib.) de Bary, have been reported to cause the disease. Both these species are 

necrotrophic fungal pathogens in the phylum Ascomycota, the order Helotiales, and the family 

Sclerotiniaceae. 
Both produce dense mat of mycelium on the surface of the host and on adjacent soil surfaces; 

dense white bodies then form within this fluffy white mass of mycelium. S. minor produces small 

(0.5–2 mm in diam.), rough angular sclerotia, while S. sclerotiorum produces large (2–10 mm diam.) 

smooth rounded sclerotia. Identification should be made based on a group of sclerotia from the same 

colony rather a single sclerotium. In general, S. minor sclerotia are more numerous, smaller, and 

more angular than the sclerotia of S. sclerotiorum. S. minor sclerotia usually germinate by produc

ing a mass of fungal threads and seldom produce ascospores, but sclerotia of S. sclerotiorum can 

produce ascospores from apothecia. 
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EPIDEMIOLOGY  AND DISEASE CYCLE 

Overwintering sclerotia of commonly occurring S. minor in the soil provide the primary inoculum 

for the disease. They germinate myceliogenically, producing a mass of mycelium that directly pen

etrates peanuts and causes infection on the pegs or lateral branches near the soil initiating the dis

ease (Faske et al. 2006, Smith et al. 2006). Low temperatures (10°C–25°C) and high soil moisture 

favor infection, and the disease becomes severe when there are more cold days in a growing season. 

Myceliogenic sclerotial germination of S. minor and growth as well as infection and colonization of 

peanut tissues are optimum at soil matric potential of −7.2 kPa and optimum temperature of 30°C 

with 95%–100% relative humidity (Smith et al. 2006). Sclerotinia blight becomes more severe as 

soil pH increases from 6.0 to 6.5. The presence of volatile substances (aldehydes, esters, and halo

genated hydrocarbons) from moist undecomposed peanut plant tissues has been shown to initiate 

sclerotial germination of S. minor. Field indices of available moisture in the form of rainfall or rela

tive humidity >95%, air or soil temperatures <29°C, plant growth, and density of foliar canopy are 

used for predicting outbreaks of Sclerotinia blight and the need for fungicide sprays in the United 

States. As the Sclerotinia blight develops in the peanut canopy, numerous sclerotia are produced in 

and on diseased tissues. Sclerotia are then shed into the soil and increase the inoculum density of the 

pathogen, which subsequently becomes available in future growing seasons. Sclerotia of S. minor 
are able to remain viable for as many as 8 years in the soil. Since S. minor seldom produces asco

carps and ascospores, the latter are unimportant in the epidemiology of S. minor–caused disease. 

It usually attacks its host root and stem at or near the soil line in contrast to the most common for

mation of apothecia and ascospores in case of S. sclerotiorum. Hence, it is not uncommon to see 

S. sclerotiorum infections on the foliar parts of the plants because ascospores become airborne to 

spread the fungus and cause disease throughout the field. Senescent flower parts are an ideal site for 

ascospores of S. sclerotiorum to colonize. From this tissue, the pathogen can quickly invade healthy 

leaves, stems, and nuts. It can be a more serious pathogen at the flowering stage of the crop growth 

(Thiessen and Woodward 2012). Interestingly, unlike S. sclerotiorum, S. minor does not need a food 

base of dead or senescing tissues to infect. It has the ability to infect stems and branches in contact 

with the soil with no food bases (Shew 2011). Pathogenic Sclerotinia species produce oxalic acid, 

termed as pathogenicity factor, which predisposes plants to infection. Godoy et al. (1990) showed 

that S. sclerotiorum mutants that are unable to produce oxalic acid cannot infect susceptible plants. 

This indicates that oxalic acid is a necessary pathogenicity factor for the development of the disease. 

Plants injured during interculture operation are predisposed to infection. Peanut plants sprayed with 

captafol or chlorothalonil (0.56–2.24  kg/ha) are affected more severely by the disease, possibly 

because plants sprayed with these chemicals favor more production of oxalic acid by S. minor. 

DISEASE MANAGEMENT 

Host Plant Resistance 
In Cultivated Arachis 
It is difficult to find a high degree of resistance to the disease, but differences in the degree of 

host reaction through screening for resistance can be noticed. In general, Spanish and Valencia 

genotypes because of their upright plant canopy tend to exhibit greater resistance to the disease 

than the dense spreading Virginia and runner genotypes. The increasing level of resistance exhib

ited by these erect genotypes appears to be a plant developmental trait escape and early-maturity 

mechanism (Faske et  al. 2006, Damicone  et  al. 2010). Some of the peanut varieties/lines, for  

example, Tamspan 98 (Simpson et al. 2000), Tamrun (Damicone et al. 2010), TxAG-4, VA 93B 

(Cruickshank et al. 2002), GP-NC-WS 12 (Hollowell et al. 2003b), Tamrun 98 (Tx 901417), and 

Perry (N93112C), and advanced breeding line N92056C (Lemay et al. 2002) have been found to 

show moderate resistance or tolerance or less susceptibility to the disease, but none have allowed 

or have a potential for doing away with the use of fungicide sprays. 

http:0.56�2.24


 
 

 

 

 

  

 

 

  

 

  

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

57 Fungal Diseases 

Molecular Breeding and Transgenic Peanuts for Sclerotinia Blight Resistance 
Genetically modified peanut lines (1) N70-8-B, P53-28-B, and W73-27-B (Partridge-Telenko 

et al. 2011) and (2) N70, P39, and W171 (Chriscoe 2008) expressing oxalate oxidase (Oxox) gene 

from barley have been developed successfully to enhance the resistance to Sclerotinia blight 

through degradation of oxalic acid by Oxox enzyme to produce carbon dioxide and hydrogen  

peroxide preventing predisposition of peanut cells to infection caused by the pathogen. It is dem

onstrated that the transgene Oxox in the peanuts has the potential to eliminate costs of fungi

cide use, increasing profits and promoting a more environmentally sound strategy for Sclerotinia 
blight management (Livingstone et al. 2005). Similarly, peanut transgenic lines No. 654 and No. 

487 transformed with chitinase and glucanase genes (Douglas 2004), and about 32 some other 

peanut transgenic peanut lines possessing a rice chitinase and/or an alfalfa glucanase antifungal 

gene (Chenault et al. 2005) have been developed for resistance to Sclerotinia blight that may be 

useful in traditional breeding and disease management strategies. Simple sequence repeat (SSR) 

primer has been identified as a molecular marker associated with resistance to Sclerotinia blight 

in peanuts. Thus, identification of the marker and development of PCR-based screening method is 

extremely useful to peanut breeders in screening germplasm collections and segregating popula

tions as well as in pyramiding S. minor resistance with other desirable traits into superior peanut 

lines (Chenault et al. 2009). 

Chemical Control 
While the use of resistant cultivars remains a viable option for the management of Sclerotinia 
blight, the use of fungicides may be necessary in cases of severe infestation. Presently, a 

number of fungicides have been tested for use in the control of this disease (Bowen et al. 2000, 

Ryley et al. 2000, Smith et al. 2008). The two most preferred fungicides for use in the control 

of this disease are fluazinam (Omega 500 F from Syngenta) and boscalid (Endura 70 WG from 

BASF). These fungicides are effective against Sclerotinia blight when applied as preventive  

measures. Timing of the first spray is critical. Fields with a history of serious problems should 

be scouted carefully beginning when plants are within 6 in. of touching. Spray the crop when 

Sclerotinia blight is first observed or 60–70 days after planting (calendar program) or according 

to a Sclerotinia blight advisory. A weather-based Sclerotinia blight advisory can be used to time 

applications and prevent unnecessary fungicide applications. If the disease continues to spread, 

one or two more applications may be made at 3–4-week intervals or according to the advisory 

(Shew 2011). In general, two or three sprays of fluazinam at 0.75–1.00 kg ai/ha can reduce the 

disease incidence in the range of 56%–80% on partially resistant cultivars. Boscalid  performs 

marginally better than fluazinam (Smith et  al. 2008). Foliar application of  procymidone  

(0.68–0.75 kg ai/ha) has been found effective in the control of the disease. 

Cultural Control 
Damaging levels of the disease can be prevented by rotating the peanuts with nonhost cereal 

crops such as corn, sorghum, or cotton, avoiding cool-season vegetables. However, this practice 

has shown limited effectiveness in controlling the Sclerotinia blight because the sclerotia are 

able to remain viable for as many as 4 years in the soil (Partridge et al. 2006, Shew 2011). In 

addition, many winter annual weed species serve as hosts for S. minor during winter fallow, 

potentially reducing the benefits of crop rotation (Hollowell et al. 2003a). Hence, it is impera

tive that sanitation by way of weed control be practiced as one of the disease management 

strategies. Planting density influences the disease incidence and severity and could become a 

useful aid in disease management depending on the cultivars used (Maas et al. 2006). To reduce 

the spread of sclerotia of infested farm from one location to another by contaminated soil and 

plant debris lodged in farm equipment and shoes, it is recommended that the infested items 

be removed from these sites and be immersed in 6% sodium hypochlorite (NaOCl) solution 
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for 60 min. Sodium hypochlorite is proved to be lethal to bare sclerotia when immersed in its 

solution of 6% for 5 min or 3% for 10 min (Wilson et al. 2010). 

Biological Control 
Among the antagonistic fungi parasitizing sclerotia of Sclerotinia spp., Coniothyrium minitans has 

been identified to have great potential in the management of Sclerotinia blight of peanuts caused 

by apothecium-producing S. sclerotiorum. The effects have been shown to be long term (Partridge 

et  al. 2006, Whipps et  al. 2008). A spore suspension of  C. minitans applied across field crops 

infected by S. sclerotiorum at the first appearance of apothecia results in a reduced population of 

sclerotia in soil at the end of a 7-year period even when susceptible crops are planted. However, less 

information is known about the effectiveness of C. minitans on S. minor. If C. minitans is active on 

S. minor, as has been found in some studies, then it may provide a way to reduce sclerotial numbers 

in peanut fields heavily infested by S. minor, thereby reducing losses. However, more studies are 

needed to confirm the effectiveness of C. minitans against S. minor causing Sclerotinia blight of 

peanuts. The possibility of some endophytic and epiphytic bacteria as potential bacterial antago

nists against some soilborne pathogens of peanuts including S. sclerotiorum has been evaluated 

(Tonelli et al. 2010). 

CYLINDROCLADIUM BLACK ROT 

SYMPTOMS 

Under field conditions, the affected plants show chlorosis and wilting. Such plants also exhibit 

blighting of the leaf tips and margins. The lateral foliage is usually less affected than the 

erect primary branches. On artificial inoculation, circular brown spots of 0.5–1 mm diameter 

appear on leaves. The spots are surrounded by chlorotic halos that measure up to 2 mm in 

diameter. The hypocotyls and taproots become necrotic and black, with necrosis terminating 

at the soil level. The tips of the lateral roots and taproots are sloughed off, leaving short dark-

brown to black fragmented stubs. Adventitious roots often develop on diseased plants at the 

soil level. Dark-brown to black and slightly sunken lesions appear on the pegs and pods, but 

the size of the lesions on pods is larger. The distinguishing feature of the disease is the pres

ence of numerous orange-red perithecia at the base of the stems at the soil level or on the pegs 

and pods under the soil. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The causal fungus is found in tropical and subtropical regions, and it is thought the fungus was 

introduced from Asia during the establishment of a tea plantation in coastal Georgia in the 1950s. 

Bell and Sobers (1966) first observed the occurrence of Cylindrocladium black rot (CBR) of pea

nuts in Georgia in 1965. Since then, this disease has been reported in all peanut-producing areas 

of the southeastern United States (Kucharek et al. 2000, Wheeler and Black 2005) and in Japan, 

India, and Australia (Kolte 1984). The disease has been a cause of major concern, particularly in 

Virginia and North Carolina because of its widespread occurrence and chronic threat to peanut 

production (Branch and Brenneman 2003). In other parts of the United States, outbreaks of CBR 

have remained static, and yield losses are generally of secondary importance to other soilborne 

diseases. The first report of its occurrence with 50% incidence from the Guangdong Province in 

China has been made in 2008 (Pan et al. 2009) followed by another first report of its occurrence 

from the Jiangxi Province in China in 2012 (Gai et al. 2012). Depending on the age of plant at the 

time of infection, the effect of the disease can be devastating. When the underground parts of the 

plants are destroyed due to the disease, the loss in pod yield and mature kernels may occur up to 

50% and 30%, respectively. 



 

              

               

 

 

              

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

59 Fungal Diseases 

PATHOGEN: ANAMORPH, Cylindrocladium parasiticum CROUS, 
WINGFIELD & ALFENAS (TELEOMORPH, Calonectria ilicicola BOEDIJN & REITSMA) 

Anamorph: C. parasiticum Crous, Wingfield & Alfenas (teleomorph, C. ilicicola Boedijn & 

Reitsma). It is an ascomycete in the Sordariomycetes group. The fungus is homothallic and pro

duces orange-red subglobose to oval or obviate perithecia, 300–500 × 290–370 μm; asci are hyaline, 

clavate, long-stalked, and thin walled, contain eight ascospores, and measure 95–138 × 13–19 μm; 

ascospores are hyaline, granular, and fusoid to falcate, with one to three septa, slightly constricted 

at the medium septum, and measure 34–58 × 6.3–7.8 μm; conidia are cylindrical and hyaline, with 

one to three septa, are produced by apical budding, and measure 58–107 × 4–7 μm; conidiophores 

bearing stipes appear at right angles from the host. 

The fungus grows well on potato dextrose agar and produces light, gray-to-white web-like aerial 

mycelium. It can produce conidia, ascospores, and microsclerotia in culture and infected plants. The 

microsclerotia vary in size with an average size of 52.7 × 88.4 μm. A selective medium named as 

sucrose-QT medium has been developed for isolation and inoculum quantification of C. parasiticum 
(Griffin 1977). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The pathogen survives through microsclerotia produced in the roots of affected plants. They are 

produced abundantly in cortical tissues and Rhizobium nodules of infected peanut roots. After 

disintegration of the affected roots, the microsclerotia are released into soil and spread locally 

during cultivation and aqueous runoff. Soil movement on equipment can redistribute microscle

rotia within and between fields. Plant debris blown into the air during harvesting and combining 

can be carried by wind to other fields. Birds have been implicated in disseminating the pathogen 

by ingesting infected peanuts and depositing the microsclerotia in droppings. Conidia and asco

spores are quite susceptible to desiccation, and these cannot remain viable to play any effective 

role in the survival. The primary infection mainly appears through surviving microsclerotia in 

soil. Inoculum levels as low as 10 microsclerotia/g of soil have been reported to initiate epidem

ics. The number of observed infections on roots and the level of symptom expression by plants 

are directly proportional to microsclerotial densities in soil. Soil temperatures of 20°C–25°C 

and moisture levels near field capacity are most conducive to infection and rot of peanut roots 

by C. parasiticum. Randall-Schadel et al. (2001) confirmed seed transmission of the pathogen 

and CBR-infected seed could also be a source of primary inoculum to initiate disease epidem

ics. Infection cushions are formed on the epidermis and complete colonization of the cortex by 

the mycelium occurs. Epidermal cells beneath the infection cushion die and the necrosis of the 

surrounding cortical cell appears, suggesting the involvement of phytotoxins in pathogenesis. 

Fibrous roots emerging from the taproot of the peanut plant disrupt the protective periderm, 

which subsequently provides favorable courts of infection. Evidence for the occurrence of mul

tiple root infection is reported, but it appears that only a portion of the multiple infection con

tributes appreciably to disease development. Since conidia are formed infrequently in nature, 

besides being less viable, the possibility of secondary infection through conidia is eliminated. 

Perithecia are formed on peanut stems after the establishment of infection in large quantities 

if adequate moisture is available. Mature ascospores subsequently develop and are discharged 

between 20°C and 30°C and maximally at 25°C more or less coinciding with vegetative growth. 

Ascospore formation and discharge appear to be controlled by day–night relative humidity fluc

tuations and can be dispersed by rain splash and runoff and appear to play a significant role in 

secondary disease spread within a growing season. All legumes are susceptible to C. parasiticum. The 

incidence of CBR on peanuts increases when soybean is included in the crop rotation sequence 

(Jordan et al. 2008). Nonleguminous crops such as cotton and tobacco are also known to be 

susceptible, but infection of these plants does not increase the inoculum in soil. The root-knot 



   

 

   

 

  

 

 

 

  

               

 

                

               

 

 

 

 

 

  

 

 

 

60 Diseases of Edible Oilseed Crops 

nematode species, Meloidogyne hapla and M. arenaria, have been reported to interact with 

the fungus enhancing the disease severity and incidence on both susceptible and resistant vari

eties of peanuts. For example, root-knot (M. arenaria)-resistant peanut genotype C724-19-15 

can withstand the interaction effect of infection due to C. parasiticum and M. arenaria when 

both pathogens are inoculated simultaneously, but other root-knot-resistant peanut genotypes 

such as C724-19-25 and Georgia-02C show mortality under similar conditions (Dong et  al. 

2009). Because of its sexual stage and wide host range, there is a possibility of the develop

ment of physiological races of C. parasiticum. But currently C. parasiticum appears to con

sist of a genetically homogeneous population with mainly clonal reproduction or inbreeding 

contributing to the population genetic structure. This is because of absence of random mating 

due to homothallic nature of C. parasiticum as well as the clonality of the population (Wright 

et al. 2010). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Use of resistant varieties appears to be more useful. In general, Spanish and runner-type varieties 

are most resistant to CBR (Dong et al. 2008). Some of the most resistant runner-type peanut geno

types are Georgia-06G, Georgia-07W, Georgia-02C, and Carver (Branch and Brenneman 2012). 

A breeding peanut line, 90x7-1-5-1-b2-B, has been developed to be resistant to the CBR and tomato-

spotted wilt virus (Kucharek et al. 2000). Argentine and NC 3033 varieties grow and survive in soil 

having as high as 1000 microsclerotia/g soil, whereas only 0.5 microsclerotia/g soil is sufficient to 

cause severe disease in susceptible varieties. Histological study of the nature of resistance in peanut 

genotypes suggests that in response to infection in resistant genotypes, additional effective peri

derm is formed, which sloughs an entire quadrant of infected taproot. 

Chemical Control 
Several broad spectrum chemical fumigants such as Vapam and Vorlex 201 have been evaluated 

as preplant (4 weeks before planting) treatments, and other chemicals such as captafol, quintozene, 

chloroneb, tebuconazole (Kucharek et  al. 2000), and gypsum have been evaluated for the man

agement of the disease, which appears to be less useful. The soil fumigant, metam sodium, was 

first recognized in 1981 to have commercial value for the control of CBR in Virginia. Following 

applications into soil, metam sodium converts rapidly to methyl isothiocyanate (MIT), which is the 

active ingredient. MIT is a highly toxic, broad spectrum biocide. Because of its highly toxic and 

nonspecific nature, MIT should be applied at least 2 weeks prior to planting to avoid crop injury. 

The severity of CBR increases when roots are parasitized by the northern root-knot nematode 

(M. hapla) and the ring nematode (Criconemella ornata). Metam sodium treatment along with the 

application of Temik 15G at 5–7 lb/A in the seed furrow provides good control of these nematodes 

as well as CBR. 

Cultural Control 
Very little is known about methods of control of the disease through cultural practices. It is, however, 

reported that corn and small grains are highly resistant to the disease, and these should be useful as 

rotational crops to check the incidence of the disease in peanuts. But cotton can be a better rotation crop 

than corn with respect to peanut yield and gross economic return (Jordan et al. 2002). Well-drained 

fields should be used for peanut production, and to prevent soil movement, farm  equipment should be 

thoroughly cleaned prior to field-to-field transport. The harvest of peanut seeds in areas of fields with 

high incidence of CBR should be avoided. This measure is expected to lower the number of speckled 

seeds entering commercial seed lots and reduce the risk for the spread of CBR (Glenn et al. 2003). 



  

 

 

 

 

  
 

 
 

 

 

61 Fungal Diseases 

PEG AND POD ROTS 

SYMPTOMS 

No apparent symptoms of pod rot appear above-ground except that plants with severe pod rot may 

flower profusely and appear abnormally dark green in color late in the season. Below ground, 

symptoms of pod rot caused by Rhizoctonia and Pythium are difficult to distinguish because both 

pathogens are often present. Light-brown areas develop on pods that later turn dark brown or black 

(Figure 2.10). A few to nearly all of the pods on one plant may be affected. Pythium usually causes 

a black, watery rot. Pods rotted by Rhizoctonia have a firm brown decay, and the seeds and inner 

pod wall may be lined with a cream-colored fungus. The seeds within rotted pods are usually com

pletely decayed or severely damaged. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Peanut plants with a few rotted pods are found in most fields all over the peanut-growing coun

tries in the world. Severe outbreaks of pod rot are less common, but can be devastating where 

they occur. Pod rot tends to be severe in sandy soils and in fields intensively cropped to  peanuts. 

Peanut pod rot primarily caused by P. myriotylum is one of the most important diseases in 

the pacific coast region of Cosiguina in Nicaragua (Augusto et al. 2010a,b). Neocosmospora 
striata Udagawa & Y. Horie causing peanut pod rot to the extent of 90% incidence in the Old 

Yellow River drainage area (Sun et al. 2012a) and Neocosmospora vasinfecta E. F. Smith caus

ing similar pod rot disease in peanuts to the extent of 30%–100% incidence in the Sha River 

drainage area (Sun et al. 2012b) have been reported as first reports of occurrences in China. 

Depending on the geographical location, the losses in yield due to rotting of the pods might 

vary in the range of 5%–50%. 

FIGURE 2.10  Pod rot complex of peanuts caused by fungi. 



 
 

 

 
   

 

 

 

 

 

 

 

 

  

  

  

 

   
    

 

 

  
   

62 Diseases of Edible Oilseed Crops 

PATHOGENS: COMPLEX  OF FUNGI  IN PREHARVEST PEG  AND POD ROTS 

There are several types of pod-rotting fungi. The specific pod rots could be caused by fungi 

such as Pythium spp., especially P. myriotylum; R. solani; Fusarium spp., especially F. solani; 
Verticillium albo-atrum; and Botrytis cinerea. Recently, two species of fungi, namely, N. striata 
and N. vasinfecta, have been reported as the causes of peanut pod rots (Sun et al. 2012a,b). Rotting 

of pegs and pods caused by S. rolfsii, M. phaseolina, S. sclerotiorum, and C. parasiticum has been 

described in the preceding pages. The fungi that cause pod rot are normally found at some level in 

most peanut soils. Most grow on the above-ground parts of the plant also. Pythium is the exception 

as it only grows below ground. Advanced stages of Pythium and Rhizoctonia pod rots result in com

plete decay of the pod and kernels. In most peanut-growing areas, Rhizoctonia is the main problem 

in terms of total acreage. On a field-by-field basis, Sclerotinia is the most devastating, but it is not so 

wide spread. Nematode (Pratylenchus brachyurus) and black hull fungus (Thielaviopsis basicola) 

also cause pod discoloration, but the decay is usually superficial. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

A complex of factors in addition to the fungi is probably responsible for these severe outbreaks of pod 

rots. These factors include excessive soil moisture, wide fluctuations in soil moisture, calcium defi

ciency, insect and nematode feeding, and irrigation with poor-quality (salty) water (Choppakatla et al. 

2008). One very important factor among these is low level of available calcium in soil, especially in 

large-seeded cultivars. Pod surface area and surface to volume ratio are important in determining 

the quantity of calcium in seeds, and this explains why large-seeded cultivars are more sensitive to 

calcium deficiency–induced susceptibility to pod rots caused by a complex of fungi (Augusto et al. 
2010a). Sudden increase in maturity of kernels and concomitant development of pale testa kernels 

influence more pod rots. The increase in pod rot due to Fusarium oxysporum and F. solani later in the 

season is associated with pale testa kernels found in pods, which to the unaided eye appear healthy. 

Early defoliation of plants hastens maturity and causes peg breaking. Thus, any disease or insect 

injury resulting in leaf shedding will increase the incidence of rotting of pegs and pods. For example, 

under Malawi conditions, the increase in pod rot is associated with higher incidence of ELS and LLS 

and senescence (Kolte 1984). A long wet season and wetness of the top soil increase the incidence 

of pod rot caused by P. myriotylum particularly in sandy well-aerated soil under Israel conditions. 

Frequent sprinkling of sandy Israeli soil encourages infection of pods by P. myriotylum. Application 

of fertilizers in midseason increases the amount of succulent tissue, favoring more pod breakdown 

by P. myriotylum. While nitrogen amendments with nitrogenous compounds may improve plant 

health, an overabundance of nitrogen may cause an increase in disease such as Rhizoctonia pod 

rot (Thiessen and Woodward 2012). Several instances of definite interactions taking place between 

insect or nematode injury and invasion of pods by P. myriotylum have been reported. Feeding sites of 

corn root worm, Diabrotica undecimpunctata, and of a mite, Caloglyphus michaeli, on peanut pods 

favor the entry of P. myriotylum resulting in the development of rotting of pods. Interaction studies 

between P. myriotylum, F. solani, and M. arenaria revealed that P. myriotylum interacts synergisti

cally with F. solani and M. arenaria, but not with R. solani in causing pod rots of peanuts. F. solani 
alone has been found to predispose the pods to pathogenic activity of P. myriotylum. 

DISEASE MANAGEMENT 

Host Resistance 
Pod rot management through host resistance may be effective but is dependent on the identification of 

the causal agent. Spanish cultivars, especially Toalson, may provide resistance to both Pythium spp. 

and R. solani. Partial resistance to R. solani has also been identified in the runner peanut Georgia 

Browne. Resistance to Sclerotinia has been shown in the varieties Virginia 81B, Virginia 93B, 



 

  

 

 

  

   

 

   

 

 

 

  

   

63 Fungal Diseases 

Tamspan 90 and Southwest Runner, and Tamrun OL 07 (Thiessen and Woodward 2012). Some of the 

peanut varieties have been found to possess field resistance to pod rots (Gopal 2003, Krishnakanth 

et al. 2005, Gopal et al. 2006c). Resistance in Sehwar Z-21 and TMV-2 is attributed to the shortness 

of the gynophore (inherited independently) enabling the development of pods in a shallow layer of 

soil and subsequent escaping of the attack by P. myriotylum. The phenotype of pod is positively cor

related with pod rot severity (Yang et al. 2002). For example, in the Amani variety, resistance to pod 

rot is related to the thicker shell of the pods. It is thus seen that efforts to breed varieties with a shorter 

gynophore and thick pod shell be encouraged in order to combat losses due to pod rots. 

Chemical Control 
Some of the fungicides such as Vitavax, thiram, Rizolex T and Topsin M 70 (El-Deeb et al. 2002), 

mefenoxam, azoxystrobin (Augusto et al. 2010b), and quintozene when applied to the soil before 

planting or at the fruiting zone at the flowering time give good control of pod rots. The use of meta

laxyl + quintozene (PCNB) or metalaxyl + tolclofos-methyl is useful in controlling pod rot diseases 

(Pythium and Rhizoctonia spp.) of peanuts (Filonow and Jackson 1989). 

Cultural Control 
Since pod rot is caused by a complex of several fungi, cultural control measures assume special 

significance in the management of the pod rot diseases of peanuts. Planting of peanuts in infested 

soil should be avoided. Care should be taken to avoid mechanical injury to the developing peg and 

pods during interculture operations. Defoliation of plants due to leaf spot diseases and insect pests 

should be controlled to check rotting of the pods. Infrequent irrigation resulting in drying out of the 

top soil brings about reduction in the incidence of pod rot under Israel conditions. The pod rots can 

be brought under control by mixing gypsum with the upper 15 cm soil layer at the peak of flower

ing period. The gypsum reduces the soil inoculum and increases calcium contents of pods resisting 

invasion of pods by fungi (Kolte 1997). 

Biological Control 
Experimental evidence indicates that infection of fungi on peanut pods can be checked by certain 

formulation (e.g., plant guard) of antagonistic microorganisms particularly T. harzianum (Kanth 

et al. 2000, El-Deeb et al. 2002). Endomycorrhizal fungus, Glomus mosseae, has been proved to be 

of potential usefulness in protecting the peanut plants from infection by pod rot fungal pathogens 

(Abdalla and Abdel-Fattah 2000). But the possibility of actual use of such method over large area 

has not been investigated. 

PROBLEM OF AFLATOXIN CAUSES 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

In 1960, in Britain, widespread fatalities occurred in poultry fed on peanut meal that had been  

imported from Brazil, India, and African countries to Britain, the source of toxin being traced 

to A. flavus. Attempts to isolate any microorganism from the peanut meal resulted in isolation of 

the fungus, A. flavus, which was capable of producing four closely related toxins. The toxins were 

named as aflatoxins (A. flavus toxins) identifying their generic origin. Such toxins were isolated 

from the imported peanut meal also. Thus, aflatoxins were established as the cause of Turkey X 
disease. Species of Aspergillus are normal components of soil microflora, and the principal produc

ers of aflatoxins are the species of A. flavus group including A. parasiticus. A. flavus is the most 

common species in Africa and Asia, while A. parasiticus is predominant in America. In South 

Africa, A. parasiticus is predominant and is associated at twice the frequency of A. flavus (Ncube 

et al. 2010). Aflatoxins are known to cause liver cirrhosis in livestock and humans and they pos

sess potent carcinogenic properties. Aflatoxin contamination in peanuts is a serious and worldwide 
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problem especially in developing countries concerning food safety and human health (Williams 

et  al. 2004, Alwakeel and Nasser 2011). Aflatoxins can result in serious economic hardships to 

producers and adverse health impacts in both humans and domestic animals (Duran et al. 2009). 

Aflatoxin contamination costs the U.S. peanut industry over $20 million annually (Holbrook et al. 

2009). It is reported to be more serious in the southern parts of China and considered to be a cru

cial factor affecting sustainable development of peanut industry in that country (Liao et al. 2009). 

Similar is the situation in India where aflatoxins are found in a very high range of 1400–3600 μg/kg 

of peanut cake. Therefore, aflatoxin contamination is also of significance in relation to public health 

and export. Aflatoxin levels are higher than the minimum parts per billion (ppb) permitted level set 

by the Food and Drug Administration in the United States (20 ppb), the European Union (6 ppb), 

the Department of Health in South Africa (10 ppb), and the Brazilian Regulatory Authorities in 

Brazil (20 μg/kg) for peanuts that are intended for direct human consumption (Oliveira et al. 2009). 

Interestingly, aflatoxin levels of up to 131–160 ppb are reported to be present in peanuts produced in 

the three northern provinces KwaZulu-Natal, Mpumalanga, and Limpopo in South Africa (Ncube 

et al. 2010). Peanuts stored and consumed in rural areas in Mali (West Africa) have been observed to 

be highly contaminated by A. flavus and aflatoxin B1, with average rates of aflatoxin B1 significantly 

above the accepted international standards (Passone et al. 2005, Soler et al. 2010). A. flavus popula

tion in soils from the peanut-growing regions in Argentina (South America) indicates prevalence of 

three strains (sclerotium-forming S and L and nonsclerotial strains). The S strains produce higher 

mycotoxin levels than the L and nonsclerotial strains, and about 10% of the S strains simultaneously 

produce aflatoxins B and G and cyclopiazonic acid. These strains are of great concern in food safety 

as there is a higher probability of aflatoxin contamination in peanuts in Argentina (Barros et al. 

2005, 2006, Nesci et al. 2011). Prevalence of such similar strains of A. flavus is also reported from 

peanut soils in Iran (Amani et al. 2012) and India (Raina and Desai 2006). Consequently, aflatoxin 

contamination of peanuts becomes one of the most important constraints to peanut production in 

many countries and becomes a crucial factor in restricting the export of peanuts from one country 

to another (Asis et al. 2009, Xie et al. 2009). Not only animals but also plants are susceptible to 

aflatoxins (El-Khadem 1968). Most countries/institutions in Asia and Africa give high priority to 

research on the peanut aflatoxin problem (Wynne et al. 1991, Waliyar 1997, Zobia et al. 2012), and 

there appears to be the need for aflatoxin awareness campaigns and management programs to be 

implemented in rural areas in most countries of Asia and Africa. 

CHEMICAL NATURE  OF AFLATOXINS 

Hartley et al. (1963) were the first to successfully isolate and characterize four closely related fura

nocoumarin compounds, which have been designated as aflatoxins B1, B2, G1, and G2. Four more 

aflatoxins are also known, and these are designated as M1, M2, B2a, and G2a. The structural formu

lae of different aflatoxins are given in Figure 2.11. The aflatoxins B and G give a characteristic blue 

and green fluorescence, respectively, under ultraviolet light. 

Invasion of Peanut Pods and Kernels and Conditions for Aflatoxin Production. 

As a rule, the seeds are free of A. flavus at maturity. However, invasion of peanut seeds by afla

toxigenic strains of A. flavus and subsequent aflatoxin contamination can occur both before and after 

harvest especially during drought stress situation. Colonization of seeds by A. flavus increases after 

maturity and during the period between removal from soil and drying. It is observed that conidia of A. 
flavus do not germinate in peg geocarposphere and germination of conidia occurs only in traces in the 

fruit geocarposphere. This is possibly because of the presence of volatile and nonvolatile fungistatic 

substances and increased competition from other soil microorganisms in the peanut geocarposphere. 

What has been observed is that injury of peanut pods, due to growth cracks, mechanical agents, or bio

logical agents such as root-knot nematode (M. arenaria) (Timper et al. 2001, 2004), pod burrower bug 

(Pangaeus bilineatus) (Chapin et al. 2004), and insect pest particularly Tribolium confusum in storage 

(Mohale et al. 2010), predisposes the peanut pods to colonization by A. flavus or the development of 
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FIGURE 2.11 The structural formulae of different aflatoxins. (From Kolte, S.J., Diseases of Annual Edible 
Oilseed Crops, Vol. I, Peanut Diseases, CRC Press, Boca Raton, FL, 1984.) 

aflatoxin in kernels. Following injury to pods or kernels, certain carbon (glucose) and nitrogen sub

strates (amino acids) are exuded that support the conidial germination of A. flavus, enabling it to invade 

the damaged pods and kernels. Low levels of colonization of peanut fruits by A. flavus via flower and 

aerial peg colonization appear to be possible under field conditions (Kolte 1984). Cropping system 

appears to have an influence on A. flavus infection and accumulation of aflatoxin in the peanut (Kumar 

et al. 2008). Peanuts harvested from lands planted with peanuts during the previous season are infested 

with more fungi and contain more aflatoxin than in the case of peanuts raised on lands planted with rye, 

oats, etc., as the previous crops. Population dynamics of A. flavus in soil is also reported to be dependent 

on the varieties of peanut used in cultivation (Yang and Ma 2003), and its density and genetic diversity 

based on analysis of vegetative compatibility group (VCG) can vary greatly among regions and fields 

used for cultivation (McAlpin et al. 2002, Barros et al. 2003, 2006, Horn 2006). Molecular character

ization reveals that each VCG represents a single isolate that produces unique DNA fingerprints. This 

has, therefore, been useful to identify isolates of toxigenic potentials and/or VCG affiliations (McAlpin 

et al. 2002, Victoria Novas and Cabral 2002, Chen et al. 2002, 2005, Pildain et al. 2004, 2005, Barros 

et al. 2005, 2007, Reis et al. 2012). Population of A. flavus is low in summer crop than in rainy season 

crop, and its population increases toward pod development stage, and aflatoxin production is nega

tively related with relative water content, pod wall integrity, and moisture content at harvest (Thakur 
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et al. 2003a,b, Sudhakar et al. 2007). Infection and aflatoxin concentration can be related to the soil 

types, alfisol soils being more conducive than vertisols, and to the occurrence of soil moisture stress 

during pod filling when soil temperatures are near optimal for A. flavus. Average soil temperatures of 

28°C–34°C are favorable for aflatoxin contamination (Craufurd et al. 2006). Thus, late-season drought 

stress is the most important factor for A. flavus invasion and aflatoxin contamination. Peanuts invaded 

by aflatoxigenic strains of A. flavus in the soil before harvest can lead to a serious contamination during 

drying and storage, and the postharvest drying conditions tend to influence the degree of seed infec

tion and aflatoxin contamination. Delayed harvesting also leads to increased fungal invasion. A. flavus 
grows best between 10°C and 45°C temperature and at relative humidity of 75% or more. The optimum 

aflatoxin production, however, takes place at 25°C–30°C temperature at 80%–85% relative humidity. 

Peanut seeds containing more than 9% moisture are likely to be affected by A. flavus, and moisture con

tent of seeds only up to 30% is favorable for aflatoxin production. Prematurely dried pods and rainfall 

at the time of harvesting favor production of aflatoxin during storage (Kolte 1984). 

AFLATOXIN MANAGEMENT 

Host Plant Resistance
 a. In cultivated Arachis species: Efforts on the development of screening techniques especially at 

ICRISAT Center for resistance to A. flavus infection and aflatoxin production have led to the 

foundations for conventional resistance breeding program that has resulted in the identification 

of accessions (genotypes) and development of breeding lines that have resistance to seed infec

tion by A. flavus and low aflatoxin production relative to standard susceptible control cultivars 

in several peanut-growing countries (Jiang et al. 2005, Ntare et al. 2006, Holbrook et al. 2000, 

2008, Nigam et  al. 2009). Table 2.3 gives the list of peanut genotypes/lines from different 

countries that show seed infection and colonization equal to or less than most commonly used 

standard resistant control peanut genotypes J 11 from India. Some such genotypes show stabil

ity of resistance and high yield across seasons and in multilocation environments. For example, 

three lines (ICGVs 87084, 87094, and 87110), bred at ICRISAT Center in India for resistance 

to seed infection, had also been found to be resistant in Niger, Senegal, and Burkina Faso in 

West Africa (Waliyar et al. 1994). Several land races (local germplasm lines) in China have 

been identified as resistant to seed infection by A. flavus and aflatoxin production (Liao et al. 

2009). The resistance of peanut seeds to A. flavus and aflatoxin production is associated with 

certain morphological and biochemical characteristics, namely, structure of seed coat, size of 

wax layer, junction between epidermal cells, thickness of cell wall, and presence of cracks. 

Resistance depends upon the intact and undamaged testa. So, protective role of seed testa has 

been emphasized in case of selection for resistance to seed colonization by aflatoxigenic iso

lates of A. flavus (Asis et al. 2005, Lei et al. 2006, Liang et al. 2009). Resistance to peanut seed 

infection by A. flavus is associated with higher content or higher activity of some biochemical 

constituents such as resveratrol (Liang et al. 2006a,b, Wang et al. 2012), lipoxygenase (LOX) 

(Liang et al. 2002, Tsitsigiannis et al. 2005, Kumari et al. 2012), β-1,3-glucanase (Liang et al. 

2005), oleic acid (Jiang et al. 2006, Ebrahimi et al. 2009), trypsin inhibitor (Liang et al. 2003), 

superoxide radical generation (Liu et al. 2012, Zhou et al. 2012), storage protein including pro

teinase inhibitor (Yan et al. 2012b), hydrogen peroxide (H2O2), malondialdehyde accumulation 

(Zhou et al. 2012), and high total phenols (Kumar et al. 2002, Latha et al. 2007, Kumari et al. 

2011). In contrast to the preceding report on oleic acid, high-oleic peanut lines are reported to 

have nearly twice as much aflatoxin as normal lines (Xue et al. 2003). Some accessions have 

been identified that exhibit low preharvest aflatoxin contamination (PAC) in multiple environ

ments that are tolerant to drought stress conditions (Cleveland et al. 2003, Wang et al. 2004, 

Liang et al. 2006b, Arunyanark et al. 2010, 2012, Girdthai et al. 2010a,b). Some such geno

types are J 11, 55-437, and PI 337394F, HY 22 (Liu et al. 2012). Traits related to efficient abil

ity to nitrogen fixation under drought conditions may be used as indirect selection criteria for 
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TABLE 2.3 
Peanut Genotypes Resistant (R) or Moderately Resistant (MR) to A. flavus Infection 
and Aflatoxin Contamination as Reported from Different Countries in the World 

Genotype Country R/MR Reference(s) 

Tifguard United States R (also possesses Holbrook et al. 

resistance to root-knot (2009) 

nematode and TSWV) 

Minhua 6, Kanghuang 1, Yueyou 9 (released as China R Zhuang et al. (2007) 

A. flavus–resistant cultivars) 

ICGVs 86590, 89104, 94350, 99029; IC 48, India R (also shows resistance Sudhakar et al. 
ICGS-76 to drought) (2007) 

J 11 India R Kumari et al. (2012) 

J 11, PI 337394, PI 337409; breeding lines Manfredi Argentina R/MR Asis et al. (2005) 

68, Colorado Irradiado, and Florman INTA 

9843-26-2, 9817-36-2 China R Chen et al. (2005a) 

S230, R8808, ICGV 86590, Spanish improved, India R Harish Babu et al. 

mutant 28-2 (2004a) 

Significantly superior to J 11 genotypes, ICGV India R Harish Babu et al. 
86155, ICGV 86699, and ICGV 96266; (2004b) 

comparable to J 11 genotypes, ICGV 96262, 

ICG 1697, and R 9227 

ICGV 86590, ICGV 93280, ICGV 95322 Indonesia R/MR Rahmianna et al. 

(tolerant to end-of-season drought) (2004) 

H2030, H2060, H2063, H2095 (tolerant to China R Wang et al. (2004) 

end-of-season drought) 

S206, KRG1, GPBD-4 India MR Varma et al. (2001) 

KB 153 (high content of storage protein China R Yan et al. (2012a) 

+ proteinase inhibitor) 

ICG 12625 China R (to aflatoxin production) Jiang et al. (2010) 

ICG 4750 China R (to invasion) Jiang et al. (2010) 

G 845, G 8 China R Jiang et al. (2006) 

GT-YY 9, GT-YY 20 United States R (to A. flavus) Liang et al. (2005) 

EF 7284 China MR Jiang et al. (2002) 

J 11, HY 22 China R Liu et al. (2012) 

J 11, IC 48, ICGV 89104, ICGS-76 India R Latha et al. (2007) 

Xiaohongmao (high oleic acid content and China R Liao et al. (2003) 

small seed size; bacterial wilt resistant) 

Taishan Zhenzhu, 93-76 China R (to aflatoxin production) Liao et al. (2003) 

resistance to aflatoxin production in peanuts (Arunyanark et al. 2012). Resistance to A. flavus 
infection in peanuts is independently attributed to three genes: (1) ARAhPR10 (Xie et al. 2009, 

2013), (2) PnLOX2 (Yan et al. 2012a), and (3) PnAG3 (Liu et al. 2012). The PnAG3 gene has 

been found to be expressed more prominently in A. flavus–resistant genotypes than suscep

tible ones under drought stress conditions (Liu et al. 2012). LOXs are nonheme, nonsulfur iron 

dioxygenases and are encoded by a multigene family and widely distributed in higher plants. Its 

metabolic products as jasmonic acid, SA, etc., are anti-insect or antibiotic active substances in 

which active oxygen radicals can destroy cytomembrane and inhibit fungus and aflatoxin gen

eration. Certain agronomic traits as associated with resistance to A. flavus in peanuts are valu

able. About 13 common loci (63 alleles having increasing effect) are found to be associated with 

both agronomic traits and resistance to A. flavus (Huang et al. 2012). Microanalysis of resistant 

and susceptible peanut cultivars infected with A. flavus (or with A. parasiticus) has resulted in 
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the identification of 62 genes in resistant cultivars that are upexpressed in response to A. flavus  
infection, whereas 22 putative  Aspergillus resistance genes have been identified to be constitu

tively upexpressed in resistant cultivars in comparison to the susceptible ones (Guo et al. 2009,  

2011). These sources among others have been used in breeding programs, and several lines have  

been derived to possess resistance and produce high yield. The most promising breeding lines  

developed at ICRISAT reported to be resistant to seed infection and colonization are ICGVs  

87084, 87094, 87110, 91278, and 91284. These sources of resistance to PAC have been crossed  

with cultivars and breeding lines that have high yield and acceptable grade and resistance to  

TSWV and root-knot nematode (M. arenaria). One such first exemplary high-yielding PAC-

resistant peanut cultivar is  Tifguard, which is also resistant to TSWV and root-knot nematode,  

has been released in the United States (Holbrook et al. 2009). More such resistant cultivars  

adapted to different production systems need to be developed to meet the requirements of pro

ducers and users. The levels of resistance could be improved further by pyramiding resistance  

genes from different and diverse sources. Liang et al. (2009) have reviewed the peanut host  

resistance mechanisms to aflatoxin contamination and suggested functional genomics approach  

as a valuable tool to understand the comprehensive mechanism of the resistance pathways.

 b.  In  wild  Arachis species:  Arachis chiquitana  has been identified as one of the few wild spe

cies of  Arachis showing resistance to A. flavus colonization, and initial seed screening of 

A. chiquitana for  A. flavus has shown promise of obtaining hybrids resistant to A. flavus  
colonization, though further studies remain to be done whether interspecific hybrid so 

obtained is also resistant to aflatoxin production (Mallikarjuna 2005). 

 c.  Molecular breeding and transgenic peanuts for resistance to aflatoxin production: It is expected  

that transgenic resistance against  A. flavus  (or  A. parasiticus) infection and aflatoxin produc

tion in combination with conventional breeding may lead to the development of agronomically  

superior peanuts that are free of aflatoxin contamination (Ozias-Akins et al. 2002, Nigam  

et  al. 2009). For example, a nonheme chloroperoxidase gene (cpo-p) from   Pseudomonas 
pyrrocinia, a growth inhibitor of mycotoxin-producing fungi, has been introduced into pea

nuts by particle bombardment method. Such transgenic peanuts show inhibition of  A. flavus  
hyphal growth that could be translated to a reduction in aflatoxin contamination (Niu et al.  

2009). Transgenic peanut lines developed by Xie et al. (2013) overexpressing the effects of  

ARAhPR10 gene have been established to play an important role in peanut host resistance to  
A. flavus infection and alleviation of aflatoxin production in peanuts. Besides this, the recourse  

to biotechnology, through modification of the aflatoxin biosynthesis pathway, or the use of  

variants of hydrolytic enzymes (chitinases and glucanases) to provide transgenic protection  

to peanuts against infection by aflatoxin-producing fungi may help in obtaining peanuts free  

from aflatoxin. For example, at ICRISAT, transgenic peanut lines with aflatoxin resistance  

conferred by rice chitinase gene have been developed and characterized (Sharma et al. 2006). 

Chemical Control 
Aflatoxin production during storage can be prevented by treating peanut pods with aureofungin.  

Penetration and invasion by A. flavus  on pods and kernels can also be prevented by spraying chemicals  

like propionic acid (5%), sorbic acid (0.1%), and chlorothalonil (0.15%) on pods of peanut plants (har

vested at proper stage of maturity) inverted in windrows for drying under field conditions (Kolte 1984).  

Postharvest control of  A. flavus infection and aflatoxin contamination can be obtained by the use of  

formulations of food-grade antioxidants such as butylated hydroxyanisole, butylated hydroxytoluene,  

and propylparaben (Passone et al. 2007, 2008, 2009). Methyl jasmonate treatment to peanut seeds pro

motes resistance of peanut plants to  A. flavus infection and production of aflatoxin B1 (He  et al. 2004). 

Cultural Control 
Several workers (Waliyar 1997, Kasno 2004, Rahmianna et al. 2007) have suggested measures to 

prevent damage to peanut pods and kernels during cultivation, harvesting, and storage conditions 
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for the prevention of infection due to A. flavus and aflatoxin production. Some of the important pre

cautionary measures are (1) avoiding damage to plants and pods from soilborne diseases and during 

cultivation; (2) avoiding late-season drought stress by the manipulation of crop duration and supple

mentary irrigation; (3) harvesting and lifting the crop at optimum maturity; (4) discarding damaged 

pods; (5) drying pods to below 8% moisture content; (6) storing under clean, dry, and insect-free 

conditions; and (7) avoiding rewetting of pods/seeds during storage. Peanut seeds washed with table 

salt solution (Sumartini and Yusnawan 2005) and liming the soil have been reported to be useful 

in reducing the seed infection of A. flavus and aflatoxin production (Pereira and Rossetto 2008). 

Cultural control treatments such as soil application of FYM at 15 tons/ha + gypsum at 500 kg/ha 

when combined with Trichoderma soil application + soil drenching with mancozeb at 1000 ppm 

result in significant reduction of aflatoxin content (6.6 ppb) with reduced seed infection (13.3%) and 

maximum pod yield (Ramanaiah et al. 2008). The possibility of inhibition of aflatoxin B1 production 

by irradiating the peanut seeds with gamma irradiation has been studied (Prado et al. 2005, Borges 

et al. 2007). Musa paradisiaca fruit peel can be used to suppress aflatoxin production (Sharma and 

Sharma 2011) 

Biological Control 
Application of Atoxigenic Strains of A. flavus or A. parasiticus 
Aflatoxin contamination of peanuts in the field can be reduced by 77%–98% with biological con

trol through the application of nontoxigenic strains of these species, which competitively exclude 

native aflatoxin-producing strains from developing peanuts (Cotty 1990, Horn et al. 2001, Barros 

et al. 2003, 2006, Horn and Dorner 2009, Yin et al. 2009). These technologies rely on applica

tion of highly competitive atoxigenic strains on solid nutritive substrates. They must be applied at 

a time and in a manner that allows successful competition with aflatoxin producers. Application 

timing and placement greatly influence the efficacy of these formulations in preventing aflatoxin 

contamination. The retention of conidia of atoxigenic strains in the upper soil layers is important 

in reducing aflatoxin contamination of peanuts (Horn et al. 2001). Proven atoxigenic strains can 

be routinely applied once per growing season at 11.2–22.4 kg/ha (10–20 lb/acre) of formulation. 

Reduction of aflatoxins in peanut seeds depends on both the density and the aflatoxin-producing 

potential of native populations and on the fungal strain used for biological control and nitrate

nonutilizing mutants, which can be used for evaluating the efficacy of biocontrol strains (Horn and 

Dorner 2009). 

Application of Native Antagonistic Fungi and Bacteria 
Antagonistic fungi, namely, T. viride (Thakur et al. 2003a,b), T. harzianum (Thakur et al. 2003a,b, 

El-Moneim et al. 2010), Saccharomycopsis schoenii and S. crataegensis (Prado et al. 2008), and 

S. cerevisiae (Prado et al. 2011), and antagonistic bacteria, namely, B. subtilis (El-Moneim et al. 
2010), a strain of marine bacterium,  Bacillus megaterium isolated from the Yellow Sea of East 

China (Kong et al. 2010), Streptomyces sp. strain ASBV-1 (Zucchi et al. 2008), and Burkholderia 
sp. strain TNAU-1 (Ayyathurai et al. 2010), have been found to be significantly effective in reducing 

the aflatoxin production in peanuts. The dose of 20 g of T. harzianum or B. subtilis formulation per 

kg of peanut pods and the seed treatment at 10 g/kg or soil application at 2.5 kg/ha at 30, 45, and 

60 DAS with the formulation of Burkholderia sp. result in significant reduction in the infection by 

A. flavus and aflatoxin B1 contamination in peanut kernels. 

Effect of Plant Extracts 
Garlic bulb extract (Sumartini and Yusnawan 2005, Bora et al. 2010), aqueous extract of leaves of 

lemon (Tewari et al. 2004), aqueous Moringa seed extract (Donli and Dauda 2003), and onion and 

neem extracts (Bora et al. 2010) have shown promise through peanut seed treatment in the control 

of peanut seed infection by A. flavus and aflatoxin production. 



Disease Pathogen Geographical Distribution Reference(s) 

Aerial blight Rhizoctonia solani India, Malaya, United States Kolte (1984) 

(= Thanatephorus cucumeris) 

Alternaria leaf spot/ Alternaria tenuissima (Kunze ex. India, United States Kolte (1984), Kumar 

blight Pers.) Wilts, A. alternata (Fr.) et al. (2012) 

Keissler, A. arachidis 

Anthracnose Colletotrichum arachidis, Argentina, India, Panama, Kolte (1984) 

C. dematium (Pers. and Fries) Taiwan, Uganda, United 

Grov. Sensuvona States 

Black root rot Thielaviopsis basicola (Berk and United States Kolte (1984) 

Berk) Ferr. 

Botrytis blight Botrytis cinerea (= Botryotinia Australia, Japan, Romania, Kolte (1984), Thiessen 

fuckeliana) Taiwan, Tanzania, United and Woodward (2012) 

States, Venezuela, Zambia 

Brown blotch (of Colletotrichum capsici Nigeria Obagwu (2003a,b) 

Bambara groundnut) 

Bud blight Phoma glomerata India Kolte (1984) 

Chlorosis and tip spot Psedoplea trifolii Mauritius Kolte (1984) 

Choanephora leaf spot Choanephora spp. United States Porter (1993) 

Collar rot  Lasiodiplodia theobromae United States Porter (1993) 

(= Diplodia gossypina) 

Diaporthe blight   Diaporthe phaseolorum var. sojae United States Kolte (1984) 

(Lehm.) Wehm. 

Fusarium disease  Fusarium oxysporum, F. oxysporum Bulgaria Vitanova (2003) 

(wilt, dry stem rot)  var. orthoceras 

Fusarium wilt Fusarium martii phaseoli Burkh United States Kolte (1984) 

Leaf scorch Leptosphaerulina trifolii (Rost.) India, Malawi Kolte (1984), Desai 

Pert. and Bagwan (2005) 

Leaf spot Cristulariella pyramidalis Wat. and India, United States Kolte (1984) 

Marshall 

Leaf spot Macrophomina phaseolina India Gupta and Kolte (1982) 

Leaf blight Drechslera spicifera India Jat et al. (2004) 

Limb rot (foliar blight Rhizoctonia solani United States Thiessen and 

phase) Woodward (2012) 

Melanosis Stemphylium botryosum
 Porter (1993) 

Myrothecium leaf blight  Myrothecium roridum Tode ex Fr.
 India Kolte (1984) 

Muddy spot Ascochyta sp.
 Brazil Kolte (1984) 

Passalora leaf spot  Passalora arachidicola
 China Zhang et al. (2010) 

(= Mycosphaerella arachidis) 

Pepper spot and scorch Leptosphaerulina crassiasca (Sechet)  Argentina, India, United Kolte (1984) 

 Jackson and Bell (= L. arachidicola States 

Ye, Chen, and Huang) 

Phomopsis stem blight Phomopsis sp., P. longicolla India, New Mexico (United Kolte (1984), Sanogo 

States) and Etarock (2009) 

Phyllosticta leaf spot  Phyllosticta arachidis hypogaea Argentina, India, Israel, Desai and Bagwan 

Vasant Rao Myanmar, Sudan, Taiwan, (2005), Kolte (1984) 

United States 

Powdery mildew Erysiphe polygoni DC Mauritius Kolte (1984) 

Oidium arachidis Chorin Bulgaria, Israel Kolte (1984) 

(Continued) 
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Disease Pathogen Geographical Distribution Reference(s) 

Olpidium root rot Olpidium brassicae India Porter (1993) 

Scab Sphaceloma arachidis Bit. and Jenk. Argentina, Brazil, China Desai and Bagwan 

(2005), Fang et al. 

(2007), Kolte (1984), 

de Godoy et al. (2001), 

Moraes et al. (2006), 

Wang et al. (2009) 

Smut (peanut smut) Thecaphora frezii Carranza and Cordoba (Argentina) Marinelli et al. (2008) 

Lindquist 

Texas root rot Phymatotrichum omnivorum United States Kolte (1984) 

Verticillium wilt Verticillium dahliae Argentina, Australia, Kolte (1984), Nakova 

Bulgaria, Israel, Southern et al. (2003a,b), 

High Plains of the United Thiessen and 

States Woodward (2012) 

Web blotch Phoma arachidicola Marasas, Australia, South Africa, Kolte (1984), Mozingo 

(net blotch) Pauer, and Boerema United States, Zimbabwe et al. (2004) 

(= Mycosphaerella arachidicola 
Khokhr) 

Web blotch Ascochyta arachidis Woron. Argentina, Russia, United Kolte (1984) 

(= Mycosphaerella argentinensis) States 

Web blight Rhizoctonia solani India Dubey (2000) 

Zonate leaf spot Cristulariella moricola (Grovesinia United States Porter (1993) 

pyramidalis) 
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Other Fungal Diseases of Peanuts 

OTHER FUNGAL DISEASES 

Other less important fungal diseases affecting the peanut crop in different peanut-growing regions 

of the world are given in Table 2.4. 
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PEANUT ROSETTE DISEASE COMPLEX 

SYMPTOMS 

In order to understand the symptomatology of this disease, it is at the outset important to understand 

that the disease is caused by a complex of three agents: peanut rosette virus (PRV) and its satellite 

RNA (SatRNA) and peanut rosette assistor virus (PRAV). 

Peanut rosette disease (PRD) complex occurs as two symptom variants, chlorotic rosette and 

green rosette, with considerable variation within each type (Murant 1989, Naidu et al. 1999). Both 

forms of the disease cause plants to be severely stunted, with shortened internodes and reduced leaf 

size, resulting in a bushy appearance of plants. In chlorotic rosette, leaves are usually bright yellow 

with a few green islands, and leaf lamina is curled (Figure 3.1). In the green rosette, leaves appear 

dark green, with light green to dark green mosaic (Figure 3.2). Chlorotic rosette occurs through

out the sub-Saharan Africa (SSA), whereas green rosette has been reported from Angola, Kenya, 

Malawi, Swaziland, Uganda, and West Africa (Naidu et al. 1999). Variability in SatRNA is mainly 

responsible for symptom variations (Murant and Kumar 1990, Taliansky and Robinson  1997). 

In  addition, differences in genotypes, plant stage at infection, variable climatic conditions, and 

mixed infections with other viruses also contribute to symptom variability under field conditions 

(Naidu and Kimmins 2007). Stunting is more severe in diseased peanut plants containing all the 

three agents than in diseased peanut plants containing only PRV and SatRNA (Ansa et al. 1990). 

Some reports have suggested that PRAV or PRV infection alone in peanut results in transient mottle 

symptoms with insignificant impact on the plant growth and yield (Taliansky et al. 2000). These 

results have, however, been contradicted by studies that provide evidence for the first time that 

PRAV infection alone, without PRV and Sat RNA, affects plant growth and contributes to signifi

cant yield losses in susceptible groundnut cultivars (Naidu and Kimmins 2007). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

PRD, first reported in 1907 from Tanganyika (presently Tanzania), is endemic in peanut-growing 

areas of SSA including its offshore islands such as Madagascar; it is limited to peanut crop and the 

African continent (Zimmermann 1907, Reddy 1991, Naidu et al. 1999). There is no evidence of 

PRD occurrence anywhere outside Africa. Earlier reports on its occurrence based on rosette-like 

symptoms in peanut in India, Java, and Australia were later confirmed as caused by other viruses 

such as Indian peanut clump virus (IPCV). 

Yield losses due to PRD depend on the growth stage at which infection occurs (Olorunju 

et al. 1991). Infection due to chlorotic or green rosette disease occurring in young plants (prior to 

flowering) will result in 100% yield loss. In contrast, plants infected during later growth stages 

(between flowering and pod setting) may show symptoms only in some branches or parts of 

branches, and yield loss depends on the severity of infection. Infection after pod setting/matura

tion causes negligible effects on pod yield. An average annual yield loss due to PRD is estimated 

to be between 5% and 30% in nonepidemic years, and epidemics often result in 100% yield loss 

(Alegbejo and Abo 2002). 
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FIGURE 3.1 Chlorotic rosette of peanut. 

FIGURE 3.2 Green rosette of peanut. 
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PRD usually occurs in small proportions every growing season, but its severity increases in 

groundnut crops sown late in the season. When epidemics do occur, peanut production is signifi

cantly reduced, and the disease has the potential to cripple rural economies in SSA (Naidu et al. 
1999). An epidemic in northern Nigeria in 1975 destroyed approximately 0.7 million ha of ground-

nut, with an estimated loss of U.S. $250 million (Yayock et al. 1976). Similarly, an epidemic in  

1995 in eastern Zambia affected approximately 43,000 ha causing an estimated loss of U.S. $4.89 

million. In the following year in the central region of Malawi, peanut production was reduced by 

23%. As per the estimates of ICRISAT, PRD causes an annual yield loss of U.S. $156 million in 

SSA (Waliyar et al. 2007). 

PATHOGEN(S): THE CAUSAL VIRUS COMPLEX 

Three causal agents, as mentioned earlier, are involved in PRD etiology: PRAV, PRV, and SatRNA 

(Murant et  al. 1988, Murant 1990, Taliansky et  al. 2000). The three agents, PRAV, PRV, and 

SatRNA, synergistically interact. 

PRAV: PRAV virions are nonenveloped, isometric shaped with 28 nm diameter particles of 

polyhedral symmetry. There are no reports on the occurrence of strains of PRAV. The 

genome is a nonsegmented, single molecule of linear positive-sense, single-stranded RNA 

of c. 6900 nucleotides which encodes for structural and nonstructural proteins (Murant 

et al. 1998). It was first recognized as a component of PRD by Hull and Adams (1968) 

who later identified it as a Luteovirus belonging to the family Luteoviridae (Casper et al. 

1983, Reddy et al. 1985a). In general, any Luteovirus purification protocol can be applied 

for the purification of PRAV particles from infected peanut plants (Murant 1989, Waliyar 

et al. 2007). Like other members of the Luteovirus, PRAV is thought to encode for six open 

reading frames (ORFs). Only coat protein (CP) region of the genome has been sequenced 

(Scott et  al. 1996, Murant et al. 1998). Virions are made of single CP subunits of size 

24.5 kDa, and the virus is antigenically related to bean/pea leaf roll virus, beet western 

yellows virus, and potato leaf roll virus (Scott et al. 1996). The virus replicates autono

mously in the cytoplasm of phloem tissue. PRAV is transmitted by Aphis craccivora in a 

persistent manner, and experimentally by grafting, but not by mechanical sap inoculation, 

seed, pollen, or contact between the plants. Peanut is the only known natural host of the 

PRAV. The virus is reported to occur wherever PRD has been reported. The virus on its 

own causes symptomless infection or transient mottle and can cause significant yield loss 

in susceptible peanut cultivars (Naidu and Kimmins 2007). 

Groundnut rosette virus 	(GRV): The virus is restricted to SSA and its offshore islands. 

It is first isolated and characterized by Reddy et al. (1985b) and has no structural (coat)

 protein (Taliansky et  al. 2003), and thus, no conventional virus particles of GRV are 

formed. Enveloped bullet-shaped structures that can be detected in the ultrathin sections 

of infected cells could be shown to be cytopathological structures due to GRV infection, 

as opposed to real virions (Taliansky et al. 2003). The virus genome is a nonsegmented, 

single linear molecule of single-stranded, positive-sense RNA of size c. 4019 nucleotides 

which encodes for four ORFs (Taliansky et al. 1996). The genome of an isolate has been 

completely sequenced (GenBAnk accession # Z 66910), and several partial sequences are 

available in the gene bank. The virus replicates autonomously in the cytoplasm of the 

infected tissues (Taliansky and Robinson 2003). GRV on its own causes transient symp

toms, but a SatRNA associated with GRV is responsible for rosette disease symptoms. GRV 

depends on groundnut rosette assistor virus for encapsidation of its RNA and  transmission 

by A. craccivora in a persistent mode (Robinson et al. 1999). The virus is transmitted by 

grafting and mechanical inoculation, but not through seed, pollen, or contact between 

the plants. Peanut is the only known natural host, but several experimental hosts in the 
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families Chenopodiaceae and Solanaceae have been reported (Murant et al. 1998). GRV 

belongs to the genus Umbravirus. No strain of GRV has been reported. The  virus is 

restricted to SSA and its offshore islands. 

SatRNA: SatRNA is responsible for rosette symptoms and plays a critical role in helper virus. 

The SatRNA (subviral RNAs) of GRV belongs to the Subgroup-2 (small linear) SatRNAs. 

It is a single-stranded, linear, nonsegmented RNA of 895–903 nucleotides (Murant et al. 
1988, Blok et al. 1994, Taliansky et al. 2000). It totally depends on GRV for its replication, 

encapsidation, and movement, both within and between the plants. 

DIAGNOSIS 

Various diagnostic techniques based on biological, serological (protein based), and genomic prop

erties (nucleic acid) of the PRD agents have been developed (Kumar and Waliyar 2007, Waliyar 

et al. 2007). PRD can be diagnosed in the field based on the characteristic symptoms on peanut. 

Mechanical inoculation on to Chenopodium amaranticolor indicates the presence of PRV (infected 

plants show minute necrotic lesions on inoculated leaves about 4 days after inoculation) (Murant 

et al. 1998). Serological and nucleic acid–based diagnostic methods can be used for the detection 

of PRAV, but only nucleic acid–based methods can be used for the detection of PRV and SatRNA. 

Triple-antibody sandwich-enzyme-linked immunosorbent assay (ELISA) has been developed for 

the detection of PRAV (Rajeshwari et al. 1987) and dot blot hybridization and reverse transcrip

tion-polymerase chain reaction (RT-PCR) to detect all the three PRD agents in plants and aphids 

(Blok et al. 1995, Naidu et al. 1998b). 

TRANSMISSION

 1. Sap transmission: Transmissibility of sap-transmissible component is best achieved by 

extracting the sap in potassium phosphate buffer (K2HPO4) of pH 7.3 containing Mg or Na 

bentonite 25 mg/mL and 0.01 M diethyldithiocarbamate. By artificial mechanical sap inoc

ulations, experimental hosts of PRV and SatRNA have been identified in several species in 

Leguminosae, Chenopodiaceae, and Solanaceae (Murant et al. 1998, Waliyar et al. 2007). 

C. amaranticolor and Chenopodium murale are local lesion hosts; C. amaranticolor, 
Glycine max, Phaseolus vulgaris, Nicotiana benthamiana, and Nicotiana clevelandii are 

systemic hosts of PRV. Apart from peanut, experimental hosts of both PRAV and PRV 

and SatRNA are Gomphrena globosa, Stylosanthes gracilis, Stylosanthes mucronata, 

Stylosanthes sundaica, Spinacia oleracea, Trifolium incarnatum, and Trifolium repens 
(Murant et al. 1998).

 2. Aphid transmission: A. craccivora, commonly known as the cowpea aphid, is the principal 

vector involved in the transmission of all the PRD agents in a persistent and circulative 

manner (Hull and Adams 1968). PRV and SatRNA must be packaged within the PRAV 

CP to be aphid transmissible. Studies have shown that all the PRAV particles whether they 

contain PRAV RNA or PRV RNA and SatRNA are acquired by the aphid vector from 

phloem sap in 4 and 8 h acquisition access feeding for chlorotic and green rosette, respec

tively (Misari et al. 1988). Then, there is a latent period of 26 h 40 min and 38 h 40 min 

for chlorotic and green rosette, respectively, and the inoculation access feeding period 

of 10 min for both forms (Misari et al. 1988). Once acquired, aphid can transmit virus 

particles for up to 2 weeks and beyond. All stages of the aphid can acquire and transmit 

the disease agents. Transmission rates of 26%–31% have been reported with one and two 

aphids per plant and 49% with five aphids per plant (Misari et al. 1988). 

Aphid vector does not always transmit all the three agents together (Naidu et al. 1999). Under natu

ral conditions, some PRD-affected plants (PRV and SatRNA positive) have been found to be free 
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from PRAV, and PRAV can be detected in some nonsymptomatic plants (no PRV and SatRNA) 

(Naidu et al. 1999). This situation appears to be due to the difference in inoculation feeding behav

ior of the vector leading to the transmission of (1) all the three agents together, (2) only PRAV, or 

(3) PRV and SatRNA, as demonstrated by the electrical penetration graph studies of aphid stylet 

activities (Naidu et al. 1999). This reveals that during short inoculation feeding (test probe or stylet 

pathway phase) vector aphids probe peanut leaves without reaching the phloem, transmitting only 

PRV and SatRNA, which multiply in the epidermal and mesophyll cells. Even if PRAV particles 

are deposited in the mesophyll cells, they cannot replicate, as they can replicate only in the phloem 

cells (Naidu et  al. 1999). However, vector aphids can transmit PRAV and PRV–SatRNA when  

the stylets penetrate sieve elements (salivation phase) of the phloem cells. Therefore, the success 

of transmitting all the three agents together is high when inoculation feeding period is longer or 

increasing the number of aphids per plant (Misari et al. 1988). Vector aphids fail to acquire or  

transmit PRV and SatRNA from diseased plants lacking PRAV, and such plants become dead-end 

sources. However, if such plants receive PRAV later due to vector feeding, the plants again serve 

as source of inoculum. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The epidemiology of PRD is complex, involving interactions between and among two viruses 

and a SatRNA, the vector, the host plant and environment. Since none of the causal agents is 

seed borne, primary infection of crops depends on the survival of infected plants (virus sources) 

and vectors (aphids) (Naidu et  al. 1998a). Possible source from which rosette could spread are 

infected peanut plants surviving between cropping seasons. In regions where there are no sources 

of infection, initial infection may depend on the influx of viruliferous aphids from other parts 

of Africa on prevailing wind currents (Bunting 1950, Adams 1967). The vector A. craccivora is 

polyphagous and can survive on as many as 142 plant species in addition to peanut. One or more of 

these 142 plant species could be a source of the rosette complex (Adams 1967, Naidu et al. 1998a). 

Efforts thus far have failed to identify any alternative natural hosts of the PRD agents (Waliyar 

et al. 2007). Kenyan isolates of the virus are closer to the Malawian than to the Nigerian isolates 

(Wangai et al. 2001). 

PRD is a polycyclic disease because each infected plant serves as a source for initiating subse

quent disease spread in the field. Winged aphids are responsible for primary spread of the disease. 

Secondary spread from the initial foci of disease within the fields also occurs by way of the move

ment of aphid vector, but largely apterae and nymphs (Naidu et al. 1998a). In general, primary infec

tion at early stages of the crop growth provides a good opportunity for repeating cycles of infection 

to occur before crops mature and vector populations decline. The nature and pattern of disease 

spread is influenced by plant age, cultivar, crop density, time of infection, transmission efficiency 

of aphids, proximity to the source of infection, and climatic conditions (van der Merwe et al. 2001, 

Herselman et al. 2004, Waliyar et al. 2007). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Efforts in breeding for host plant resistance and evaluation of peanut germplasm collection held 

in ICRISAT genebank have contributed to the development of several peanut genotypes and iden

tification of germplasm lines with acceptable levels of field resistance to rosette disease (Olorunju 

et  al. 1991, 2001, van der Merwe and Subrahmanyam 1997, Subrahmanyam et  al. 1998, 2001). 

Evaluation of 12,500 lines from ICRISAT’s genebank collection of peanut germplasm has resulted 

in the identification of 150 resistant sources, of which 130 are long-duration Virginia types and 20 

are short-duration Spanish types (Subrahmanyam et al. 1998, Olorunju et al. 2001). Evaluation of 
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116 wild Arachis accessions representing 28 species identified 25 accessions resistant to rosette 

disease (Subrahmanyam et al. 2001). Out of 2301 germplasm lines evaluated in Samaru in Nigeria, 

only 65 new sources of resistance to rosette could be identified, 55 of which are long-duration 

Virginia types and 10 are short-duration Spanish types (Ntare and Olorunju 2001). It is not known 

whether these resistant sources carry the same or different kinds of resistance genes. Generally, 

resistance to rosette disease in a genotype is assessed by the lack of symptom expression, and there

fore, such resistance is largely against PRV and SatRNA (the two components responsible for rosette 

symptoms) (Bock et al. 1990, Subrahmanyam et al. 1998, Olorunju et al. 2001). This resistance  

has been shown to be controlled by two independent recessive genes and is effective against both 

chlorotic and green forms of rosette (Nigam and Bock 1990, Olorunju et al. 1992). This resistance 

is directed against PRV and consequently to SatRNA and is not effective against PRAV (Bock et al. 

1990). This form of resistance has been transformed into early maturing cultivars that are useful 

for cultivation in regions that are often characterized by short length of growing periods. Some of 

the rosette-resistant early varieties released in the West and Central Africa region are ICGV-SM 

90704, ICG 12991, ICGV-SM 99568, ICGV 93437, SAMNUT 23 (ICGV-IS 96894), SAMNUT 21 

(UGA 2), and SAMNUT 22 (M572.80I) (Ntare et al. 2002, Waliyar et al. 2007). 

Yield reduction in genotypes that are resistant to PRV and SatRNA is observed to be presumably 

due to their susceptibility to PRAV (Subrahmanyam et al. 1998, Olorunju et al. 2001). This is finally 

confirmed in a study that separated PRAV from PRV and SatRNA and demonstrated that PRAV 

infection alone can significantly reduce peanut seed yield (Naidu and Kimmins 2007). 

There is a possibility for the development and deployment of transgenic forms of resistance using 

genes derived from the virus itself (pathogen-derived resistance) (Deom 1999, Deom et al. 2000). 

Resistance to PRV has been detected in plants transformed with constructs derived from a mild 

variant of the SatRNA in N. benthamiana (Taliansky et al. 1998). Research in this direction is in 

progress at the ICRISAT centers. 

Chemical Control 
Seed treatment with imidacloprid and followed by regular systemic insecticide spray in the early 

stages of the crop growth (from emergence to 40th day) will control vector aphids and consequent 

protection against PRD. Long acquisition access feeding period required by the vector provides 

an opportunity to control aphids with chemical sprays before they can spread the disease. Various 

insecticides have been used to control A. craccivora to minimize or prevent the spread of rosette 

disease in field trials (Waliyar et al. 2007). Dosage and type of insecticide utilized is critical for con

trolling aphids. However, insecticides are an unviable option in SSA due to high costs and scarcity, 

thus seldom preferred by the farmers. Furthermore, insecticide applications pose detrimental effects 

on health and environment, and their usage is being discouraged. 

Cultural Control 
Information on the control of PRD by cultural practices has been obtained in different parts of 

SSA (Naidu et al. 1998a, 1999, Waliyar et al. 2007). Early sowing (particularly in June) and high 

seed rate (80–120 kg/ha) have been recommended in much of Africa as a standard measure for the 

control of peanut rosette. Early sowing in the season is to take advantage of low aphid populations, 

and maintaining good plant density without any gaps (aphids prefer widely spaced plantings for 

landing) has been shown to reduce rosette disease incidence. However, early sowings may not be 

effective in areas where groundnut is grown continuously, as this allows perpetuation of virus and 

vector. Peanut crops intersown with field beans, maize, and sesame remain less affected with the 

rosette disease that is subsequently useful in preventing the spread of the disease (Alegbejo 1997). 

Roguing of voluntary sources and early-infected plants prevents the spread of the rosette (Kolte 

1984, Waliyar et al. 2007). Overall, the combination of resistant genotypes with early sowing and 

optimum plant population is economically useful in the management of the disease even under high 

disease pressure (Subrahmanyam et al. 2002). 
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PEANUT STEM NECROSIS DISEASE 

SYMPTOMS 

The first appearance of symptoms becomes visible in the form of the development of necrotic 

lesions on terminal leaflets and petioles and the death of top growing bud on the main stem followed 

by necrosis of all top buds on primaries. Complete stem necrosis and often total necrosis of the 

entire plant occur in early infection. The plants that survive the viral infection become stunted and 

show proliferation of axillary shoots and reduction in leaflet size and exhibit chlorosis as secondary 

symptoms in contrast to mosaic and mottling of leaf lamina in the case of peanut bud necrosis dis

ease (PBND). Pods from affected plants show black necrotic lesions on the pod shells, and kernels 

become smaller adversely affecting the marketability of the pods and kernels. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The first known case of the occurrence of epidemic of peanut stem necrosis disease (PSND) caused by 

tobacco streak virus (TSV) was recorded in the monsoon season crop in the year 2000 from the major 

peanut-growing district of Anantapur in the state of Andhra Pradesh in India (Reddy et al. 2002). The 

disease now occurs in almost all peanut-growing states of India particularly in those regions, where sun

flower necrosis disease caused by the same virus (TSV) is endemically present (Ravi et al. 2001, Bhat 

et al. 2002). During the 2000 epidemic in Andhra Pradesh, crop losses have been estimated to exceed 

U.S. $64 million. The TSV, the causal virus, because it infects a wide range of crops like sunflower, 

safflower, cotton, cowpea, okra, urd bean, and mung bean, assumes a great significance of economic 

importance, and hence, the TSV is currently regarded as an emerging threat to crop production in India. 

PATHOGEN: THE CAUSAL VIRUS 

TSV belonging to the genus Ilarvirus in the family Bromoviridae is the cause of the PSND (Reddy 

et al. 2002). Purified virions of TSV are nonenveloped, isometric, measuring 25–35 nm in diameter. 

It consists of a single capsid protein of 28 kDa. The virus genome is a single-stranded RNA, has 

positive polarity, is linear, and is a tripartite of size 3.7, 3.1, and 2.2 with 0.9 kb subgenomic RNA. 

The TSV genome has been sequenced. Cowpea (Vigna unguiculata cv. C-152) and P. vulgaris 
(cv. Top Crop) are the suitable hosts for propagating the virus. 

DIAGNOSIS 

Symptom-based identification can be misleading as similar symptoms can also be due to peanut 

bud necrosis virus (PBNV). Hence, diagnosis of the infection caused by TSV should be done using 

indicator host plants reaction test and ELISA. 

The two most important diagnostic hosts are cowpea cv. C-152 and French bean cv. Top Crop. 

On sap-inoculated leaves of cowpea and French bean, TSV produces necrotic lesions and veinal 

necrosis as early as within 2–3 days, whereas PBNV produces concentric chlorotic/necrotic lesions 

on these indicator hosts as late as 4–5 days after inoculation. 

ELISA and RT-PCR polyclonal antibodies to TSV have been produced, and the direct antibody

coated-ELISA-based virus detection technique has been developed for the reliable diagnosis of 

PSND. Oligonucleotide primers from CP gene have been designed for RT-PCR-based virus detec

tion (Prasad Rao et al. 2004). 

TRANSMISSION 

The virus is transmitted through thrips Frankliniella schultzei, Scirtothrips dorsalis, and 

Megalurothrips usitatus in a very peculiar manner. The thrips fed on infected leaves alone and do 

not transmit the virus. But they do so through their wounding of plants during feeding only in the 
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presence of infected pollens particularly from Parthenium hysterophorus and/or sunflower in the 

vicinity of these wounds rather than entering into specific virus–vector relationships. The virus in 

peanut is not transmissible through seed, but it can be transmitted through sap inoculation. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Though TSV is pollen borne, the virus is not transmitted through seed in the case of peanut 

(Reddy et al. 2007). Thrips vectors, viz., F. schultzei, S. dorsalis, and M. usitatus, aid in passive 

transmission of the virus as carriers of pollens from infected plants. Among the three thrips spe

cies, F. schultzei plays a major role in transmission and spread of the virus particularly from the 

flowers of infected P. hysterophorus and other weed plants (Abutilon indicum, Ageratum conyzoi
des, Croton sparsiflorus, Commelina benghalensis, Cleome viscosa, Euphorbia hirta, Lagascea 
mollis, Tridax procumbense), sunflower, and marigolds. F. schultzei carries 8–10 pollen grains  

on its body from these ranges of weed hosts and 60–70 pollen grains from sunflower flowers, and 

when these thrips become wind borne and visit groundnut plants, the pollen grains then get dis

lodged from the insect’s body, and during the feeding process, virus present in the pollen grains 

infects the peanut plants. Since peanut is self-pollinated and early-infected peanut plants do not 

flower, the peanut plants on its own do not contribute to spread of the virus inoculum and the 

PSND in a crop field. Parthenium is widely distributed and present all year-round in the vicinity 

of peanut crop fields producing several flushes of pollen grains during its life cycle ensuring con

tinuous supply of virus-infected pollens for effective transmission through the thrips (Prasad Rao 

et al. 2004, Kumar et al. 2008). 

Based on 2000 PSND epidemic in Anantapur district in Andhra Pradesh in India, the follow

ing factors are conducive for the occurrence of PSND epidemic: (1) early rains during late May or 

early June that encourage germination and growth of Parthenium, (2) sowing peanut during July by 

which time Parthenium is in full bloom, (3) normal rain that promotes good growth of peanut crop 

as well as Parthenium, and (4) one or two dry periods of 3 week duration that encourages thrips 

multiplication and movement for the spread of virus. 

DISEASE MANAGEMENT 

Host Plant Resistance

 1. In peanut germplasm: Resistance to PSND has not been found in the germplasm of 

cultivated peanut (Kalyani et  al. 2007). However, a considerable number of  peanut  

genotypes have been reported to be resistant or moderately resistant or promisingly  

less susceptible to the disease. These genotypes are ICGV 99057, 00169, 99068, 86325, 

92267, 94379, ICG 4983 (Arachis chacoense), ICGS 37, RP 251, S 206, DH 40, CSMG 

84-1, and M-22. Among these, the multiple disease-resistant genotypes ICGV 99057 

and ICGV 00169 besides being of high potential of PSND resistance also exhibit good 

shelling percentage and oil content. Hence, it is rewarding to incorporate resistance into 

good agronomic types by hybridization and selection (Kumar et al. 2008, Venkataravana 

et al. 2008).

 2. Transgenic peanut for resistance to PSND: Transgenic resistance in peanut to PSND has 

been obtained by transferring CP gene of TSV through Agrobacterium-mediated transfor

mation of deembryonated cotyledons and immature leaves of peanut cultivars Kadiri 6 and 

Kadiri 134. The transgenic lines are reported to remain symptomless throughout and show 

traces or no systemic accumulation of virus indicating the tolerance/resistance to the TSV 

infection. CP gene expression has been confirmed in transgenic lines by RT-PCR, real-

time PCR, and ELISA. This is an effective strategy for developing peanut with resistance 

to PSND (Mehta et al. 2013). 
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Chemical Control 
Seed treatment with imidacloprid (Gaucho 70 WS) at 2 mL/kg seed followed by spraying of mono

crotophos at 800 mL or dimethoate at 1000 mL or imidacloprid at 200 mL/ha in 500 L of water at 

25–30 days after sowing is recommended in epidemic regions. It is noteworthy that in the case of 

most of the thrips-transmitted viruses, the use of insecticides after the appearance of the disease has 

no effect on the control of the disease (Prasad Rao and Reddy 2005). 

Cultural Control 
Removal of weeds such as P. hysterophorus and other weeds around the peanut fields is helpful to 

reduce the disease incidence; however, roguing of early-infected peanut plants may not limit further 

spread of the disease in the field. Barrier crops like bajra, maize, and sorghum should be planted in 

four to eight rows around the peanut field. These will prevent thrips and wind-borne weed pollen-

carrying virus. Practicing intercropping with bajra, maize, and sorghum in the ratio of 7:1 or 11:1 is 

also helpful in decreasing the incidence of PSND in the peanut crop. Maintenance of optimum plant 

density is important to discourage landing of the thrips (Prasad Rao et al. 2004, Kumar et al. 2008). 

PEANUT BUD NECROSIS DISEASE 

SYMPTOMS 

Under field conditions, initially quadrifoliate leaf immediately below the terminal bud shows dis

tinct chlorotic ring spots or chlorotic speckling and becomes flaccid about 30–40 days after planting. 

These symptoms in peanut due to PBNV are difficult to distinguish from those caused by tomato 

spotted wilt virus (TSWV). The vascular tissue of the shoot just below the growing tip becomes 

necrotic and the terminal bud is killed, which later dries and becomes brown. This is a characteris

tic symptom that occurs on peanut plants of crops grown in the rainy and post-rainy seasons, when 

ambient temperatures are relatively high above 30°C. The necrosis may proceed downward, and 

the whole branch may become blighted. Necrosis may also be seen on petioles and along the stems. 

Proliferation of axillary shoots takes place, but the leaves of such shoots remain smaller than normal 

and show a wide range of symptoms, including distortion, mosaic mottling, and general chlorosis. 

Infection with PBNV reduces the concentration of chlorophyll a and b and increases the specific 

activity of chlorophyll oxidase and peroxidase enzymes (Hema and Sreenivasulu 2002). Affected 

plants remain stunted because of the reduction in the length of the internodes, and the whole plants 

may show a bushy appearance. If plants are infected early, they are stunted and bushy. If plants older 

than 1 month are infected, the symptoms may be restricted to a few branches or to the apical parts 

of the plants. Seeds from such plants are small, shriveled, mottled, and discolored. Such seeds show 

poor germination, or they may fail to germinate. Late-infected plants may produce seed of normal 

size. However, the testae on such seed are often mottled and cracked. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

PBND was first recorded in India in 1949 as per the reports made from Indian Agriculture Research 

Institute, New Delhi (Reddy et al. 1995). The economic importance of the disease was realized 

during the late 1960s when incidences up to 100% were recorded in many peanut-growing regions 

in India. The disease was described under different names such as ring spot of peanut, ring mosaic, 

spotted wilt, bud blight, and bud necrosis (Kolte 1984). It was shown to be economically important 

in parts of Tamil Nadu, Karnataka, Andhra Pradesh, Maharashtra, and Uttar Pradesh. Although it 

was earlier reported to be caused by TSWV, currently the causal virus of PBND in India has been 

shown to be a serologically distinct Tospovirus, now referred to as PBNV, transmitted by Thrips 
palmi. Surveys in many groundnut-growing countries indicate that PBNV is restricted to South and 

Southeast Asia (Reddy et al. 1995, Poledate et al. 2007, Damayanti and Naidu 2009). Reports of its 
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occurrence have been made from the main peanut-growing province of Córdoba, in Argentina in 

South America (de Breuil et al. 2008), and from the Golestan Province of Iran (Golnaraghi et al. 

2002). The disease poses a major threat to peanut production in Thailand in dry seasons (Poledate 

et  al. 2007). In India, average yield loss caused by the PBND is more than 50% in peanut that 

amounts to estimation of about U.S. $89 million/annum (Reddy et al. 1995, Kendre et al. 2000). 

The causal virus, the PBNV, appears to be economically more significant because different isolates 

(strains) of PBNV have been proved to be the primary pathogens in causing a number of diseases in 

different crop plants such as chilli (Gopal et al. 2011a), cucumber (Gopal et al. 2011a), cowpea (Jain 

et al. 2002, Akram and Naimuddin 2009, Gopal et al. 2011a), mung bean (Jain et al. 2002, Thien 

et al. 2003, Sreekanth et al. 2006a, Saritha and Jain 2007), okra (Kunkalikar et al. 2012), sesame 

(Gopal et al. 2011a), soybean (Kumari et al. 2003), sunflower (Pranav et al. 2008), taro (Sivaprasad 

et al. 2011), tomato (Jain et al. 2002, Raja and Jain 2006, Venkat et al. 2008, Venkatesan et al. 2009, 

Manjunatha et al. 2010a, Ramana et al. 2011, Akhter et al. 2012), potato (Akram et al. 2003, Pundhir 

et al. 2012), urd bean (Prasad Rao et al.2003, Kumar et al. 2006), pea (Akram and Naimuddin 2010), 

and watermelon (Gopal et al. 2011a). 

CAUSAL VIRUS: PEANUT BUD NECROSIS VIRUS 

The virus causing the PBND does not react with the antisera to TSWV obtained from different 

sources (Reddy et al. 1992), and based on serological cross reactions (Adam et al. 1993) and amino 

acid sequence homology of the nucleoprotein (de Avila et al. 1993), it has revealed the existence of 

a distinct virus, different from the TSWV and impatiens necrotic spot virus (INSV), and thus, the 

virus-causing PBND has been identified as a distinct Tospovirus and named as PBNV. With ELISA 

as well as Western blots, PBNV has been shown to be serologically distinct from TSWV and INSV 

(Reddy et al. 1992). PBNV contains three RNA species of about 9.0 kb (large, L RNA), 5.0 kb 

(medium, M RNA), and 3.0 kb (small, S RNA), and the nucleotide sequences are 8911 for L RNA, 

4801 for M RNA, and 3057 for S RNA (Satyanarayana et al. 1996a,b). The virus protein consists of 

four polypeptides of molecular weights of 27, 52, 58, and 78 × 103 Da. The particles are 70–90 nm in 

diameter and are surrounded by a double membrane of protein and lipid and sediment at 520–530s. 

Nonstructural protein, NSs, of the PBNV encoded by the S RNA is a bifunctional enzyme, which 

could participate in viral movement, replication, or suppression of the host defense mechanism 

(Lokesh et al. 2010, Bhat and Savithri 2011). Typical of a Tospovirus, the PBNV has extremely low 

thermal inactivation point of 45°C for 10 min; the dilution end point is between 10–2 and 10–3 and 

short longevity in vitro of less than 5 h at room temperature. PBNV classified as a virus in serogroup 

IV of Tospoviruses (Bunyaviridae) (Akram et al. 2004). 

TRANSMISSION  

Though the PBNV is graft transmissible, it is not transmitted through aphids and seed. Transmission 

through sap and thrips transmission are most common that are as follows. 

Sap transmission: PBNV can be transmitted by mechanical sap inoculations if care is taken 

to extract the virus only from young infected leaflets with primary symptoms. Extracts 

should be prepared in neutral phosphate buffer (0.05 M phosphate buffer, pH 7.0) contain

ing an antioxidant such as mercaptoethanol (0.2%) or thioglycerol (0.075%) and must be 

kept cold throughout the inoculation process. 

Thrips transmission: T. palmi transmits PBNV. Other thrips species S. dorsalis and 

F.  schultzei, which are also present on the plants, do not transmit the PBNV. Adults of 

T. palmi cannot acquire the virus; however, their larvae can acquire the virus and such 

larvae and subsequently developed adults transmit the virus persistently (Reddy et al. 1991, 

Sreekanth et al. 2006a,b). A minimum of 15 min acquisition access period by larvae and 
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a 45 min inoculation access period by adult thrips are required for successful transmis

sion of the PBNV (Sreekanth et al. 2004a, 2006a). Maximum transmission (100%) can be 

obtained when there are 10 adults per plant. The majority of individual adult thrips trans

mit the virus for more than half of their life period. Cowpea has been found to be the best 

host for rearing and multiplying T. palmi under laboratory conditions. 

DIAGNOSIS 

Sap inoculations of virus extracts on diagnostic hosts like cowpea (Vigna unguiculata) cv. C-152 and 

Petunia hybrid can be used to identify the PBNV. Cowpea produces concentric chlorotic and necrotic 

lesions on inoculated primary leaves 4–5 days after inoculations, and subsequently systemic infection 

develops on newer leaves (Akram and Naimuddin 2009), whereas Petunia produces only necrotic 

lesions on inoculated leaves 3 or 4 days after inoculation (Reddy et al. 1991). ELISA using polyclonal 

antibodies clearly distinguish PBNV from TSWV and INSV (German et al. 1992, Reddy et al. 1992, 

Jain et al. 2005, Nagaraja et al. 2005b, Raja and Jain 2006). If young tissues showing initial symp

toms are used, PBNV particles can be observed in leaf extracts or even in leaf dip preparations. They 

are 80–100 nm in diameter and are surrounded by a double membrane of protein and lipid. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

There is a possibility of existence of different strains of PBNV, as different isolates of the virus col

lected from different regions show some differences in host range and reaction of susceptible hosts. 

Though the detailed study in strain differentiation has not been done, it is revealed through the 

nucleotide and amino acid sequences of the movement protein (NSm) genes of different isolates that 

the NSm genes of PBNV isolates are identical in length (924 bp encoding 307 amino acids) suggest

ing their common origin (Akram et al. 2003, 2004, 2012). The primary sources of inoculum may be 

different host plant members of Leguminosae and Solanaceae specially crop plants such as tomato, 

mung bean, urd bean, sunflower, and cucumber that are cultivated in summer and weed hosts such 

as Ageratum conyzoides, Acanthospermum hispidum, and Cassia tora, which are more commonly 

present in and around the peanut crop fields and which sustain virus infection and effective thrips 

vector population (Nagaraja et al. 2005a, Reddy et al. 2011, Gopal et al. 2011a). Thus, the incidence 

of the PBND in peanut depends on infection by viruliferous thrips that acquire the virus from such 

alternative hosts and their mass migration flights from alternative hosts to peanut crop fields. Most 

migrations occur when air temperature is in the range of 20°C–30°C. Warm and dry weather favor 

disease buildup and prevalence of thrips (Thiara et al. 2004, Pensuk et al. 2010). An optimum tem

perature of 25°C is the best for rearing T. palmi and the total number of larvae produced per female 

is greater at 25°C (Vijayalakshmi et al. 2000). A wind velocity of 10 km/h at 3 m above the crop 

canopy is more conducive to mass flights of thrips (Prasad Rao and Reddy 2005). Interestingly, 

secondary spread from infected peanut plants within a peanut field is considered to be negligible. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Three peanut germplasm lines, viz., IC 10, IC 34, and ICGV 86388, have been confirmed to be the 

best PBND-resistant parental lines and useful sources of resistance not only to PBNV (Reddy et al. 

2000, Pensuk et al. 2002a–c, 2004, Kesmala et al. 2006) but also to TSWV (do Nascimento et al. 

2006), a closely related species of PBNV. Heritability estimates for both incidence and severity of 

PBND are found to be favorably high enough in these three PBNV-resistant parental lines for further 

improvement of these characters. Both genotypic and phenotypic correlations between PBNV resis

tance parameters and desirable agronomic traits are also high (Kesmala et al. 2003, 2004, Tonsomros 

et al. 2006). However, susceptibility of peanut to PBNV is somewhat associated with large-seed size, 
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and this, therefore, might be an interfering factor for breeding large-seeded peanut cultivars with 

resistance to PBNV (Puttha et al. 2008). Two peanut cultivars such as ICGS 11 and ICGS 44 possess

ing resistance to PBND have been released in India, and some other promising PBND-resistant peanut 

genotypes are ICGV 92269, 89/94-3-2, ICGV 91229, ICGV 91193, 89/94-7-3, 83/151-7, 85/203-6, 

ICGV 91248, ICGV 91117, and ICGV 86031 (Gopal et  al. 2004). Three more peanut genotypes,  

viz., GPBD-4, JSSP-9, and DH-53, are reported to be least affected by PBND indicating their very 

high degree of tolerance to the disease (Nagaraja et al. 2005b). Among 83 wild Arachis germplasm 

screened for resistance to PBNV, one accession each of Arachis benensis and Arachis cardenasii and 

two accessions of Arachis villosa are confirmed to be resistant to PBNV (Reddy et al. 2000). In these 

wild Arachis PBNV-resistant accessions, the inoculated leaves do show infection, but subsequently 

developed leaves do not show the presence of virus in spite of repeated sap inoculation indicating the 

resistance in these accessions appears to be due to a block in systemic movement of the virus. Since 

A. cardensii and A. villosa are the progenitors of cultivated peanut and can be hybridized with the 

latter, the resistant wild Arachis accessions can be successfully utilized in conventional breeding pro

gram to transfer PBNV resistance to widely cultivated peanut cultivars (Reddy et al. 2000). 

Cultural Control 
The occurrence and severity of the disease depends on the migration of the thrips. Therefore, there 

exists a scope for choice of planting dates in reducing or avoiding the disease (Sreekanth et al. 2002, 

Gopal et al. 2007). Under Andhra Pradesh (India) conditions, early planting at the onset of the rainy 

season decreases disease incidence. Interrow and intrarow spacing of 20 × 7.5 or 10 cm gives a high 

density of plant population (2–3 million plants per hectare), which ensure close canopy, leading to 

reduction in incidence of PBND (Gopal et al. 2007). Roguing of infected peanut plants should not 

be practiced as this will reduce the density of crop canopy leading to increased incidence of PBND. 

The movement of the thrips vector is decreased when pearl millet, sorghum, pigeon pea, or maize is 

intercropped with peanut in the ratio 3:1 resulting in significant decrease in the incidence of PBND 

(Sreekanth et al. 2004b, Gururaj et al. 2005, Gopal et al. 2010). 

Several weed species particularly Achyranthes aspera, Ageratum conyzoides, Alysicarpus rugo
sus, Commelina benghalensis, and Vigna trilobata have been found to be reservoirs of PBNV in 

and around the peanut fields in major peanut-growing regions in India. Removal and destruction of 

these weed species acting as primary sources of infection would be useful in reducing the incidence 

of PBND (Gopal et al. 2011a). 

Effect of Botanicals 
PBNV-susceptible peanut cultivar sprayed separately with sorghum leaf, coconut leaf, and neem 

kernel or neem cake extracts (10%) 20 and 35 days after planting alone or in combination with 

1.25 mL of monocrotophos significantly reduce the incidence of PBND that subsequently results in 

increase in pod yield by 60%–100% (Kulkarni et al. 2003, Gopal et al. 2011b). Antivirus principle in 

sorghum and coconut leaf extracts appear to be proteinous compound, and its translocation mecha

nism might afford protection besides induction of its effect in the accumulation of high concentra

tion of defense-related enzymes such as phenylalanine ammonia lyase, peroxidase, and polyphenol 

oxidases (Manjunatha et al. 2010b). 

SPOTTED WILT 

SYMPTOMS 

TSWV-infected peanuts first appear at random throughout a field as early as 21 days after the seed

lings emerge. Earliest symptoms of the disease are brown speckles on the underside of the first leaf 

below one or more terminal buds along the leaf. The leaf below the terminal bud, showing typical 

yellowing and mottling, appears wilted, while the rest of the plant looks healthy. With time, clusters 
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of diseased plants may be seen. The virus usually spreads within a field down the row from plants 

infected at the start of the growing season. Brown necrotic spots or streaks may also be seen on the 

leaf petiole and stem and at times on the terminal bud. These spots may develop into a shoot dieback, 

which may ultimately kill the plant. Any new leaves are about half their normal size, crinkled and 

display a range of symptoms including chlorosis, concentric chlorotic ring spots, ring spots with 

green centers, and chlorotic line patterns. Severe stunting is a common symptom of TSWV infection 

of susceptible peanut cultivars and is generally more severe when young plants are infected. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Significant economic losses have been recorded by peanut growers in the southeastern United States 

since the peanut growers in one Texas County suffered an estimated U.S. $3 million loss in 1986 due to 

TSWV. By 1988, symptomatic plants could be seen quite commonly in peanut crop stand in Alabama, 

Florida, and Georgia. However, the numbers of TSWV-infected plants in most fields remained extremely 

low. In recent years, severe outbreaks of spotted wilt in peanuts have occurred in South Central Georgia. 

In some fields, an estimated 40% to nearly 100% of peanut plants have been found to be infected with 

the disease. The disease has been particularly damaging in mid-April planted peanut (Olatinwo et al. 
2009). TSWV is now well established throughout the southeastern peanut belt and has become a seri

ous problem in the Virginia/Carolina peanut-growing regions of the United States. During 2002, the 

disease was present in 47% of the North Carolina hectarage and caused a 5% yield reduction in Virginia 

(Herbert et al. 2007). There appears to be a significant correlation between spotted wilt intensity and 

peanut yield (Olatinwo et al. 2010). Recent epidemics in Alabama, Florida, Georgia, Mississippi, and 

Texas show that the virus is a serious threat to peanut production in the region (Culbreath et al. 2011). 

The disease is also reported to occur in the province of Cordoba in Argentina (de Breuil et al. 2008). 

PATHOGEN 

Spotted wilt disease of peanut (Arachis hypogaea) is caused by TSWV (genus Tospovirus, family 

Bunyaviridae). Virions of TSWV are complex compared to many plant viruses. There are three 

RNAs in the virus genome that are individually encapsidated and are collectively bound by a mem

brane envelope, that is, of host origin. This complex virion structure is a characteristic that dis

tinguishes TSWV from most other plant viruses. TSWV virions are roughly spherical and are 

80–110 nm in diameter. Two virus proteins processed during replication to contain sugars, that 

is, glycoproteins (GPs), are dispersed throughout the surface of the viral envelope. These proteins 

are called GP C and GP N and differ slightly in size. Inside the viral envelope is each of the three 

viral RNAs, individually bound by multiple copies of a nucleocapsid protein. The three RNAs dif

fer in size and are called large, middle, and small. Also, inside the envelope are several copies of a 

virus-encoded replicase protein that is required to initiate virus replication in a new host. The GPs 

in the envelope function in the maturation and assembly of virions and appear to play a role in the 

acquisition of TSWV by thrips. Envelope-deficient isolates of TSWV, generated by serial mechani

cal passage in plants, are infectious in plants but are not transmitted by thrips. It is evident that the 

GPs are not required for replication in plants, but are required for virus infection of thrips leading 

to subsequent virus replication in and transmission by thrips. 

In addition to the GPs, the M RNA segment encodes a nonstructural protein (NSm). The NSm is 

unique to Tospoviruses in the family Bunyaviridae and is thought to be an adaptation of Tospoviruses 
to plants to facilitate Tospovirus the movement from cell to cell through plant cell walls via the plas

modesmata. Because enveloped particles are too large to be transported through plasmodesmata, 

the role of NSm is to form tubules that facilitate the movement of nucleocapsids (RNA plus protein) 

from cell to cell. In addition to the nucleocapsid protein, the S RNA segment encodes a nonstructural 

protein (NSs). Crystalline-like structures of NSs are produced in infected insect cells and plant cells. 

The NSs protein has RNA-silencing suppressor activity and may play a role in posttranscriptional 



  

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114 Diseases of Edible Oilseed Crops 

gene silencing or RNA metabolism. TSWV is one member of the dozen or so different viruses in the 

genus Tospovirus. One striking difference in these viruses is the variation in their host ranges. TSWV 

is renowned for having an extensive host range, whereas other members of the genus Tospovirus such 

as peanut yellow spot virus or Iris yellow spot virus have narrow host ranges. 

DIAGNOSIS 

TSWV can be detected using ELISA in both leaf and root crown tissues throughout the peanut-

growing season to determine the time and percentage of infected plants (Rowland et  al. 2005, 

Murakami et  al. 2006). Diagnosis of TSWV in peanut can also be accomplished by RT-PCR. 

ELISA and RT-PCR are comparable for detecting TSWV infection rate in field-grown peanuts. 

A delayed accumulation of TSWV in a cultivar is a reliable indicator of host plant resistance (Dang 

et al. 2009, 2010). 

TRANSMISSION, EPIDEMIOLOGY, AND DISEASE CYCLE 

Worldwide, seven species of thrips are known to be vectors of TSWV. Two of these thrips vec

tors, the tobacco thrips, Frankliniella fusca, which is by far the most abundant, followed by the 

western flower thrips, Frankliniella occidentalis, are known to be efficient vectors of TSWV 

(Riley et al. 2011). However, the western flower thrips are only a minor component of the total 

thrips population on peanuts. Thrips may be the primary source of TSWV. Adult thrips carrying 

TSWV overwinter in the soil and crop debris and transmit the virus at or shortly after seedling 

emergence. Possibly, weed and crop reservoirs of TSWV also determine whether virus-carrying 

thrips overwinter in these hosts. Newly emerged peanut seedlings are infested by adult thrips 

migrating into the field. Adult female thrips usually lay eggs between the young, folded leaflets. 

After 3–5 days, the first-stage larvae emerge and feed for about 2 days before changing into larger, 

second-stage larvae. These larvae feed for 3–5 days before changing into a nonfeeding, inactive 

prepupal stage. Adult thrips then emerge 3 days later. The average time required to complete the 

cycle from egg to adult is about 13 days for tobacco thrips. Thrips damage to peanut is character

ized by scarring and deformation of new leaves, which often results in a stunted, slow-growing 

seedling. Adult female tobacco thrips are small (1.3 mm) and dark brown. Male tobacco thrips are 

smaller (1 mm) and pale yellow. Tobacco thrips of both sexes occur in winged or wingless forms. 

During the growing season, the ratio of females to males may be 6:1 or greater. Female western 

flower thrips are also small (1.5 mm), with a yellow to blotchy brown abdomen. Males are smaller 

(1 mm), with a pale yellow body. Larvae of both species range from pale to bright yellow and 

have bright red eyes. Thrips larvae acquire TSWV by feeding on virus-infected plants. However, 

the thrips are capable of transmitting the virus only as adults, and they can do so throughout the 

remainder of their lives. The average life span of an adult female tobacco thrips is about 33 days. 

TSWV must be acquired by thrips during the larval stage of their development to be transmitted. 

Thus, only immature thrips that acquire TSWV, or adults derived from such immatures, transmit 

the virus. The ability of thrips to acquire TSWV decreases as the thrips age. Although the time 

in development that thrips can acquire the virus is limited, the wide host range for both virus 

and thrips facilitates the development of epidemics (Culbreath et al. 2011). Once acquired by the 

larvae, the virus is passed transstadially, that is, TSWV persists through insect molts from larval 

to adult stages. The virus replicates in thrips, and the thrips can transmit the virus during their 

entire life. Some evidence indicates that the viral GPs bind to the midgut epithelium and have a 

role in the process of virus uptake in the midgut. The virus then moves to other cells and organs, 

becomes well established in the muscle cells epithelium, and have a role in the process of virus 

uptake in the midgut. Another perspective is that the temporary association between the midgut, 

visceral muscle, and salivary gland complex in the larval stage provides the avenue for the virus 

to become systemically established in the thrips. Eventually, the virus enters the salivary glands. 



 

 

 

 

 

 
 

             

 

 

 

 

 

Genotype Country R/MR Reference(s) 

Georgia-08V (PI 655573) United States R Branch (2009) 

Georgia-07W, Georgia-03L, AP-3 United States R to both TSWV and SR Branch and Brenneman (2009) 

AP-3, York, Tifguard, Georgia-03L United States R/MR Culbreath et al. (2008) 

C724-19-15, Tifguard United States R to both TSWV and Holbrook et al. (2008a) 

root-knot nematode 

F NC94022-1-2-1-1-b3 United States R Culbreath et al. (2005) 

Georgia-01, Georgia-05 United States R (multiple pest resistance) Branch and Culbreath (2008) 

Geoorganic cv. 100 (PI 648033) United States R Holbrook and Culbreath (2008) 

TifGP-1 (PI 648354) United States R to both TSWV and Holbrook et al. (2008b) 

root-knot nematode 

Georgia-06G (CV 94, PI 644220) United States R Branch (2007a) 

Georgia Greener (CV 95, PI 644219) United States R Branch (2007b) 

ANorden (CV 97, PI 636442) United States R Gorbet (2007a) 

Tifrunner (CV 93, PI 644011) United States R Holbrook and Culbreath (2007) 

AP-3 (CV 99, PI 633912) United States R Gorbet (2007b) 

CHAMPS United States MR (less susceptible) Mozingo et al. (2006) 

Tamrun OLO7 United States R Baring et al. (2006) 

IC 10, IC 34, ICGV 86388 Brazil R (higher resistance than do Nascimento et al. (2006) 

standard Georgia Green 
for TSWV resistance) 

C-99R, C11-2-39 United States R Mandal et al. (2002) 
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Indirect evidence indicates that virions are excreted with the saliva into host plants during thrips 

feeding. The TSWV can be transmitted mechanically, and transmission efficiency is improved by 

the use of two antioxidants (sodium sulfite and mercaptoethanol) and two abrasives (Celite and 

Carborundum) in extracting the sap inoculum and by application of the inoculum rubbing with a 

cotton swab dipped in the inoculum as well as pricking with an inoculation needle (Mandal et al. 
2001, 2006, Al-Saleh et al. 2007). 

DISEASE MANAGEMENT 

Host Plant Resistance
 1. In peanut germplasm: Although genes to confer resistance to TSWV have been found 

in some peanut germplasm lines and used to develop new cultivars, there has been rapid 

adaptation of new forms of the virus to cultivars that have been released. The genetic 

diversity in this virus group may be fostered by their replication in both different species of 

plants and different species of thrips. Biological diversity of TSWV may, however, be use

ful in developing more durable TSWV-resistant crop through induced systemic resistance 

(Mandal et al. 2006). Thus, currently there are virtually no cultivars of peanut with signifi

cant levels of resistance to TSWV that have remained resistant in the field for more than a 

few years. However, the development of tolerant cultivars has proven to be one of the most 

promising methods to manage the disease (Riniker et al. 2008). Peanut genotypes reported 

to be resistant/tolerant to TSWV are given in Table 3.1. High levels of field resistance to 

TSWV in peanut breeding lines have been derived from hypogaea and hirsuta botanical 

varieties (Culbreath et al. 2005). 

TABLE 3.1 
Peanut Genotypes Resistant (R) or Moderately Resistant (MR) to Tomato Spotted Wilt 
Virus (TSWV) as Reported from Different Countries in the World 
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 2. Transgenic peanut for resistance to TSWV: Considerable effort has been expended to 

develop transgenic peanut plants that have virus-derived genes to confer resistance to 

TSWV. Transgenic peanut progenies that express antisense nucleocapsid (N) gene of 

TSWV when subjected to natural infection of the virus under field conditions or to chal

lenge inoculation under controlled environmental conditions show significantly lower inci

dence of the spotted wilt disease. But these have not been used commercially, but could be 

used in a traditional breeding program to enhance host resistance (Magbanua et al. 2000, 

Schwach et al. 2004, Yang et al. 2004). 

Vector Control through Insecticides 
Use of insecticides alone to control thrips populations in the field is often ineffective. Contact insec

ticides generally do not reach where the thrips are located on the plant, and systemic insecticides 

do not act rapidly enough to prevent virus transmission. As more is learned about thrips feeding, 

treatments that deter feeding or induce host resistance to deter thrips feeding may be used. Some 

success, however, has been achieved as furrow application of aldicarb and phorate results in signifi

cant levels of thrips control with reduced incidence of TSWV and significant increase in peanut pod 

yield (Wiatrak et al. 2000, Herbert et al. 2007). 

Cultural Control 
In general, timing of planting to avoid major thrips migrations during critical early plant growth 

periods is feasible to reduce disease. An integrated approach that addresses many parameters that 

affect tomato spotted wilt development has been successful in mitigating tomato spotted wilt in 

peanut in the southeastern United States. Peanut variety, planting date, plant population, insecti

cide application, disease history, row pattern, and tillage have been identified as factors affecting 

disease development. These factors are weighted to determine a risk index for TSWV in the crop. 

The grower obtains a low, moderate, or high risk value that can be considered when implementing 

crop production practices. Establishment of high peanut populations of the most resistant cultivars 

through the use of high seed germination rate in a well-prepared seedbed in early to mid-May plant

ings, when soil temperatures and moisture conditions favor uniform germination and rapid seedling 

growth, helps suppress epidemics of spotted wilt (Tillman et al. 2007, Culbreath et al. 2008, 2012). 

PEANUT STRIPE 

SYMPTOMS 

Symptoms on peanut plants vary, depending on virus isolate and peanut cultivar. For most isolates, the 

initial symptoms appear as chlorotic flecks or rings on young quadrifoliates. The plants are slightly 

stunted. Subsequently, the older leaves show symptoms that are more specific to the isolate: mild mot

tle, blotch, stripe, chlorotic ring mottle, chlorotic line pattern, oak leaf pattern, or necrosis (Wongkaew 

and Dollet 1990). The name peanut stripe has been given to the disease on the basis of stripes and 

green banding symptoms along lateral veins (Demski et al. 1984), characteristic of infected peanut 

plants. Subsequently, research on peanut stripe virus (PStV) obtained from different regions of the 

world indicated the existence of specific strains of the virus producing distinct symptoms on peanut. 

The stripe isolate produces discontinuous stripes along the lateral veins on young quadrifoliates; older 

leaflets show striping, mosaic in the form of green islands, and an oak leaf pattern. For most other 

PStV isolates, the initial symptoms appear as chlorotic flecks followed by mild mottle, blotch, or chlo

rotic ring mottle symptoms. Some isolates have been reported to produce leaf necrosis (Wongkaew 

and Dollet 1990). PStV differs from peanut mottle virus (PeMoV) in that the stripe symptoms persist 

in older leaflets, and early-infected plants are stunted in the case of isolates from Asia. 
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GEOGRAPHIC DISTRIBUTION  AND LOSSES 

The PStV is a major cause of yield reductions in peanut crops in many countries. Naturally occur

ring infections have been reported in China, Japan, Thailand, Philippines, Malaysia, Indonesia, 

and Myanmar, and the virus has entered the United States from China in 1982 (Demski et al. 1984) 

and India in 1987 (Demski et al. 1993) with germplasm introductions. Yield losses due to infection 

under dry season of peanut production are frequently as high as 75%–80%. 

In Gujarat, India, the disease incidence has been recorded up to 40%, and it is prevalent in 

all other four major peanut-growing states (Andhra Pradesh, Karnataka, Maharashtra, and Tamil 

Nadu) in India (Jain et al. 2000). In Southeast Asia, high incidences of up to 38% have been reported 

causing yield reduction of 30%–60% in the peanut-growing area in Indonesia (Saleh et al. 1989) 

and the Philippines (Adalla and Natural 1988) and up to 100% disease incidence in South Korea 

(Choi et al. 2001). In northern China, where more than 65% of the nation’s peanuts are produced, 

an incidence of over 50% has been reported (Xu et al. 1991). The virus has also been detected in 

Senegal. The risk of accidental introduction of the virus in any peanut-growing country in imported 

raw peanuts is considered high, and aphids capable of transmitting it are widespread in peanut 

crops. PStV infection has a highly variable effect on peanut yield, depending on the geographical 

conditions, cultivar, and virus isolate. 

CAUSAL VIRUS: PEANUT STRIPE VIRUS 

Other scientific names for the virus are groundnut stripe virus, peanut stripe potyvirus, groundnut 

mild mottle virus, groundnut mosaic virus, peanut chlorotic ring mottle virus, sesame yellow mottle 

virus, peanut mild mottle virus, peanut chlorotic ring virus, peanut mosaic virus, and sesame yel

low mosaic virus. PStV is a member of the potyvirus group and consists of filamentous flexuous 

rods, approximately 752 nm long and 12 nm in diameter, which have a sedimentation coefficient of 

150 S and buoyant density in cesium chloride of 1.31 g/cm. Each particle consists of a single protein 

species of 33,500 Da. Molecular sequencing and analysis of the viral genome of Ts strain of PStV 

has been done (Wang et al. 2005). The genome is a single-stranded positive-sense RNA molecule 

of about 9500 nucleotides. The CP contains 287 amino acid residues with a molecular weight of 

32,175 Da (Mckern et al. 1991, Cassidy et al. 1993). The particles are relatively stable and can be 

stained with 2% phosphotungstate or ammonium molybdate pH 6.5 (Demski et  al. 1993). PStV 

strains have a CP sequence variability of below 10% and can be defined according to geographic 

origin and symptom type (Higgins et al. 1999). A study of the biological and genetic variability of 

PStV isolates in Indonesia, Thailand, and China found geographically related groups with wide 

symptom diversity. Indonesian isolates of PStV have been identified as intraspecies recombinants. 

This information is significant for future diagnosis. 

TRANSMISSION 

The virus is transmitted by several species of aphids in a nonpersistent manner, which is also 

the only means of disease spread under field conditions. A. craccivora is the major vector for the 

transmission of PStV. Apart from A. craccivora, Myzus persicae and Aphis gossypii, Hysteroneura 
setariae have been shown to be highly efficient PStV vectors for the transmission of the disease. 

PStV transmission through groundnut seed can be as high as 37% in artificially inoculated plants 

(Demski et al. 1984, Demski and Warwick 1986). Under natural conditions, however, the transmis

sion frequency is up to 7%. PStV seed transmission frequency can be influenced by the virus isolate, 

groundnut cultivar, and environment. The virus can be detected in both the embryo and the cotyle

don, but not in the seed testa. Most cultivars tested from natural infection show less than 4% seed 

transmission (Demski and Reddy 1988). 
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DIAGNOSIS 

It is a common experience that symptoms of the disease caused by PStV resemble those of PeMoV. 

However, PStV can be distinguished by infectivity assays using indicator hosts reaction. For exam

ple, C. amaranticolor on sap inoculation produces chlorotic or necrotic lesions in response to PStV, 

whereas PeMoV does not produce any infection. Phaseolus vulgaris cv. Top Crop, on the other 

hand, remain uninfected due to PStV, but it produces reddish local lesions in response to PeMoV 

infection. Pisum sativum remains uninfected due to PStV inoculation, but it produces systemic 

mosaic due to infection caused by PeMoV. 

PStV particles react strongly with antisera of black-eye cowpea mosaic, clover yellow vein, and 

soybean mosaic viruses but not with PeMoV antiserum. An immunocapture (IC)-RT-PCR tech

nique that detects the virus in seed lots, which is more sensitive than ELISA, has been developed 

(Gillaspie et  al. 2000). A technique has been developed for the detection of PStV in individual 

seeds without affecting their germination. The virus can be detected in both the embryo axis and 

the cotyledon. ELISA can detect one PStV-infected seed in a pool of 25 healthy samples. A dot blot 

hybridization technique has also been applied to detect PStV in seeds. The sensitivity of this tech

nique is about 10 times greater than ELISA (Bijaisoradat and Kuhn 1988). Further, the technique 

can differentiate between the presence of PStV and PeMoV in peanut seeds. 

HOST RANGE 

Besides A. hypogaea (peanut), the PStV can infect Calopogonium caeruleum, Centrosema pubes
cens (centro), Crotalaria pallida (smooth crotalaria), Desmodium (tick clovers), G. max (soybean), 

Indigofera (indigo), Lupinus albus (white lupine), Medicago sativa (lucerne), Pogostemon cablin 
(patchouli), Pueraria phaseoloides (tropical kudzu), Senna obtusifolia (sicklepod), Senna occi
dentalis (coffee senna), Senna tora (sicklepod), Sesamum indicul (sesame), Stylosanthes (pencil 

flower), Uraria crinita (medicinal plant in Taiwan), Vigna radiata (mung bean), and V. unguiculata 
(cowpea) (Liao et al. 2004, Singh et al. 2009). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Though the main source of primary infection in the new planting is PStV-infected peanut seed, 

several crop plants and weed hosts in peanut-cropping system that fall in the host range of the virus 

do also serve as effective source of primary infection. Consequently, many aphid species mentioned 

earlier transmit the PStV in a nonpersistent manner and do play the solitary means of spread of the 

disease under field conditions (Demski et al. 1993). 

DISEASE MANAGEMENT 

Host Plant Resistance
 1. Among the cultivated and wild Arachis germplasm: Resistance to PStV among the culti

vated peanut accessions is not available. However, several accessions of wild Arachis spp. 

are either immune or highly resistant to the virus. For example, Arachis diogi accessions 

PI 468141, PI 468142; Arachis helodes accession PI 468144; A. cardenasii accessions PI 

475998, PI 476012, and PI 476013; A. chacoense accession PI 276235; and Arachis para
guariensis accession PI 468176 are highly resistant to PStV (Prasad Rao and Reddy 2005, 

Nigam et al. 2012). But efforts of making crosses to introduce this trait have not been suc

cessful, due to incompatibility between species.

 2. Transgenic peanut for resistance to PStV: A practical and efficient genetic transformation 

and regeneration system for cultivars of peanut has been developed. Using particle bom

bardment technology in Australia and China, viral resistance genes have been introduced 
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into peanut. Also, an alternative Agrobacterium-mediated transformation system is 

investigated. RNA silencing, an intrinsic defense mechanism, has been successfully 

induced in transgenic peanut plants to specifically eliminate PStV RNA (Waterhouse 

et al. 2001, Dietzgen et al. 2004). These plants are highly resistant to PStV infection, 

and the resistance is stably inherited. An international collaborative research program 

funded by the Australian Centre for International Agricultural Research has now applied 

this technology to peanuts to control stripe disease in commercial peanut  cultivars 

(Higgins et al. 2004). These plants will be particularly useful for Indonesian growers to 

combat a major constraint in production and may provide a source of resistance in peanut 

breeding programs. The genetic improvement of the major Indonesian cv. Gajah for PStV 

resistance is of particular significance, since this cultivar is also resistant to bacterial  

wilt, another economically important disease in Southeast Asia. Transgenic peanut lines 

carrying a CP gene of PStV and showing resistance to the virus have been developed in 

Indonesia (Hapsoro et  al. 2005, 2007a,b, 2008). The transgene has been proven to be 

stabile up to seven generations of selfing (Hapsoro et al. 2007b). The transgenic peanut 

lines have been shown to carry the PStV CP transgene and inherited according to the 

Mendel law (Hapsoro et al. 2008). Therefore, these transgenic pure lines could be used 

as parents in a breeding program of pyramiding character of resistance to PStV and  

other novel characters in peanut plants. For example, peanut cultivar Gajah that is resis

tant to PStV obtained through genetic engineering could be combined with resistance to 

leaf spot disease, a nontransgenic high yielding character, through hybridization. This 

demonstrates that transgenic character can be treated just as nontransgenic character in 

a breeding program employing hybridization (Hapsoro et al. 2010). Resistance to PStV 

mediated by inverted repeat of the CP gene in transgenic tobacco plants had been devel

oped (Yan et al. 2007, 2012). 

Chemical Control 
Since the PStV is transmitted by the aphid vectors in nonpersistent manner, managing the disease 

through vector control through insecticide sprays is not effective. 

Cultural Control 
It is advisable not to use seeds from crops infected with the PStV from the preceding crop sea

son. Virus-free seed can be produced by growing healthy seed, tested by ELISA in areas where 

PStV is currently not known to occur. Moreover, in areas where aphid vectors are not likely to 

be active when peanut crop is young, the proportion of seed containing PStV is not likely to be 

high. However, if a small number of plants with PStV infection from seeds are observed, they 

can be rogued. Selection of large-size seeds could reduce the source of primary inoculum, and 

thus, this practice appears to be useful in decreasing the incidence of the peanut stripe disease. 

Peanut seed production should be done in the wet season when aphid populations are low and 

PStV incidence is negligible. Roguing of infected peanut is not effective in controlling PStV, 

because by the time the symptoms develop, aphids could already have transmitted the virus to 

other plants (Demski et al. 1993). 

Regulatory Control 
One way of controlling PStV is through early detection by using PStV antisera for virus detection 

as well as seed certification and follow-up of plant quarantine. For example, Australian peanut 

crops are free of the PStV, and it is important that quarantine remains effective in keeping it out. 

The risk of accidental introduction of the virus in imported raw peanuts is considered high, and 

aphids capable of transmitting it are widespread in Australian peanut crops (Persley et al. 2001). 

Therefore, under similar conditions in other countries too, strictly observing plant quarantine 

regulations to exchange only PStV-free peanut germplasm is of great significance. Seed lots for 
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experimental purposes should be tested by nondestructive methods before their distribution to non-

infested areas. Sowing near leguminous crops or other potential hosts of PStV should be avoided 

(Demski et al. 1993). Growing groundnuts for seed at a distance from commercial groundnut fields 

is important. For example, in the United States, 100 m is regarded as a safe distance (Demski  

et al. 1993), whereas in China, it is 200 m (Xu and Zhang 1986). In seed production fields, roguing 

diseased plants when they are noticed should reduce the chance of having contaminated seed in 

the lot. This method may not be practical in large-scale production, but is a common practice in 

countries such as Thailand. 

PEANUT MOTTLE 

SYMPTOMS 

The symptoms of PeMoV infection can vary with cultivar, time of infection, and environment. The 

most common symptom, although it may not be readily noticed, is a mild mottle as irregular dark 

green island or mosaic on the youngest leaves of infected plants. The symptoms are not as clear on 

older leaves and thus can be easily missed even when the virus is in epidemic proportions in the 

field. The light and dark green areas of affected leaves can best be seen if leaves are held up to light. 

Margins of leaflets may curl up and depressions in the leaf tissue between the veins may become 

prominent. Plants are generally only mildly stunted, if at all. As plants mature, the symptom expres

sion generally declines, particularly during hot and dry weather. Pods from infected plants may be 

reduced in size and have irregular gray to brown patches. The seed coat of affected seed may also 

be discolored. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Peanut mottle disease caused by PeMoV was first reported to occur in Georgia in the United States 

in 1965 (Kuhn 1965). Since then, it has been reported to occur in many southeastern states of 

the United States, East Africa, Northeast Australia, China, India, Indonesia, Japan, Malaysia, 

Philippines, Bulgaria, Sudan, and Venezuela (Kolte 1984). In 2008, reports of its occurrence have 

been made from the Gilan Province of Iran (Elahinia et al. 2008) and Israel (Spiegel et al. 2008). 

Five major strains of the PeMoV as mild mottle strains (PeMoV-M1 and PeMoV-M2), severe mosaic 

strain (PeMoV-S), necrosis strain (PeMoV-N), and chlorotic line pattern strain (PeMoV-CLP) are 

known to occur, and the losses in yield caused by the disease in a particular geographical area 

depend on the prevalence of the particular strain of the virus, the severe mosaic strain being more 

damaging as reported from North Carolina in the United States reducing the yield by 41%–72% 

(Sun and Herbert 1972). PeMoV causes substantial yield losses in many parts of the world. In some 

Southeast Asian countries, yield losses up to 30%–48% have been reported, and in the Indian sub

continent, the virus is a potential threat to peanut production (Reddy 1991, Prasada Rao and Reddy 

2005). 

CAUSAL VIRUS 

PeMoV belongs to the genus Potyvirus in the family Potyviridae. As with other members of this 

virus family, PeMoV has flexuous, filamentous, nonenveloped particles ranging from 740 to 750 nm 

in length and 15 nm in diameter with one molecule of positive-sense, single-stranded RNA (3.0–3.5 × 

106 Da) and one coat polypeptide species (32–36,000 Da). Virus infection is often associated with 

intracellular cytoplasmic and nuclear inclusions, pinwheels, bundles, and laminated aggregates. It 

is difficult to purify the virus due to its tendency to aggregate and to be inactivated by most clarify

ing agents. Purified virus shows typical absorption spectrum of nucleoproteins with minimum and 

maximum absorbance at 246 and 260 nm, respectively (Paguio and Kuhn 1973, Kolte 1984). 
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Although the virus infects several species within the Leguminosae, its host range outside this 

family is extremely limited. PeMoV is also known by other names such as peanut green mosaic 

virus, peanut chlorotic mottle virus, and peanut mild mosaic virus. 

TRANSMISSION 

In addition to being mechanically transmissible, PeMoV is also transmitted in a nonpersistent 

manner by several species of aphid, including A. craccivora, A. gossypii, Hyperomyzus lactucae, 

M. persicae, Rhopalosiphum maidis, and Rhopalosiphum padi (Pietersen and Garnett 1992). Out 

of the five strains, the PeMoV-N is not transmitted by aphid. PeMoV is seed borne up to 20% in 

peanuts (Bashir et al. 2000). Adams and Kuhn (1977) reported that seed transmission is due to the 

presence of the virus in the embryo. The seed transmission, however, varies depending on the virus 

strain, host cultivar, time of infection, and temperature. 

DIAGNOSIS 

PeMov can be initially diagnosed by its sap inoculation on the leaves of P. vulgaris cv. Top Crop 

that produces its characteristics reddish-brown local lesions. ELISA is also commonly used to detect 

PeMov in leaves as well as seeds (Bharathan et al. 1984, Puttaraju et al. 2001). In infected plant cells, 

the virus makes characteristic potyvirus cylindrical inclusions that are visible in the light microscope 

with proper staining. Since 2000, a new procedure known as an IC-RT-PCR method has been in use 

for testing large number of seed lots of peanut germplasm to detect PeMoV, and the IC-RT-PCR could 

be adopted to test other plants and detect other plant viruses (Gillaspie et al. 2000). In this method, a 

small slice is removed from each seed distal to the radicle of a 100-seed sample, the slices are extracted 

in buffer and centrifuged, and a portion of the supernatant is incubated in a tube that has been coated 

with antiserum to the PeMoV. Following immunocapture of the virus (PeMoV), the tube is washed, the 

RT-PCR mix (with primers designed from conserved sequences within the capsid region of the virus) 

is placed in the same tubes, and the test then is said to be complete. Results indicate good correlation 

between the virus detected by the IC-RT-PCR method and the virus detected from the same seed lots 

by ELISA. But the IC-RT-PCR method is more sensitive and efficient than ELISA. This method has 

been used for the first time as molecular evidence for the occurrence of PeMoV in China, and the phy

logenetic studies done in that country reveal that PeMoV can be clustered into three groups, America, 

Asia, and Australia, which are found to be consistent with their geographical origins (Liu et al. 2010). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Besides peanuts, this virus is known to infect several legume crops particularly soybeans (G. max), 

French bean (P. vulgaris), peas (P. sativum), and various weeds that occur in peanut fields. All these 

can serve as the sources of primary inoculum. In the United States, the virus is known to affect 

peanuts as well as soybeans. Since soybeans and peanut production areas in the United States are 

contiguous and overlapping in several southeastern states, the virus infection chain is maintained 

from one season to another. The susceptibility of several Cassia species both in the East Africa and 

in the United States indicates the presence of a potential reservoir of infection. Since 2007, PeMoV 

has been reported to infect Rhizoma peanuts (Arachis glabrata) in Georgia (Nischwitz et al. 2007). 

This plant is propagated by cuttings and is a perennial crop. If this virus spreads in perennial peanuts 

in the southern United States, this plant could become a reservoir of the virus and increase its spread 

to field peanut and soybean via aphid transmission. Infected seeds are also considered as the source of 

survival of virus. Seed samples collected from the farmers and fields in India have been found to show 

2%–7% PeMoV infection (Puttaraju et al. 2001). In Zimbabwe, the Bambara groundnut (Vigna sub
terranea) seeds have been detected to be infected by PeMoV (Sibiya et al. 2002). The infected seed 

thus can therefore be one very important source of primary inoculum in a newly planted peanut crop. 
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DISEASE MANAGEMENT 

Host Plant Resistance 
The most promising peanut germplasm lines with resistance to PeMoV are PI 261946, PI 261949, 

and ICG 504, but this resistance has not been incorporated into any commercial varieties. Some 

accessions of wild species of Arachis that are resistant to PeMoV are PI 172223, 262817, 262818, 

262794, 421707, 468141, 468142, 468169, 468171, 468174, 468363, 468366, 468371, and AM 3867 

(Prasad Rao et al. 1993, Prasad Rao and Reddy 2005). These accessions can be of potential use in 

breeding for resistance to PeMoV. 

Chemical Control 
The spread of the disease may also be controlled by the use of effective insecticide sprays through 

aphid control, though the control of nonpersistently aphid-transmitted viruses as PeMoV is difficult. 

Cultural Control 
The use of PeMoV-free seed is the most feasible approach for control, as this prevents the disease 

from becoming initially established in the field. Thus, cultivars with low or no seed transmission 

can be of immense use in eliminating the initial source of virus inoculum. It is noteworthy to note 

that at least there are two peanut genotypes, viz., EC 76466 and NCAC 17133 (PI 259747), which 

do not show any evidence of transmission of mottle strains of PeMoV through seed (Bharathan 

et al. 1984, Prasad Rao and Reddy 2005). If PeMoV-free seed is used, volunteer plants must be 

completely removed and the field situated so that PeMoV hosts, such as clovers, southern pea, and 

navy bean, are at least 100 yards away. Geographical locations in peanut-growing countries, where 

there is low or no incidence of occurrence of the disease, are reported to be identified for virus 

seed production. 

PEANUT CLUMP 

SYMPTOMS 

Plants affected by clump disease are conspicuous in the field because of their severe stunting and 

dark green appearance (Figure 3.3). Initial symptoms appear on young leaflet as mottling, mosaic, 

and chlorotic rings, but later turn dark green with or without faint mottling as the leaves mature. 

Early-infected plants become severely stunted. Late-infected plants may not show conspicuous 

stunting but appear dark green with faint mottling on younger leaflets. Clump symptoms are similar 

to those of green rosette, and it is likely that the two diseases are confused in some areas of Africa 

where they both occur (Reddy 1991). In late-infected plants, clumping may be restricted to few 

branches. Infected plants become bushy and produce several flowers, but the pegs do not develop 

pods of normal size. Early-infected plants may not produce any pods and late-infected plants may 

produce poorly developed pods. These plants often occur in patches, and the disease reoccurs in the 

same area of the groundnut field in successive years. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The disease first reported from Senegal in West Africa now affects peanut in several countries in 

Africa including Benin, Burkina Faso, Chad Congo, Gabon, Ivory Coast, Mali, Niger, Sudan, and 

also in South Africa and in Asia (the states of Punjab Haryana, Andhra Pradesh, Gujarat, Rajasthan 

and Uttar Pradesh of India, and in Pakistan) (CABI 2006, Dieryck et al. 2009). 

Peanut clump virus (PCV)-infected plants do not produce pods, and yield losses in peanut grown 

in light sandy soils are as high as 60% even in late-infected crops (Reddy et al. 1988). Peanut clump 

disease is known to cause losses exceeding U.S. $40 million to peanut alone on a global scale. 
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(a) 

(b) 

FIGURE 3.3  Peanut clump caused by the peanut clump virus. Note the severe stunting with dark green 

leaves (a) and the mosaic mottling on young quadrifoliate leaves (b). 

The virus has also been shown to infect a range of monocotyledonous plants, which include wheat,  

barley, maize, sorghum, foxtail millet, pearl millet, and various grassy weeds (Delfosse et al. 2002).  

In addition to peanut, the virus has the potential to cause crop losses at least in sugarcane, wheat, 

barley, maize, sorghum, chillies, and Bambara groundnut. PCV also infects such important crops 

as cowpea (niebe) and forage legumes (e.g.,  Stylosanthes spp.) and highlights a correlation between 

the countries cultivating these crops and the virus distribution, but crop losses in these hosts have  

not been investigated experimentally. 
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CAUSAL VIRUS: PEANUT CLUMP VIRUS 

PCV that causes clump disease is characterized by straight tubular particles of two lengths, contain

ing single-stranded RNA, precisely termed as RNA-1 and RNA-2 (Thouvenel et al. 1976, Thouvenel 

and Fauquet 1981a, Hemmer et al. 2003). However, isolates of the virus (PCV) causing the clump 

disease in West Africa are serologically distinct from the isolates that cause the clump disease in India 

and are referred to as isolates of IPCV. However, IPCV has been shown to resemble PCV in symptom

atology, in particle morphology, as well as in other aspects. Both PCV and IPCV belong to the genus 

Pecluvirus whose members are typified by a bipartite S RNA genome and by having a fungus vector, 

now better known as Plasmodiophorid protozoa, the Polymyxa graminis. The nucleotide sequence of 

IPCV RNA-2 and the amino acid sequence of the CP of IPCV have been found to be 61% identical 

to PCV supporting the contention that the Indian and West African diseases are caused by distinct 

but related viruses (Naidu et al. 2000, 2003). Both viruses are known to exist as a range of strains: 

IPCV isolates from India have been grouped into three distinct serotypes—IPCV-H (Hyderabad), 

IPCV-D (Durgapura), and IPCV-L (Ludhiana)—whereas the common and yellowing strains of PCV 

have been recognized in West Africa (Thouvenel and Fauquet 1981b). The variability in both PCV 

and IPCV has been elucidated by studying the respective virus genome, and the complete nucleotide 

sequence of one of the two RNA species in each virus has been determined (Naidu et al. 2003). Since 

a polyclonal antiserum produced from one serotype usually does not detect others, a DNA probe 

derived from RNA has been used to detect all the known serotypes of IPCV (Reddy et al. 1994). 

DIAGNOSIS 

RT-PCR technique can be used to detect PCV in the host tissue and to detect virus acquisition 

and transmission of PCV by the vector (Dieryck et al. 2011). Phaseolus vulgaris cv. Local and 

Chenopodium quinoa are found to be good diagnostic hosts. Although existence of diversity  

among various isolates of PCV has been reported, no attempts have been made to determine the 

distribution and biological characteristics of different isolates. For example, rice stripe necrosis 

virus (RSNV) is also transmitted by Polymyxa sp. and occurs in Côte d’Ivoire, Nigeria, Liberia, 

and Sierra Leone. It is a virus very similar to PCV, but it is not fully described; its serological 

and genomic properties need to be clarified, and it is possible that RSNV is a member of the 

Pecluvirus, the genus to which PCV and IPCV belong. This information is vital for the diagno

sis of these viruses and for implementing the management practices. Additionally, very little is 

known about the diversity among the isolates of Polymyxa spp. in West Africa. The Polymyxa 
sp. transmitting RSNV infects rice roots, whereas this crop is not a host for Polymyxa sp. trans

mitting IPCV. The studies on the host range of both Polymyxa and the viruses it transmits are 

crucial before developing strategies for the management of this group of viruses in West Africa. 

TRANSMISSION, EPIDEMIOLOGY, AND DISEASE CYCLE 

Both PCV and IPCV are seed and soil transmitted and are vectored by the persistent, soil-inhabiting 

root parasite, Plasmodiophorid protozoa, the Polymyxa graminis f. sp. tropicalis (Delfosse et al. 
2005, Dieryck et  al. 2005, 2008, Otto et  al. 2005). This fungus-like parasite survives for many 

years in the soil in the form of highly resistant resting spores, and clump disease occurs in patches 

in fields. The disease recurs when groundnut and certain IPCV-susceptible cereal hosts like pearl 

millet (Pennisetum glaucum), sorghum (Sorghum bicolor), wheat (Triticum aestivum), and barley 

(Hordeum vulgare) are grown regularly. 

PCV is seed transmitted in peanut and suspected to be transmitting through the seed of a range 

of monocotyledonous and dicotyledonous hosts (Dieryck et al. 2005). Evidence has been obtained 

to show that IPCV can establish in disease-free areas if virus-containing seed from monocots is 

planted in soils containing Polymyxa species. IPCV is seed transmitted up to 11% in groundnut and 
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also through the seeds of finger millet, pearl millet, fox tail millet, wheat, and maize (Ratna et al. 
1991). Seed transmission frequency to the extent of 4.29% has been recorded in the case of pearl mil

let accessions, and the virus can be detected in 96% of the root tips of pearl millet seedlings infected 

through seed, raising concern regarding their role in the spread of the disease. It is revealed that cap

sidial proteins of CPV are localized in several parts of the root apexes, notably in the root caps of pearl 

millet, indicating that the virus is perhaps able to multiply in parts of the apical meristems, which is 

uncommon to the general characteristics of plant virus infection (Otto et al. 2005). Accumulation of 

PCV during infection is accompanied by specific association of PCV RNA-1 encoded proteins with 

membranes of the endoplasmic reticulum and other organelles (Dunoyer et al. 2002). 

There is some evidence that quantity and distribution of rainfall influences the incidences of 

IPCV-H and P. graminis; that is, high rainfall with temperatures ranging from 23°C to 30°C results 

in high incidences of the virus and P. graminis, and a weekly rainfall of 14 mm is sufficient enough 

for P. graminis to initiate infection for natural virus transmission (Delfosse et al. 2002). 

DISEASE MANAGEMENT 

Host Plant Resistance 
The host resistance to PCV and IPCV could not be identified in any of nearly 10,000 Arachis 
germplasm lines. The variation in resistance/tolerance reaction in genotypes in the sick plots has 

been found to be due to uneven distribution of virus inoculum in the fields, which depends on 

the germination of resting spores of the vector P. graminis and environmental conditions. A reli

able virus inoculation procedure is therefore essential to accurately evaluate peanut germplasm for 

resistance to IPCV/PCV. One such method is mechanical sap inoculation reported by Reddy et al. 

(2005), where infected peanut seed stored at −70°C is used as initial virus inoculum source, that is, 

infected seed material (1:10 w/v) is macerated in chilled inoculum buffer and immediately inocu

lated to French bean (P. vulgaris cv. Top Crop) to get IPCV/PCV-infected French bean that then 

should serve as the source of inoculum for further efficient transmission of the virus to peanut by 

mechanical sap inoculation. This method is convenient and allows reliable screening of elite peanut 

germplasm for resistance to various PCV/IPCV isolates in a relatively short period in comparison 

to soil-borne inoculum that depends on the germination of resting spores of the vector P. graminis 
(Reddy et al. 2005). On biotechnological front, molecular work is in progress to obtain one or more 

virus CP genes that could be possibly used to transform peanut plants to induce transgenic resis

tance (Reddy et al. 1994). 

Chemical Control 
Soil application of biocides such as Nemagon and Temik or furrow application of a systemic insec

ticide, carbofuran at 5 kg ai/ha, 1 week before planting, although effective, is found to be either 

hazardous or uneconomical (Reddy 1991, Delfosse et al. 2005). 

Cultural Control 
Extreme caution is essential in selecting the virus-free seed. Based on epidemiological studies, 

early sowing of the peanut crop, before the onset of monsoon rains and using judicious irrigation, 

has been shown to be simple and the most effective cultural method of reducing disease incidence 

in irrigated areas (Delfosse 2000). As a result of the baiting technique used to monitor IPCV and 

P. graminis infection, a trap-cropping method using pearl millet has been developed and tested suc

cessful at different sites in India. Pear millet is planted soon after the monsoon rains and uprooted 

in 2 weeks after germination. This permits the infection by P. graminis but not the development into 

sporosori. This is useful in reducing the inoculum load and peanut crop sown subsequently shows 

lower incidence of the clump disease. As P. graminis multiplies intensively in monocots, these 

should be avoided in cropping systems without peanut (Delfosse 2000). Hence, crop rotation with 

these crops is not to be recommended. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

126 Diseases of Edible Oilseed Crops 

Soil solarization has been found to reduce the incidence of clump disease in India where well-

cultivated soils are profusely irrigated before being covered with layers of transparent polyethylene 

sheeting for at least 70 days during summer (Reddy 1991). But the economic benefit of this method 

needs to be determined. 

PEANUT STUNT 

SYMPTOMS 

Symptoms vary depending on the host plant and host plant cultivar and the strain of the virus. In 

peanuts, there are various degrees of stunting, shortening of the petioles, reduced leaf size, mild 

mottling, and malformation of pods. Severe reduction in leaf size, especially in width, occasion

ally results in the complete absence of leaflet lamina. Seeds from infected plants appear deformed, 

frequently with a split pericarp wall, and have poor viability. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Though the disease is considered to be of less economic importance, there have been records of 

epidemic occurrence of peanut stunt in the 1960s in Virginia, North Carolina, and Georgia in the 

United States (Miller and Troutman 1966, Herbert 1967). In 1966, about 50%–90% loss in yield 

due to the disease was reported in Virginia. The causal peanut stunt virus (PSV) sporadically 

causes a high incidence of peanut stunt disease in Hebei, Henan, and Liaoning provinces in China 

(Xu et al. 1992). The PSV, otherwise, is an economically important pathogen of legumes worldwide 

including several countries in Europe (France, Hungary, Italy, Poland, and Spain), in Asia (China, 

Georgia, Japan, Korea, and India), in Africa (Morocco and Sudan), and also in the United States 

(Subrahmanyam et al. 1992). In Kentucky as well as in the southeastern United States, PSV is wide

spread in forage legumes and is considered a major constraint to production and stand longevity. 

CAUSAL VIRUS: PEANUT STUNT VIRUS 

The PSV belongs to the family Bromoviridae. It is a member of the genus Cucumovirus, the type 

member of which is Cucumber mosaic virus. PSV particles are isometric or polyhedral, with a 

diameter of ca. 25–30 nm. The CP of PSV contains a single polypeptide with an apparent molecular 

weight of about 26 kDa. PSV has a positive-sense tripartite genome (designated RNA-1, -2, and -3 

in order of decreasing size), largest genome 3.355 kb (RNA-1), the second largest 2.946 kb (RNA

2), and the third largest 2.186 kb (RNA-3), and has base composition being 24% G, 26% A, 21% C, 

and 29% U. In addition to the genomic RNAs, the virions also encapsulate a fourth RNA (called 

RNA-4), which is a subgenomic RNA that functions as mRNA for the viral CP (Naidu et al. 1995, 

Suzuki et al. 2003). Three types of native particle exist, each consisting of the same protein shell, 

yet containing different RNA species. One type of particle contains genomic RNA-1, another 

contains RNA-2, and the third contains genomic RNA-3 and subgenomic RNA-4. However, all 

the particles have the same sedimentation coefficient (S20w). Nongenomic nuclei found in virions 

are subgenomic mRNA that encodes the CPs, are named RNA-4, and are of 0.986 kb. Naturally 

occurring virions of PSV may also package a fifth RNA designated as SatRNA along with their 

genomic and subgenomic RNAs. PSV-associated SatRNAs are linear, single-stranded RNA mol

ecules, ranging in size from 391 to 393 nucleotides. PSV SatRNA has essentially no sequence 

homology with its helper virus (i.e., PSV) genomic RNAs. Depending on the PSV strain and host 

species involved, SatRNAs can modulate the symptoms caused by PSV. PSV supports the replica

tion of its SatRNAs but not those associated with Cucumber mosaic virus. 

Infectivity of the virus in sap is lost between 51°C and 56°C temperature when exposed to 10 min, 

between 10−4 and 10−5 dilutions and between 4 and 24 h at room temperature (Kolte 1984). 
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Several strains of the PSV-infecting peanut have been described. PSV-V from Virginia and PSV-W 

from Washington have been described from the United States, and these have been referred to as 

eastern (PSV-E) and western (PSV-W) American strains of PSV, respectively (Naidu et al. 1995). 

Some other strains such as PSV-P (Polish) from Poland (Obrepalska-Steplowska et al. 2008), PSV-RP 

(Robina) from Hungary (Kiss et al. 2009), and PSV-Mi from China (Xu et al. 2004) have been reported. 

DIAGNOSIS 

Plants suspected of a viral infection should be sent to a plant diagnostic laboratory where the pres

ence or absence of the virus can be confirmed by serological double-antibody sandwich-ELISA 

and an indirect ELISA, RT-PCR, or host range tests (Dai et  al. 2011). Antiserum and sequence 

data are available for this virus. The PSV produces chlorotic lesions followed by systemic mottle 

on Cucumis sativus and P. vulgaris cv. Top Crop, Kentucky wonder, and Bountiful. The virus also 

produces chlorotic lesions on C. amaranticolor and Cyamopsis tetragonoloba (Kolte 1984). 

TRANSMISSION, EPIDEMIOLOGY, AND DISEASE CYCLE 

All three genomic RNAs, but not subgenomic RNA 4, are essential for infection, and its CP, as in 

other viruses, plays an important role in many processes during viral life cycle and has great impact 

on the infectivity (Obrepalska-Steplowska et al. 2008). The CP gene is essential and sufficient for 

the production of unusual cytoplasmic ribbonlike inclusions that is a strain-specific trait of the virus 

(Bashir et al. 2004). PSV is transmitted from plant to plant by several species of aphids (A. craccivora, 

A. spiraecola, and M. persicae) in a nonpersistent manner. It can also be transmitted by mechanical 

inoculation. It has been shown to be transmitted by seeds in peanuts at a very low level, but this is 

not considered to be very important to the spread of this virus. The virus can be introduced into a 

susceptible field crop by aphids from a nearby reservoir (infected perennial hosts like clover, alfalfa, 

or perennial peanuts) and then is spread further into the field by aphids (Blount et al. 2002). It can be 

spread in perennial crops by harvesting (mechanical transmission) and possibly by the root grafts. 

DISEASE MANAGEMENT 

In the absence of any satisfactory source of resistance among peanut germplasm or PSV-resistant cul

tivar, good control of the disease appears to be only through vector control by means of insecticides. 

Incidence of the disease can be brought under control if peanut fields are kept away from clover fields. 

It is worth mentioning that there is an occurrence of attenuating PSV SatRNAs that, when coin

oculated with PSV, elicit the suppression of virus replication and spread. The symptom-attenuating 

properties of SatRNAs have been successfully exploited in the development of SatRNA-mediated 

transgenic protection against Cucumber mosaic virus and tobacco ring spot virus, and there is a 

possibility of developing this technology-based transgenic peanut for the management of the stunt 

disease (Naidu et al. 1995). 
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4 Other Diseases of Peanut 

BACTERIAL WILT OF PEANUT 

SYMPTOMS 

Affected young plants show conspicuous and sudden rapid wilting, and death of roots becomes 

evident. The whole plant or only a branch of the plant may be wilted. Leaflets of affected plants curl 

up at the ends and become slightly flaccid, while leaves retain their green color with little fading 

of normal green color (Mehan et al. 1994). Veins become greener than the lamina, giving leaflets a 

stripped appearance. A unilateral effect, as can be observed under natural conditions, is noted and 

only one branch may be affected under artificial conditions also. Wilt symptoms can be observed 

3 weeks after sowing, the peak of disease occurrence being 40–50 days after sowing. Plants may 

wilt entirely over days under conducive conditions, such as after high temperatures. There can also 

be latent infection. This disease can be distinguished from other wilt diseases by placing infected 

tissue, freshly sectioned, into water to observe masses of bacterial ooze streaming out. The rapid 

wilting also distinguishes this from fungal wilts. 

Bacterial oozing may be seen on root, stem, and lower branches and the oozing becomes evident 

as streaks of brown or black discoloration. The affected tissues then become black and show necro

sis. When young plants are infected, the pods may remain small, or pods of such plants become 

wrinkled and may show rotting. When external symptoms are not evident, the infection can be 

detected in cross sections of stems and roots. Brown pigment formation in host tissue in the cut 

xylem and pith regions is considered a diagnostic criterion for the identification of the disease. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Bacterial wilt (BW) disease (Ralstonia solanacearum) is widely distributed in tropical, subtropi

cal, and some warm temperate region in the world and poses a great threat to peanut production in 

China and Southeast Asia including Indonesia and Vietnam (Shan et al. 1998, Doan et al. 2006). 

More than 10% of the area under peanut is affected in southern China. In Shandong Province  

in China, where large-seeded cultivars dominate, BW is a very serious problem in Rizhao and 

Linyi. The disease is reported to affect about 35,000 ha crop area in these two areas (Zhang et al. 

2008). Yield reduction generally ranges from 10% to 20%; however, in heavily infested field, over 

50% yield losses are not uncommon. The disease is more severe in lands not used for paddy rice 

in Southeast Asia. In extreme cases, the disease may even cause total crop losses (Mehan et al. 

1994, Yu et  al. 2011). Although the disease had been reported from several African countries 

in the 1930s and 1940s, it is not considered economically important there with the exception of 

Uganda, East Africa (Mehan et al. 1994, Elphinstone 2005, Mace et al. 2007). The worldwide 

distribution of R. solanacearum has been summarized by Commomwealth Agricultural Bureaux 

International and the European and Mediterranean Plant Protection Organization in the updated 

series of distribution of maps of plant diseases (Schell 2000). 
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PATHOGEN: Ralstonia solanacearum (SMITH) YABUUCHI  ET  AL. 

R. solanacearum is the causal pathogen of BW, formerly known as Pseudomonas solanacearum 
E.F. Smith, with similarities in most aspects except that it does not produce a fluorescent pigment 

like Pseudomonas (Fegan and Prior 2005). R. solanacearum is a Gram-negative, non-spore- 

forming, rod-shaped, strictly aerobic bacterium that is 0.5–0.7 × 1.5–2.0  μm in size. For most 

strains, the optimal growth temperature is between 28°C and 32°C, and it does not grow above 

41°C. On solid agar media, individual bacterial colonies are usually visible after 36–48 h growth at 

28°C, and  colonies of the normal or virulent type are white or cream colored, irregularly shaped, 

highly fluidal, and opaque. Occasionally, colonies of the mutant or nonvirulent type appear; these 

are uniformly round, smaller, and butyrous, or dry. A tetrazolium chloride (TZC) medium can dif

ferentiate the two colony types. On this medium, virulent colonies appear white with pink enters 

and nonvirulent colonies are a uniform dark red (Champoiseau et al. 2009). 

VARIABILITY  AND PATHOTYPES  IN  R. solanacearum SPECIES COMPLEX 

R. solanacearum is classified into five races based on the hosts affected and five biovars based on the 

ability to use or oxidize several hexose alcohols. Race 1 strains (biovars 1, 3, and 4) are pathogenic 

to a broad range of hosts, including tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), 

and peanut (Arachis hypogaea) and occur in Asia, Australia, and Americas; race 2 strains (biovars 

1 and 3) have a more limited host range than race 1 and infect banana (Musa acuminata), plan

tain (Musa paradisiaca), heliconia (Heliconia spp.), and other plants in the Musaceae family and 

occur in the Caribbean, Brazil, and the Philippines; race 3 strains (biovar 2) occur in cool upland 

areas in the tropics and cause severe wilt in potato (Solanaum tuberosum), tomato, and geranium 

(Geranium spp.) and occur worldwide, but it is not generally reported in North America covering 

the United States and Canada and is, therefore, the focus of sanitation and plant quarantine of man

agement practices to prevent the introduction of or spread of the pathogen; race 4 strains (biovars 3 

and 4) infect ginger and occur in Asia; and race 5 strains infect mulberry (Morus alba) and occur 

in China (Denny and Hayward 2001). Pathogen diversity and the relationship among races, biovars, 

and phylotypes have been described (Chen et al. 2000, Alvarez 2005, Fegan and Prior 2005), but 

this classification system has proved to be unsatisfactory. There are no laboratory tests to define 

the race of an isolate because host ranges of strains are broad and often overlap. The biovars do 

not correspond to phylogenetically coherent groups, with the exception of biovar 2A, which cor

responds to R3bv2. 

A phylogenetically meaningful classification scheme has now been developed based on DNA 

sequence analysis. This scheme divides the species complex into four phylotypes that broadly reflect 

the ancestral relationships and geographical origins of the strains. Phylotype I strains originated in 

Asia, phylotype II strains originated in the Americas, phylotype III strains in Africa, and phylotype 

IV strains in Indonesia. Phylotypes are further subdivided into sequevars based on the sequence of 

the endoglucanase gene. Multilocus sequence typing and other analyses have confirmed that this sys

tem of classification reflects the phylogeny of the group (Prior and Fegan 2005). The 5.8-megabase 

(Mb) genome of R. solanacearum has been completely sequenced. The genome encodes many pro

teins potentially associated with their role in pathogenicity (Salanoubat et al. 2002). 

DIAGNOSIS 

Diagnosis can be determined from a section of stem pruned from near the base of a suspect plant. 

Immediately after pruning the stem, suspend it in a glass of clean water for several minutes. Milky 

threads will begin to leak from the stem and the water will quickly become white if BW is present. 

A diagnostic schedule involving direct seed plating and grow-out of peanut seeds for 4 weeks and 

the leaf bits and twig pieces on tetrazolium chloride agar (TZCA) can be useful for the detection 
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of BW infection in imported peanut germplasm seeds (Anitha et al. 2004). Serological methods 

are generally quick and reliable but suffer from problems with specificity or sensitivity or both. 

Additionally, they do not distinguish live cells from dead cells. A number of R. solanacearum– 

specific nucleic acid–based methods that use the polymerase chain reaction (PCR) amplification can 

detect both living and dead cells, which are more specific and simple than serological approaches. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The bacterium survives in the soil and can maintain infectious populations over several years. 

Alternative weed hosts may also play a role in survival and over seasoning. The pathogen infects 

roots through wounds and colonizes the vascular tissue causing plugging of the xylem and leaf 

wilting. There is often an association between nematode infection and BW, where the nematodes 

create wounds in the root tissue to allow an entry point for the bacterium to infect the plant. The 

bacteria get access to the wounds partially by flagellar-mediated swimming motility and chemo

taxis attraction toward root exudates (Yao and Allen 2006). Unlike many phytopathogenic  bacteria, 

R.  solanacearum potentially requires only one entry site to establish a systemic infection that results 

in the development of BW. After invading a susceptible host, R. solanacearum multiplies and moves 

systemically within the plant before BW symptoms occur. When the pathogen gets into the xylem, 

tyloses may form to block the axial migration of bacteria within the plant that may lead to vascu

lar dysfunction. R. solanacearum possesses genes for all six protein secretion pathways that have 

been characterized in Gram-negative bacteria; the best known is Type III secretion system (T3SS 

or TTS), which secretes infection-promoting effect or proteins (T3 Es) into the host cells. Despite 

being just one of several secretion systems, the T3SS is necessary for R. solanacearum to cause dis

ease. Molecular determinants involved in pathogenicity, virulence, and host range specificity have 

been described using representative strains of the main phylogenetic groups of R. solanacearum 
(Genin and Denny 2012). 

Temperature is a major determinant in the distribution of this pathogen, which is widespread 

in tropical, subtropical, and warm temperate regions where the mean soil temperature is greater 

than 15°C (Hayward 1991). Wet soil increases the incidence of disease and water movement con

tributes to the dissemination of inoculum with water movement. The incidence and rate of wilting 

therefore increase with high temperatures and soil moisture. Continuous cropping of susceptible 

plants will also favor infection. Young plants are more rapidly diseased than older ones. BW is 

more prevalent in slightly acid to acid soils. For example, the disease is more prevalent in the acid 

soil area south of the Sichuan Basin and yellow alluvial soil, sandy alluvial soil, but no peanut BW 

occurs in purple soil in China (Chui et al. 2004). The pathogen is disseminated by contaminated 

farming equipment, in soil on tires and footwear, drainage water carrying inoculum through the 

soil, infested seed, and plants raised in infected soil, spreading the pathogen to new areas (Ziang 

et al. 2007). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Compared to many other crops, a relatively broad genetic diversity of resistance to BW has been 

found in the cultivated peanut, and the development of BW-resistant peanut cultivars has been more 

successful. Planting resistant cultivars is deemed as the sole economically viable means for effec

tive control (Ding et al. 2011, Tang and Zhou 2000, Zhou et al. 2003, Yu et al. 2011). Some of  

the BW-resistant peanut genotypes mostly reported from China are R15, R16, R87, R106, K81 

(Wang et  al. 2009), Xiaohongmao (Liao et  al. 2003), Ju and Zhonghua 6 (Liu et  al. 2011), and 

Yuanza 9102 (Bang et al. 2011), and moderately resistant ones are Jihua 1012, Quancha 10, Quancha 

646, Yucyou 193, and 38F5-45-21-CS1 (Yuan et al. 2002). It is significant that some of the highly 



  

 

 

  

 

 

 
   

 

 
 

 

 

 

 

  

 

 

 

 

 

140 Diseases of Edible Oilseed Crops 

resistant landraces have been identified in dragon-type peanuts mostly related to A. hypogaea subsp. 

hirsuta collected from South China where BW is generally serious. The dragon varieties have had 

been traditionally cultivated in many regions of China for at least 600 years before the varieties 

of three other types (Virginia, Spanish, and Valencia) were introduced in the late nineteenth cen

tury. Interestingly, all the BW-resistant landraces had been from South China and no BW-resistant 

germplasm has been collected from the BW-free north regions of China. The evolution of resis

tance, therefore, seems to be associated with regional disease pressure, and the BW in South China 

must have been a major factor influencing the natural selection of the dragon lines in the region. 

The resistance to BW in tested dragon lines is dominant, and the degree of dominance is higher 

in the dragon lines compared to the Spanish- or Valencia-resistant genotypes, and both additive 

and dominant genes are involved in resistance of dragon to BW, though a significant cytoplasmic 

effect is associated with the resistance in dragon types (Liao et al. 1986, Shan et al. 1998). As the 

dragon lines possess some other desirable traits such as drought tolerance, good flavor, and high 

oleic and linoleic acid ratio, they appear to be more promising in improving resistance to BW in 

peanuts (Muitia et  al. 2006). However, latent infections (infection without visible symptoms) by 

R. solanacearum have been found in some resistant cultivars/dragon-type landraces that affect root 

proliferations and reduce symbiotic nitrogen fixation and tolerance to drought and yield, which 

explain the low productivity of the crop in infested areas, and this becomes a challenging task to the 

breeders (Liao et al. 1998, Huang et al. 2011, Jiang et al. 2013). 

Most of the resistant germplasm lines identified are small-seeded genotypes with low yield poten

tial; transferring BW resistance to high-yielding adapted peanut cultivars has therefore become an 

urgent task (Yu et al. 2011). A large-seeded peanut cultivar Rihua 1 is resistant to BW (Zhang et al. 

2008, Ding et al. 2012). 

Understanding the mechanism underlying BW resistance at the molecular level should hasten the 

breeding process (Liao 2001, Chen et al. 2008a). The DNA polymorphism among the promising 

peanut genotypes resistant to BW has been assessed by simple sequence repeats (SSR) and ampli

fied fragment length polymorphism (AFLP) analysis. There is enough polymorphism in the peanut 

genotypes with BW resistance based on SSR and AFLP analysis (Jiang et al. 2006, 2007, Mace et al. 

2007). Thus far, in peanut, there have been several reports regarding the identification of DNA mark

ers related to BW resistance (Yu et al. 2011). Although several DNA markers related to BW resistance 

have been identified, the map distances are too large to be used in peanut-breeding programs (Yu 

et al. 2011). Peng et al. (2011) identified 119 transcription-derived fragments (TDFs) after root wound

ing inoculation with R. solanacearum, from Yuanza 9102 (a Spanish-type peanut cultivar with BW 

resistance) and Zhonghua 12 (a susceptible Spanish-type peanut cultivar) using cDNA-AFLP, and 

further studied their expression patterns. A total of 98 TDFs have been cloned and sequenced. 

Chemical Control 
The use of chemicals, antibiotics, and soil fumigation has shown little effect on the control of BW 

disease. 

Cultural Control 
In regions where the disease is endemic, cultural methods appear to be effective under some condi

tions for reducing bacterial population of R. solanacearum and subsequent disease control. Crop 

rotation of at least 2–5 years involving different nonhost crops particularly paddy rice, maize, and 

sugarcane may be used for significant disease reduction (Machmud and Hayward 1993, Nawangsih 

et al. 2012). Intercropping can be better for small farmers as cultivation of beans/maize can reduce 

disease incidence. Controlling weeds that have the potential to serve as inoculum reservoirs in 

conjunction with crop rotation can also be effective. Control of root-knot nematode population and 

cultural practices that minimize root damage can also reduce BW severity. Modification of soil pH 

by using a combination of organic amendment, fertilizers, and soil solarization is also effective in 

disease control (Machmud and Hayward 1993, Nawangsih et al. 2012). 
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Biological Control 
Pseudomonas fluorescens strains B16 and VK18 and that of Bacillus subtilis strain B11 have been 

identified as promising biocontrol agents for BW control, the B16 strain yielding more effective 

results in increased yield of peanut by 0.7–0.94 tons/ha. B16 has a positive effect on the growth 

and yield of peanut and can replace 20% mineral nitrogen, phosphorus, potassium (NPK) fertilizer 

without significant changes in crop yield under Vietnam conditions (Doan et  al. 2006). Similar 

results have been obtained with other strains of plant growth–promoting bacteria in the control of 

BW in Indonesia (Nawangsih et al. 2012). An endophytic Bacillus amyloliquefaciens strain BZ6-1, 

isolated from the stem of healthy peanut plants from R. solanacearum–infested fields, has been 

found to suppress R. solanacearum greatly, and the field trials demonstrate the control efficiency of 

strain BZ6-1 against BW by 62.3% (Wang et al. 2011). 

ROOT KNOT OF PEANUT 

SYMPTOMS 

Under field conditions, areas of root-knot nematode-affected peanut plants are usually round to 

oblong in shape, and rows of infected plants may never overlap as those of healthy plants. It is not 

uncommon for plants to wilt and eventually die in areas where nematode populations are high. 

Foliar symptoms of the root-knot disease may be expressed anytime during the growing season. 

These symptoms of nematode damage on peanut plants include stunting, yellowing, wilting, and 

even plant death. Generally, however, root-knot nematode damage symptoms are most evident in 

a peanut crop beginning about 100 days after planting and during or after periods of hot weather. 

Stunting of the plants results as the nematode larvae feed in the vascular system of the peanut, caus

ing the formation of giant cells that disrupt the vascular system. Affected plants, when uprooted, 

show the presence of galls on pods and roots. The feeding roots are deformed. The galls on the roots 

usually are similar in size and shape to the nodules formed by nitrogen-fixing bacteria. On pods and 

pegs, the galls are corky and variable in shape. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Root-knot nematodes (Meloidogyne spp.) are among the most serious plant pests in the world. Several 

species of root-knot nematodes are pathogenic on peanut and cause considerable yield loss annu

ally. Of these, Meloidogyne arenaria (Neal) Chitwood race 1, M. hapla Chitwood, and M.  javanica 
(Treub) Chitwood race 3 are the major pathogenic species of peanut (Abdel-Momen and Starr 1997, 

Minton and Baujard 1998; Koenning et al. 1999). These three species are known to occur in many 

peanut-producing regions, including North, Central, and South America, Africa, Asia, Europe, and 

Australia. M.   arenaria and M. javanica are common in warm peanut-growing regions, whereas  

M. hapla occurs mainly in cool regions. In the United States, M. arenaria and M. hapla exist through

out the peanut-producing areas. M. arenaria is the predominant species parasitizing peanut in the 

southern regions, especially in Alabama, Florida, Georgia, Texas, and South Carolina in the United 

States where up to 40% of the fields are infested and yield losses in heavily infested fields can exceed 

30%. All three species may cause significant losses in the yield and quality of peanut (Abdel-Momen 

and Starr 1997). Individual peanut fields heavily infested with the root-knot nematode have sus

tained yield losses greater than 75%. M. hapla is the most prevalent species in more northerly states, 

including North Carolina, Virginia, and Oklahoma (Koenning and Barker 1992). Populations of 

M. javanica parasitic on peanut are common in Egypt (Tomaszewski et al. 1994) and India (Sharma 

et al. 1995), but they are rare in the United States, having been described from only a few fields in 

Florida, Georgia, and Texas (Lima et al. 2002). Only one root-knot nematode, M.  arenaria race 1, is 

a major nematode pest of peanut, and unlike most plants, peanut is a poor host or a nonhost to other 

commonly found root-knot nematodes in Florida (M. incognita and M. javanica). 
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PATHOGEN: (M. arenaria) LIFE CYCLE 

The egg of a root-knot nematode develops into a vermiform first-stage juvenile that undergoes one 

molt into a second-stage juvenile. The second-stage juvenile hatches from the egg, moves freely in 

the soil, penetrates the root just behind the root cap, migrates intercellularly in the root, and estab

lishes a feeding site within the developing vascular cylinder. As it feeds on the nematode-induced 

giant cell system, the second-stage juvenile loses its mobility and begins to increase in girth. After 

it has imbibed a sufficient quantity of sustenance, the flask-shaped second-stage juvenile molts three 

times without feeding and matures into a saccate adult female. Females of M. arenaria reproduce by 

mitotic parthenogenesis; as soon as they are mature adults, they begin producing eggs. The second-

stage larvae that cannot find a suitable host plant can survive in the soil up to 18 months unless 

affected by adverse conditions or attacked by predacious fungi. 

Male second-stage juveniles undergo metamorphosis during the third molt into elongate vermi

form fourth-stage juveniles. The fourth-stage juvenile male remains enclosed in the cuticle of the 

second and third stages where it molts again to form an adult vermiform male. The male escapes 

from the cuticles and the root system. It moves freely in the soil, not feeding, only mating with 

mature adult females. As populations of M. arenaria reproduce by mitotic parthenogenesis, males 

serve no reproductive function. 

The length of one generation of M. arenaria is greatly affected by temperature. At very high 

temperatures (>29°C), the life cycle takes approximately 3 weeks, but at very cool temperatures, it 

can be extended to 2–3 months. 

DIAGNOSIS 

Morphology of perineal patterns, shape and measurements of the stylet of the female, shape and 

measurements of the head and stylet of the male, and measurements of the second-stage juveniles 

are useful characters for species identification. Additional host range tests may be necessary to 

confirm the identification of the species and determination of the host race. Hosts of M. arenaria 
in the North Carolina differential host range test include tobacco (Nicotiana tabacum cv. NC95), 

pepper (Capsicum annuum cv. California Wonder), tomato (Lycopersicon esculentum cv. Rutgers), 

and watermelon (Citrullus vulgaris [C. lanatus] cv. Charleston Gray). Host race 1 populations infect 

and reproduce on peanut, whereas host race 2 populations do not. 

A DNA probe that is specific for M. arenaria has been developed and may be useful for the diag

nosis of this species. Cytological and biochemical characterization provide additional characters for 

the identification of M. arenaria. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Resistance to M. arenaria and M. javanica is highly correlated, indicating that, in many peanut 

genotypes, the same gene or genes may confer resistance to both species, or the resistance genes 

for each species are closely linked. But resistance to M. hapla is not correlated with resistance to 

M. arenaria or M. javanica. The mechanisms of resistance to M. hapla may be different from that 

of M. arenaria (Dong et al. 2008). The resistance genes in peanut may be related to differential rec

ognition by the plant of the three Meloidogyne spp. Resistance to all three Meloidogyne spp. exists 

within cultivated peanut (A. hypogaea), either with or without introgressed genes from wild species 

(Simpson 1991). Breeding cultivars with resistance to root-knot nematode, however, has been slower 

because no meaningful resistance has been found in the peanut germplasm collection of A. hypo
gaea. Genes conferring resistance to peanut root-knot nematode have not been found in cultivated 

peanut, but a number of other Arachis spp. have been identified that are highly resistant or immune 

to the peanut root-knot nematode. Successful crosses to transfer a high level of nematode resistance 
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into A. hypogaea have been reported by several researchers (Starr et al. 1995, Garcia et al. 1996, 

Church et al. 2000, Muitia et  al. 2006). The resistance had been obtained from a wild species 

Arachis cardenasii. Two peanut germplasm lines “GP-NC WS 5 and GP-NC WS 6” have been 

derived from A. hypogaea × A. cardenasii interspecific cross (Stalker et al. 2002). The first of the 

two root-knot nematode-resistant peanut cultivars developed by the Texas Agricultural Experiment 

Station are (1) “COAN” released in 1999 (Simpson and Starr 2001) and (2) “NemaTAM” released 

in 2002 (Simpson et al. 2003). The resistance in COAN is controlled by a single dominant gene 

and is expressed as a reduction in nematode reproduction. Although nematodes invade the roots 

of COAN, most emigrate from the roots, but the few that remain in the roots develop to reproduc

tive adults (Bendezu and Starr 2003). NemaTAM has greater yield potential than COAN and pos

sesses the same level of resistance to the peanut root knot. Both COAN and NemaTAM have been 

proven resistant to the peanut root-knot nematode in southeastern United States. Neither peanut 

variety, however, could be successfully grown in southeastern United States because they are highly 

susceptible to tomato spotted wilt virus (TSWV). Later, some promising peanut germplasm lines 

with resistance to both the root knot and TSWV could be successfully developed (Holbrook et al. 

2003), and in 2008, the USDA released a cultivar, Tifguard, which has resistance to both TSWV 

and root-knot nematode (Holbrook et al. 2008b). Similarly, another runner-type peanut germplasm 

line TifGP-1 (PI 648354) is reported to be resistant to both the root-knot nematode and TSWV 

(Holbrook et  al. 2008a). The root-knot nematode resistance present in Tifguard is derived from 

the single dominant gene in COAN. The University of Georgia and University of Florida field tri

als have found excellent root-knot nematode resistance with the Tifguard cultivar and good final 

peanut yields in root-knot-infested fields. Interaction between root-knot nematode M. arenaria and 

Cylindrocladium black rot (CBR) fungal pathogen Cylindrocladium parasiticum in runner peanut 

genotypes such as “C724-19-15,” “C724-19-25,” and “Georgia-O2C” that possess different levels 

of resistance to nematode and C. parasiticum reveals that C. parasiticum greatly increases mortal

ity on “C724-19-25” and “Georgia-O2C” but not on “C724-19-15” in the presence of M. arenaria, 

indicating that root-knot resistance in peanut can be broken down due to fungal infection caused by 

C. parasiticum (Dong et al. 2009). The peanut germplasm line “TifGP-2,” a nematode-susceptible 

sister line of nematode-resistant Tifguard, that is, peanut closely related sister lines with and without 

nematode resistance, can be valuable research tools to obtain better understanding of the interac

tions of nematodes with other pathogens of peanut (Holbrook et al. 2008c, 2012). 

Chemical Control 
Nematicides have often been used for limiting the damage that nematodes cause on plants. 

Nematicides are usually used as a soil treatment before planting. However, a few nematicides can 

be applied after planting. These chemicals are relatively expensive and they require costly equip

ment and trained personnel to apply them. Peanut crops that are good hosts of M. arenaria can be 

protected with soil application of nematicides such as aldicarb at 31 g ai/100 m row (Timper et al. 
2001). The effectiveness is dependent on adequate amount of soil moisture. If an optimum amount 

of water is available, the optimum effect is achieved; if too much or too little water is present, very 

little control is achieved. 

Cultural Control 
Meloidogyne species are obligate parasites and populations decline rapidly in the absence of a host. 

Rotation of susceptible host crop plants with those that are immune or poor hosts is a useful way 

to reduce the effect that M. arenaria has on plant growth. Unfortunately, the nonhost, when it does 

occur, is usually less profitable than the susceptible crop. M. arenaria has a very large host range, 

and nonhosts or cultivars that have been reported resistant should be used with caution because of 

the innate variability that occurs in the root-knot nematodes. Switchgrass (Panicum virgatum), for 

example, do not support the population of root-knot nematode but support the population of non

parasitic nematodes (Kokalis-Burelle et al. 2002). Populations of M. arenaria are lower in peanut 
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in the cotton–cotton–peanut than in peanut–peanut–peanut, corn–corn–peanut, or bahiagrass– 

bahiagrass–peanut cropping systems (Timper et al. 2001). Other agronomic and economic factors 

are also important in the selection of a rotation crop. An adequate weed control program is abso

lutely necessary for a crop rotation scheme to be effective because many weed species serve as suit

able hosts. While good crop rotation should be continued to reduce all peanut diseases, the advent of 

resistant peanut varieties will help reduce the need for costly nematicides in peanut production. Soil 

organic amendment with crab shell chitin has been found not only to reduce M. arenaria population 

but also enhances soil microbial activity and promotes plant growth by 67.7% resulting in reduc

tion in root-knot index on peanut, the number of galls per plant being negatively correlated with the 

accumulation of total phenols and activities of chitinase and peroxidase subsequently increasing the 

yield of peanut over 56% (Kalaiarasan et al. 2008b). 

Biological Control 
Numerous attempts have been made to control root-knot nematodes with parasitic and predacious 

organisms or various organic amendments, with varying degrees of success. Naturally occurring 

organisms, such as Pasteuria penetrans, which are obligate parasites of Meloidogyne, may prove 

to be effective for biological control (Timper et al. 2001). Peanut seed treatment with P.  fluorescens 
at 10 g/kg of seed inhibits M. arenaria development in the peanut roots due to reduced and poor 

development of giant cells (Kalaiarasan et al. 2008a). Possibility of use of facultative Gram-negative 

symbiotic bacteria belonging to the Xenorhabdus species isolated from the gut of the nematode 

Steinernema riobrave is indicated in the control of root-knot nematode of peanut (Vyas et al. 2008). 

Metabolites of Xenorhabdus species so obtained from S. riobrave contain the proteins of high 

molecular weight, 76–90 kDa apart from regular proteins, and appear to play a role in the suppres

sion of root-knot development in peanut. 

PEANUT WITCHES’ BROOM 

Axillary buds of affected plants proliferate to produce numerous small stuff leaves, and the inter

nodes are reduced. The pod stalks (gynophores) grow upward, showing a loss of positive geotropism 

resulting in the loss of pod formation. The peanut witches’ broom (PnWB), first discovered in a geo

graphically isolated area, the Penghu Islands, in 1975 in Taiwan and now reported or suspected to be 

prevalent in most Asian countries, is a plant disease associated with plant pathogenic phytoplasmas. 

Phytoplasmas are a group of phytopathogenic bacteria that are transmitted by sap-feeding 

leafhopper insect vectors. Phylogenetically, phytoplasmas are related to the animal pathogenic 

mycoplasmas. Both groups are unique among bacteria in their lack of cell wall and are assigned to 

the class Mollicutes. However, unlike mycoplasmas that can be cultured and are amenable to genetic 

manipulations, the in vitro cultivation of phytoplasmas has remained unsuccessful despite decades 

of efforts. The inability to culture phytoplasmas outside of their host has resulted in the designation 

of the Candidatus (Ca.) status to their taxonomic assignment and also greatly hampered the research 

progress in characterizing these pathogens. The PnWB is caused by Ca. phytoplasma asteris–PnWB 

group 16SrII, and it is the first representative of the 16SrII group (Chung et al. 2013). 

For the detection and identification of phytoplasmas, polyclonal and monoclonal antibodies, 

DNA probes, and PCR primers have been developed for various phytoplasmas (Chen and Lin 1997). 

Besides detection, extrachromosomal DNA, insertion sequence, and various genes of PnWB phy

toplasma have been cloned (Chuang and Lin 2000, Wei and Lin 2004, Chi and Lin 2005, Chu 

et al. 2006, Chen et al. 2008b). With advancement in genomic science, genome sequence has been 

adopted as a powerful tool to characterize the gene contents of the uncultivated bacteria. Four open 

reading frames (ORFs) have been identified in the order of hrcA, grpE, dnaK, and dnaJ through the 

PCR-based technique. Chromosomal arrangement of these genes in PnWB phytoplasma is identi

cal to those of aster yellows witches’ broom phytoplasma, onion yellows phytoplasma, and other 

bacteria phylogenetically related to phytoplasma (Chu et al. 2007a,b). It is also indicative that three 
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rpoD homologous sigma factor genes may exist in PnWB phytoplasma (Chen et al. 2008b). Whole-

genome shotgun sequencing of PnWB phytoplasma has also been done (Chung et al. 2013). 

RecA protein, the product of recA gene, a key protein involved in DNA recombination and DNA 

repair of eubacteria, has been cloned and analyzed from phytoplasma-associated PnWB. Gene orga

nization, the nucleotide sequence, and a sequence in the conserved regions of the ORF are similar 

to those of the other recA genes of eubacteria. Therefore, this gene from phytoplasma-associated 

PnWB is identified as a putative recA gene (Chu et al. 2006). 

Phytoplasmas related to the Ca. phytoplasma asteris–PnWB group have been found to cause 

symptoms of phytoplasma diseases like leaf roll, rosetting, shoot proliferation, and phyllody in 

Japanese plum trees (Zirak et al. 2009), sweet cherry (Zirak et al. 2010) in Iran, and sesame in 

Turkey (Cengiz et al. 2013). 
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Section III
 

Rapeseed–Mustard 
Rapeseed–mustard is an important group of edible oilseed crops constituting oilseed Brassicas 

and crucifers, namely, Brassica juncea, Brassica rapa subsp. trilocularis (yellow sarson), Brassica 
rapa subsp. dichotoma (toria and brown sarson), Brassica napus (oilseed rape), Brassica carinata 
(Karan rai), Brassica nigra (Banarasi rai), and Eruca vesicaria subsp. sativa Miller (taramira). 

These cultivated Brassica has two types of genomes, that is, the diploid (elementary) and amphidip

loid genomes. The elementary species include Brassica rapa (AA, 2n = 20,468-516 Mbp), B. nigra 
(BB, 2n = 16,468-760 Mbp), and Brassica oleracea (CC, 2n = 18,599-618 Mbp), and the DNA 

sequence variation reveals 51.2 Mb of the Brassica A and C genomes based on 10 diverse rapeseed– 

mustard genotypes (Ahmad et al. 2002, Clarke et al. 2013). 

Globally, on 36.4 m ha, 72.5 mt of rapeseed–mustard seed is produced (FAO 2014). However, a 

wide gap exists between the potential yield and that realized at the farmers’ field, which is largely 

because of the number of biotic and abiotic stresses to which the rapeseed–mustard crop is exposed. 

Diseases are major hurdles toward achieving higher production in rapeseed–mustard. The intensive 

cultivation of the crop with more inputs has further compounded the problem, and now the inci

dence of diseases and insect pests have become more frequent and widespread. Severe outbreak of 

diseases deteriorates the quantity and quality of seed and oil content drastically in different oilseed 

Brassica crops. The expression of full inherent genetic potential of a genotype is governed by inputs 

that go into the production system. This can be very well illustrated with examples that involve 

disease management of rapeseed–mustard. The loss in oilseed crops due to biotic stresses is about 

19.9%, out of which diseases cause severe yield reduction at different growth stages. Various plant 

pathogens are reported to distress the crops. Among them, 18 are considered to be economically 

important in different parts of the world. To overcome such losses, it is essential to know the causal 

agents, their behavior, and the means to attack the vulnerable phase of the pathogen. 
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5 Rapeseed–Mustard Diseases
 

Alternaria BLIGHT 

SYMPTOMS 

Symptoms of the disease are characterized by the formation of spots on leaves, stem, and siliquae. 

The pathogen has been reported to affect seed germination and quality and quantity of oil (Meena 

et al. 2010a). On seedlings, symptoms include dark stem lesions immediately after germination that 

can result in damping-off or stunted seedlings. Generally, disease appeared at 40–45 days after 

sowing (DAS), and most critical stages have been reported at 75 and 45 days of plant growth (Meena 

et al. 2004). Spots produced by Alternaria brassicae appear to be usually gray in color compared 

with black sooty velvety spots produced by  Alternaria brassicicola. Spots produced by Alternaria  
raphani show distinct yellow halos around them. However, the symptoms may vary with host and 

environment. Symptoms are first visible on lower leaves with appearance of black points, which 

later enlarge to develop into prominent, round, and concentric spots of various sizes. With progress 

of the disease, symptoms appear on middle and upper leaves with smaller-sized spots (Figure 5.1), 

when defoliation of lower leaves occur. Later, round black conspicuous spots appear on siliquae  

(Figure 5.2) and stem. These spots may coalesce leading to complete blackening of siliquae or 

weakening of the stem with the formation of elongated streaks. Rotting of the seed may be seen just 

beneath the black spot on siliqua of yellow or brown sarson. Spots on mustard siliqua are brownish  

black with a distinct gray center. When older plants become infected, symptoms often occur on the 

older leaves, since they are closer to the soil and are more readily infected as a consequence of rain 

splash or wind-blown rain. Fruit-bearing branches and pods show dark or blackened spots that result  

in yield loss due to premature pod ripening and shedding of the seeds. The infection of  Alternaria  
blight on leaves and silique reduces the photosynthetic area drastically. The phase of infection on 

silique adversely affects the normal seed development, weight, color, oil content, and the quality of  

seed. Alternaria blight–infected leaves of Indian mustard showed significant decrease in oil, triglyc

eride, 18:2, and 22:1 fatty acid content and also in the level of different lipid classes (phospholipids, 

glycolipids, and sterols) (Atwal et  al. 2005). Two  Alternaria toxins, namely, alternariol and alter

nariol monomethyl ether, were found in high concentration in the seeds infected with  Alternaria  
species (Gwiazdowski and Wickiel 2009, Jajor et al. 2011). Several biochemical constituents are 

found to impart resistance to rapeseed–mustard against A. brassicae. Total sugars, reducing sugars, 

flavonol, and chlorophyll content were present in high amount in healthy leaves, while total phenol, 

o-dihydroxy phenol, carotenoids, and protein content rose with increase in infection of A. brassicae  
(Neeraj and Verma 2010, Mathpal et al. 2011, Gupta et al. 2012, Prakash et al. 2012). However, total  

sugar, total phenol, and ortho-dihydroxyphenol were higher in chlorotic areas than necrotic areas of 

infected leaves. Flavonol and chlorophyll content was observed lower in different infected parts of  

leaves than in healthy ones and was prominently lower in necrotic areas than chlorotic zones (Atwal 

et al. 2004). 

Activities of some oxidative enzymes, namely, peroxidase (PO) and polyphenol oxidase, increased 

in  B. juncea leaves after infection (Chawla et al. 2001). Total phenol content and specific activities of 

phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) were higher in  Alternaria  
blight–infected leaves and siliquae walls compared to healthy leaves, which suggests their possible 

involvement in plant protection against the disease (Gupta and Kaushik 2002). Transpiration in oil-

seed rape reduced after infection with Alternaria species (Baranowski et al. 2009). 
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FIGURE 5.1  Alternaria blight on leaves. 

FIGURE 5.2  Alternaria blight on pods. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Rapeseed–mustard crops are ravaged by Alternaria blight or black spot; the most common 

widespread and destructive disease is caused mostly by A. brassicae (Berk.) Sacc. infecting all 

aboveground parts of the plant, reported from all the continents of the world and considered 

an important constraint in husbandry of oilseed Brassicas. The disease has been reported from 

Argentina, Australia, Austria, Bangladesh, Brazil, Bhutan, Bulgaria, Canada, Chile, China, Cyprus, 
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Czechoslovakia, Denmark, Ethiopia, Finland, France, Germany, Ghana, Hong Kong, Hungary, India, 

Ireland, Italy, Jamaica, Japan, Kenya, Libya, Malawi, Malaya, Mauritius, Morocco, Mozambique, 

Myanmar, Nepal, the Netherlands, New Zealand, Nicaragua, Nigeria, Norway, Pakistan, Papua New 

Guinea, Philippines, Poland, Romania, Russia, Saudi Arabia, Scotland, Sierra Leone, Singapore, 

Spain, South Africa, Sri Lanka, Sudan, Sweden, Switzerland, Taiwan, Tanzania, Trinidad, Turkey, 

Uganda, the United Kingdom, the United States, Zambia, and Zimbabwe (Saharan et  al. 2005). 

Pathogens of the disease, A. brassicicola and A. raphani, are also encountered but rarely. Though 

total destruction of the crop due to the disease is rare and usually yield losses at harvest are 5%–15%, 

they can reach up to 47% (Kolte et al. 1987) accompanied by reduction in seed quality, namely, seed 

size and viability. Severity of Alternaria blight on oilseed Brassicas differs among seasons and 

regions as also between individual crops within a region. 

PATHOGEN 

It is easy to recognize  Alternaria sp. by the morphology of their large conidia. They are catenate, 

formed in chains or solitary, typically ovoid to obclavate, often beaked, pale brown to brown, multi-

celled, and muriform (Simmons 2007). Formation of chlamydospores is reported in A. brassicae and 

A. raphani, while microsclerotia are found to be produced by the former. Although the use of species-

group designation does not resolve definitive species boundaries within Alternaria, advantages of its 

use are that it organizes at the subgeneric level the morphologically diverse assemblage of Alternaria 
species and permits the generalized discussion of morphologically similar species without becoming 

overrestricted due to nomenclatural uncertainty. Cultural, morphological, pathogenic, and molecular 

variation in isolates of A. brassicae has been indicated by several workers (Gupta et al. 2004a, Mehta 

et al. 2005, Patni et al. 2005a, Khan et al. 2007a,b, Singh et al. 2009, Goyal et al. 2011a, 2013a, Khulbe 

et al. 2011, Kumawat et al. 2011, Sharma et al. 2013a,b). Some extracellular enzymes, namely, cellulase 

and pectinases (polygalacturonase [PG] and pectin methyl esterase), are produced by A. brassicae 
under different cultural conditions (Atwal and Sangha 2004a). However, their exact role in pathogenesis 

is not known. Alternaria longipes and Alternaria napiforme are also reported on rapeseed–mustard 

from India (Kolte 1985). A. brassicicola produce some detoxifying enzymes, namely, brassinin hydro-

lases, which are dimeric protein of 120 kDa and catalyze the detoxification of brassinin, a phytoalexin 

produced in crucifers after fungal infection (Pedras et al. 2009a). The most selective phytotoxic metab

olite, namely, brassicicolin A, and the major phytoalexin, namely, spirobrassinin, were produced by 

A. brassicicola in liquid cultures and in infected leaves of B. juncea, respectively (Pedras et al. 2009b). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Efficient, economical, and environment-friendly control of Alternaria blight may be obtained  

through the knowledge of its timing of attack in relation to weather factors, which may enable 

prediction of its occurrence so as to allow growers to take timely action in an efficient manner for 

crop management. Weather is an exceptionally important factor in the severity of Alternaria blight 

of oilseed Brassicas. Preliminary work indicates effects of temperatures, relative humidity (RH), 

and sunshine hours on the occurrence of the blight on the oilseed Brassicas (Chattopadhyay 2008). 

These reports indicate relationships between different weather factors and Alternaria blight occur

rence through empirical models. Severity of Alternaria blight on leaves and pods was higher in 

later sown crops (Chattopadhyay et al. 2005). Gupta et al. (2003) found positive correlation between 

sowing date of rapeseed–mustard crop and Alternaria blight disease severity. A delayed sowing 

results in coincidence of the vulnerable growth stage of plants with warm (maximum temperature: 

18°C–26°C; minimum temperature: 8°C–12°C) and humid (mean RH > 70%) weather. Initiation of 

Alternaria blight disease on leaves of mustard occurred during 36–139 DAS, highest being at 45 

and 75 DAS. Initiation of the disease on pod occurred between 67 and 142 DAS, highest being at 

99 DAS. Severity of Alternaria blight disease on leaves was favored by a maximum temperature 
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of 18°C–27°C in the preceding week, minimum temperature of 8°C–12°C, mean temperature 

>10°C, >92% morning RH, >40% afternoon RH, and mean RH of >70%. Disease severity on pods 

was positively influenced by 20°C–30°C maximum temperature, >14°C mean temperature, >90% 

morning RH, >70% mean RH, >9 h sunshine, and >10 h of leaf wetness (Chattopadhyay et al. 2005). 

The regional and crop-specific models devised thereby could predict the crop age at first appear

ance of Alternaria blight on the leaves and pods, the peak blight severity on leaves and pods, and 

the crop age at peak blight severity on leaves and pods at least 1 week ahead of first appearance of 

the disease on the crop, thus allowing growers to take necessary action (Chattopadhyay et al. 2005). 

Sporulation of A. brassicae has been reported to be favored by darkness (Humpherson-Jones and 

Phelps 1989). 

Survival of the pathogen on diseased seed or affected plant debris in tropical or subtropical India 

(Mehta et al. 2002) and in Nepal (Shrestha et al. 2003) has been ruled out, although under temper

ate conditions, the pathogen is known to survive noncrop season on seeds and infected crop debris 

(Humpherson-Jones and Maude 1982). A. brassicae was observed predominantly in the seed coat 

and rarely in embryos of Brassica campestris var. toria and B. juncea (Shrestha et al. 2000). In Indian 

subcontinent, oilseeds Brassica are sown from late August to November depending on the crop, 

prevailing temperature, and availability of soil moisture for seed germination. Crop harvest occurs 

from February to May. Off-season crops are grown in nontraditional areas from May to September 

and this, coupled with harboring of the fungal pathogen by vegetable Brassica crops and alternative 

hosts (Anagallis arvensis, Convolvulus arvensis), could be a reason for carryover of the A. brassicae 
from one crop season to another (Mehta et al. 2002). Thus, airborne spores of A.  brassicae form 

the primary source of inoculum of this polycyclic disease (Kolte 1985). During the crop season, the 

pathogen(s) could have several cycles, whereby it is known as a polycyclic disease. Germ tube from 

germinated spores of A. brassicae, A. brassicicola, A. raphani, and Alternaria alternata generally 

penetrate the undamaged tissues of many brassicaceous hosts directly (Kolte 1985, Goyal et  al. 

2013a), although indirect penetration through stomata has been reported in A. brassicae (Kolte 

1985, Goyal et al. 2013b). Black spot lesions develop within 48 h after inoculation. According to 

Tewari (1986), A. brassicae in rapeseed becomes subcuticular after direct penetration. This is fol

lowed by colonization of epidermal and the mesophyll cells. In the leaves of rapeseed, the pathogen 

heavily colonizes the necrotic center and is not present in the chlorotic area indicating that a diffus

ible metabolite may be directly or indirectly responsible for leaf chlorosis. The plasma membrane is 

the first target of the diffusible metabolites. Subsequently, the chloroplasts are directly or indirectly 

affected leading to leaf chlorosis. Recently, Goyal et al. (2013b) found that conidia of A. brassicae 
germinated on the upper epidermis of B. juncea leaf, by producing one or several germ tubes and 

penetrating the host directly without the formation of appressorium. The mycelia ramified, colo

nized mesophyll and palisade tissue caused necrosis of the cells by producing toxins or metabolites 

that resulted in the formation of necrotic spots and reduction in photosynthetic area of different 

plant parts. This infection also decreased the amount of all the cell constituents like lignin, lipids, 

suberin, and protein, except phenolic compound in all the tissues of Alternaria-infected B. juncea 
leaves as compared to healthy leaves. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Several sources of tolerance against Alternaria blight have been reported (AICRP-RM 1986–2014; 

Chattopadhyay and Séguin-Swartz 2005). A short stature B. juncea cv. Divya was found tolerant to 

Alternaria blight (Kolte et al. 2000). Among the different species of oilseed, Brassica, B.  juncea, 

and B. rapa are more susceptible than B. carinata and B. napus. Lines found tolerant to the dis

ease in B. juncea include PAB-9511, PAB-9534, JMM-915, EC-399296, EC-399301, EC-399299, 

EC-399313, PHR-1, PHR-2, Divya, PR-8988, PR-9024, and RN-490; those in B. carinata are 

HC-1, PBC-9221 (Kiran), NRCDR-515, and DLSC-1; the ones of B. napus happen to be PBN-9501, 
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PBN-9502, PBN-2001, and PBN-2002 (Kolte 1985, AICRP-RM 1986–2014, Patni et  al. 2005b, 

Kolte et al. 2006, Kumar and Kolte 2006). Sources of resistance to A. brassicae have been spotted 

in wild Brassicas, namely, Brassica alba (Kolte 1985, Chattopadhyay and Séguin-Swartz 2005), 

Camelina sativa, Capsella bursa-pastoris, Eruca sativa, Neslia paniculata (Chattopadhyay and 

Séguin-Swartz 2005), Brassica desnottesii, Coincya pseuderucastrum, Diplotaxis berthautii, 
Diplotaxis catholica, Diplotaxis cretacea, Diplotaxis erucoides, and Erucastrum gallicum (Sharma 

et al. 2002). Three cultivars, namely, Yajima kabu, Saishin, and Shimofusa kabu of B. rapa, were 

identified as resistant against A. brassicicola on pods, and these are useful not only for breeding 

programs for B. rapa but also for B. napus, a derivative from B. rapa and B. oleracea, and has little 

genetic variation due to the limited size of the descendent population (Doullah et al. 2009). A breed

ing program using number and size of lesions to find the differential response of different genotypes 

against Alternaria blight has been proposed to genetically enhance the level of resistance by Yadav 

et al. (2008). Resistance to Alternaria blight of rapeseed–mustard is found to be associated with fac

tors like phenolic compounds, namely, polyphenol oxidase, PO, catalase in leaves, higher sugars and 

N, lower in resistant species (Chattopadhyay 2008) or discouragement to conidial retention on plant 

surface like high deposits of epicuticular wax that forms a physical barrier as a hydrophobic coat

ing to reduce the deposition of waterborne inoculum, and reduce rate of conidia germination and 

germ-tube formation. B. napus (Tower, HNS-3), B. carinata (HC-2), and B. alba have more wax on 

plant/leaf surface compared to B. rapa (BSH-1, YSPB-24) and B. juncea (RH-30) (Chattopadhyay 

2008). Two phytoalexins, namely, camalexin and brassinin, and two isothiocyanates (ITCs), namely, 

allyl- and benzyl-ITCs, were reported to be have antifungal activity at different developmental 

stages of Alternaria blight pathogens, namely, A. brassicae and A. brassicicola of crucifers (Sellam 

et al. 2007). Wild crucifers are found to elicit phytoalexins on challenge inoculation (Conn et al. 

1988). Activities of some compounds related to camalexin (C11H8N2S) and 6-methoxycamalexin 

(C12H10N2SO) are found to be most toxic to A. brassicae. Phytotoxin destruxin B elicits phytoalexin 

response in B. alba. Parada et al. (2007) reported that destruxin B is not a host-selective toxin and 

does not induce accessibility of host plants to A. brassicae. Resistance to A. brassicae is found to 

be layered and multicomponent with sensitivity to host-specific toxin destruxin B, quantitative and 

qualitative elicitation of phytoalexins, hypersensitive reaction, and Ca sequestration determining the 

fate of host–pathogen interaction (Chattopadhyay and Séguin-Swartz 2005). The resistant Brassica 
varieties also produce some metabolites, namely, sesquiterpenes, deoxyuvidin B, albrassitriol, iso

albrassitriol, and brassicadiol (Saharan et al. 2003). 

Molecular Breeding 
Since resistance to Alternaria blight is governed by additive or polygenes, breeding for resistance 

to these diseases could involve pyramiding of minor genes, introgression of genes from material 

found resistant, reciprocal recurrent selection or diallel selective mating (Krishnia et al. 2000), wide 

hybridization (B. alba), molecular breeding (viz., from C. sativa by somatic hybridization; trans

genic expressing Trichoderma harzianum endochitinase gene: Mora and Earle 2001), pollen culture, 

and sensitivity test to destruxin B. While in studies on the mechanism of tolerance to Alternaria 
blight some have indicated the effect of additive genes or polygene or cluster gene (Krishnia et al. 

2000) with resistance being controlled by nuclear genes of partial dominance, there has also been 

indication of components of resistance being significantly correlated to each other regarding slow 

blighting (Kumar and Kolte 2001), and dominance (h) having a predominant role in genetic con

trol of time of appearance; additive × dominance predominant for other disease progression fac

tors, namely, area under the disease progress curve (Lakshmi and Gulati 2002, Chattopadhyay 

and Séguin-Swartz 2005, Meena et al. 2011a). The chitinase enzyme when overexpressed degrades 

the cell wall of invading fungal pathogens and plays an important role in plant defense response. 

Indian mustard, which has been transformed with chitinase gene tagged with an overexpressing 35S 

cauliflower mosaic virus (CaMV) promoter, showed delay in the onset of disease as well as reduc

tion in number and size of lesions (Mondal et al. 2003). Transgenics of Indian mustard with barley 
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antifungal genes class II chitinase and type I ribosome-inactivating protein, which coexpressed in 

plants, showed some resistance against A. brassicae infection through delayed onset of the disease 

and restricted number, size, and expansion of lesions as compared to wild plants (Chhikara et al. 

2012). The pathogenesis-related (PR) proteins are toxic to invading fungal pathogens but are present 

in plant in trace amount. Thus, overexpression of these proteins may increase resistance to patho

genic fungi in several crops. Indian mustard plants transformed with class l basic glucanase gene 

showed restricted number, size, and spread of lesion caused by A. brassicae. This gene produces 

a PR protein glucanase that hydrolyzes a major cell-wall component, glucan, of pathogenic fungi 

and acts as a plant defense barrier (Mondal et al. 2007). Various technologies, namely, embryo res

cue, somatic hybridization, somaclonal variations, genetic transformation, molecular markers, and 

signal transduction, have been used for incorporation of resistance against this pathogen in oilseed 

Brassicas by Aneja and Agnihotri (2013). 

Rapid advances in techniques of tissue culture, protoplast fusion, embryo rescue, and genetic 

engineering make transfer of disease resistance traits across wide crossability barriers possible. 

A cDNA encoding hevein (chitin-binding lectin from Hevea brasiliensis) was transferred into 

B. juncea cv. RLM-198. Southern analysis of the putative transgenics showed integration of the 

transgene. Northern and Western analyses proved that the integrated transgene is expressed in the 

transgenics. In whole plant bioassay under glasshouse conditions, transgenics were found to possess 

parameters that are associated with resistance such as longer incubation and latent period, smaller 

necrotic lesion size, lower disease intensity, and delayed senescence (Kanrar et al. 2002). Insight 

has been gained into genes being expressed during Alternaria infection of Brassica (Cramer and 

Lawrence 2004). The authors used suppression subtractive hybridization between RNA isolated 

from the spores of A. brassicicola incubated in water and on the leaf surface of an ecotype of 

Arabidiopsis thaliana followed by cloning and sequencing of cDNA clones that were differentially 

expressed. One gene (P3F2), only expressed during infection, was identified, although its function 

remains to be determined. A similar approach with other pathogens could lead to advances in the 

understanding of pathogenicity. 

Induced Host Resistance 
Systemic acquired resistance (SAR) is induced by inoculation with avirulent race of A. brassicae 
(Vishwanath et al. 1999, Vishwanath and Vineeta 2007). Pretreatment of Brassica plants with beta

aminobutyric acid (BABA) induced resistance in plants and is thought to be mediated through an 

enhanced expression of PR protein genes, independent of salicylic acid (SA) and jasmonic acid 

accumulation (Kamble and Bhargava 2007). Some elicitors like benzothiadiazole (BTH) alone and 

in combination with SA may play a significant role in eliciting the defense-related enzymes, namely, 

PO, PAL, and superoxide dismutase (SOD) and phenolics, which may help in the reduction of dis

ease severity by empowering the plant to restrict the invasion of A. brassicae in B. juncea (Sharma 

et al. 2008a, Sharma and Sohal 2010). Spray of SA on leaves increased the total sugar content but 

decreased the starch content in the leaves, which was linked with induction of disease resistance by 

maintaining a healthy flora of saprophytic microbes that are active against pathogens (Atwal and 

Sangha 2004b). 

Mutation breeding may be one of the feasible techniques for breeding pathogen-resistant cul

tivars in the absence of a useful donor for resistance to the pathogen in the available germplasm 

of crops. Some A. brassicicola–resistant B. napus plants were regenerated from selected and 

unselected calli after mutation with gamma rays (physical) and ethyl methanesulfonate (chemical) 

mutagens (Sharma et al. 2012a). 

Cultural Control 
Hot-water treatment of seeds reduced the growth of Alternaria (Humpherson-Jones and Maude 

1982). However, spores of these fungi can survive on the leaf tissue for 8–12 weeks and that on 

stem tissue till 23 weeks. Hence, fields that are replanted soon after harvest often coincided with 
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a large amount of inoculum, which is likely to affect the crop’s emergence and early growth 

stages (Humpherson-Jones 1992). Thus, rotation with noncruciferous crops and eradication of 

cruciferous weed hosts can help control these pathogens while fungicide spray in fields needs to 

be done at the same time. Early sowing (Meena et al. 2002) of well-stored clean certified seeds 

after deep ploughing at 45 cm row spacing (Kumar and Kumar 2006), clean cultivation, timely 

weeding and maintenance of optimum plant population, avoidance of irrigation at flowering, 

and pod formation stages may help manage the disease. Sowing of seeds should not be done by 

broadcasting method, because it increases disease severity, which could be decreased on leaves 

and pods by applying 40 kg K/ha along with the recommended dose of nitrogen (N) or sulfur 

(40  kg/ha) or along with recommended NPK (Kumar and Kumar 2006). However, a higher 

dose of N makes the crop susceptible to disease. Soil application of K as basal has been found 

to check Alternaria blight disease in mustard (Khatun et  al. 2011). It has been reported that  

sulfur, zinc, and boron decrease the development of Alternaria blight and increase seed yield 

of mustard crop (Khatun et al. 2010). Application of some micronutrient, namely, B at 1 g/L, 

Mo at 1 g/L, S at 2 g/L, and Zn at 2 g/L, in various combinations reduced Alternaria blight 

disease and increased yield of rapeseed–mustard (Mondal 2008). Inorganic fertilizers, namely, 

phosphorus (P) and potassium (K), also decrease the disease, while N increases it (Singh 2004a). 

These are significant at a time when growers report increasing prevalence of Alternaria blight 

disease and decline in its control. 

Biological Control 
The GR isolate of Trichoderma viride was at par with mancozeb in checking blight severity on 

mustard leaves and pods (Meena et al. 2004). Conidial suspension of T. viride was more effec

tive in comparison to culture filtrate in reduction of disease intensity on leaves and pods (Reshu 

and Khan 2012). Bacillus subtilis strain UK-9 isolated from reclaimed soil caused morphological 

alternations in vegetative cells and spores by disruption, lysis of cell wall of the pathogen, which 

resulted in reduction in disease severity, and spore germination on leaves (Sharma and Sharma 

2008). Seed treatment with bioagents resulted in increase in lipid (phospholipids, glycolipids, and 

sterol) and protein content in seeds from treated plants. However, seed treatment and foliar spray 

with bioagents on leaves of Indian mustard enhanced the content of dry matter, total phenol, ortho

dihydroxyphenols, starch, total soluble sugars, reducing sugars, total lipids, and different membrane 

lipids in the leaves but the total protein content decreased after treatment with biocontrol agents at 

30 and 60 DAS, which could be associated with defense mechanisms and enhanced growth of the 

plants (Sharma et al. 2010a,b). 

Effect of Plant Extracts 
Extracts of several plants have been evaluated against A. brassicae (Patni and Kolte 2006, 

Bhatiya and Awasthi 2007, Meena and Sharma 2012a, Sasode et al. 2012). The level of efficacy 

of Azadirachta indica extract increases as the number of sprays increases (Mohiddin et al. 2008). 

Spray of garlic bulb and neem leaf extract at flowering stage suppressed disease incidence (DI) 

and increased yield of mustard crop (Ferdous et al. 2002). Application of 1% (w/v) aqueous bulb 

extract of Allium sativum at 45 and 75 DAS in checking the disease severity on leaves and pods 

was at par (P < 0.05) with mancozeb as also in highest seed yield (Meena et  al. 2004, 2008,  

2011b, 2013, Yadav 2009). Two foliar sprays of Eucalyptus globosus at 2% (w/v) at 75 and 90 

DAS could be done for eco-friendly management of black spot disease of rapeseed–mustard 

(Chandra et  al. 2009). Foliar spray of extract of  Calotropis procera leaves, A. indica kernel, 

and A. sativum bulbs may induce resistance against A. brassicae by increasing soluble phenol, 

sugar content, and soluble proteins, namely, PO, polyphenol oxidase, and PAL content in mustard 

leaves (Surendra et  al. 2012). Among several essential oils evaluated, that of Mentha piperita 
provided complete inhibition of fungal growth at 2000 μg/mL, followed by oil of Cyperus scari
osus (Dhaliwal et al. 2003). 
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Chemical Control 
Spray with iprodione (Rovral) was effective in checking silique infection due to A. brassicae. Both 

reduction in disease and increase in seed yield and test weight were observed by the application of 

iprodione (Chattopadhyay and Bhunia 2003, Alam et al. 2010), and its residues in the edible parts of 

plants were lower than the maximum residue level that indicated the safety of this fungicide at the 

recommended rate (Mukherjee et al. 2003). Higher number (3–4) of iprodione sprays exerted signif

icant reducing effect on the number of spots per siliquae (Hossain and Rahman 2006). Nowadays, 

there is a need to adopt new molecules of fungicides for the control of such pathogen keeping in 

mind their fungicidal resistance. Mycelial growth, conidial germination, and germ-tube elongation 

revealed the existence of A. brassicicola isolates highly resistant (EC50 > 100 mg/L) to both dicar

boximides (e.g., iprodione and procymidone) and phenylpyrroles (e.g., fludioxonil) (Vasilescu et al. 

2004). Application of fungicides on seeds reduced the content of two Alternaria toxins, namely, 

alternariol and alternariol methyl ester (Gwiazdowski and Wickiel 2011). Benlate (Anwar and Khan 

2001), Contaf (Singh and Maheshwari 2003), and mancozeb (Meena et al. 2004) were effective in 

reducing disease severity on leaves and increasing seed yield in mustard. Two consecutive foliar 

sprays of mancozeb 75 WP (0.2%) followed by one spray of metalaxyl + mancozeb (ridomil MZ 

72: 0.25%) resulted in high-seed yield and 1000-seed weight (Singh and Singh 2006). The highest 

net profit as well as the highest cost–benefit has been obtained with carbendazim/zineb (1:3.2) com

bination followed by carbendazim/captan (1:1.3) combination (Khan et al. 2007c). Seed treatment 

with carbendazim and foliar spray of metalaxyl + mancozeb (ridomil MZ 72 WP) was found most 

effective in reducing disease severity and in increasing seed yield (Prasad et al. 2009b). Exposure of 

Alternaria blight–affected leaves to high concentration (214.5 μg/m3) of SO2 resulted in suppression 

of the disease (Khan and Khan 2010). 

WHITE RUST 

The most widely recognized fungal species, Albugo candida (Pers.) Roussel, had been thought to 

be the exclusive white rust pathogen of the Brassicaceae, infecting as many as 63 genera and 241 

plant species (Choi et al. 2009). According to the USDA-ARS Systematic Botany and Mycology 

Laboratory, A. candida was recorded on more than 300 hosts (Farr et  al. 2004). Only recently 

was it realized that a high degree of genetic diversity is present within Albugo on Brassicaceae 

(Voglmayr and Riethmüller 2006, Choi et al. 2008) and that several of the observed lineages might 

constitute distinct species (Choi et al. 2011). The host specificity of A. candida has been recorded 

from Australia (Kaur et al. 2008a), Canada, Germany (Kolte 1985), India (Saharan et al. 2005), 

Japan, Romania, and the United States (Kolte 1985). Following the recent lectotypification of A. 
candida, the taxonomic status of which had previously been unclear (Choi et al. 2007), two special

ized Albugo species parasitic to Brassicaceae have been described within Albugo (Choi et al. 2007, 

2008). It was also demonstrated that A. candida has a broad host range extending over more than 

a dozen genera of the Brassicaceae and into the Cleomaceae, as the type of Albugo chardonii W. 

Weston (Kolte 1985) was found to be nested within A. candida (Choi et al. 2007). Capers (Capparis 
spinosa) are affected by white blister rust attributed to Albugo capparidis or, applying a broad spe

cies concept, to A. candida (Choi et al. 2009). 

SYMPTOMS 

Disease appearing on leaves is characterized by the appearance of white or creamy yellow–raised 

pustules up to 2 mm in diameter, which later coalesce to form patches. The pustules are found scat

tered on the lower surface of the leaves. The part of upper surface corresponding to the lower sur

face is tan yellow, which enable recognition of the affected leaves. After the complete development 

of the pustule (Figure 5.3), it ruptures and releases a chalky dust of spores (sporangia). With aging 

of white rust pustules, affected leaves become senescent when necrosis around or in the pustule can 
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FIGURE 5.3  White rust on leaves. 

FIGURE 5.4  Staghead (hypertrophied inflorescence) caused by  Albugo. 

be seen. Such rust pustules are also observed on the surface of well-developed siliquae. These are 

noted in local infection. Unlike other crucifers (Mundkur 1959), thickening or hypertrophy of the 

affected leaves is usually not seen in rapeseed–mustard. However, in systemic infection or infection 

through stem or flower, hypertrophy and hyperplasia are observed, which result in the formation 

of stagheads (Figure 5.4). Affected flowers become malformed, petals become green like sepals, 
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and stamens may be transformed to leaf-like club-shaped sterile or carpelloid structures, which are 

found to persist on the flower rather than falling early as in normal plants. Ovules and pollen grains 

are usually atrophied leading to complete sterility. Association of symptoms of downy mildew 

with that of white rust is frequented. Whole plant infection at very early plant growth stage due to 

systemic infection is stunted, thickened with no branching, and beared white rust pustules on sur

face. Thickening of stem may be due to the modification of cortex into large thin-walled cells with 

fewer intercellular spaces. In floral parts also, there is an increase in size and number of cells of 

parenchymatous tissue with few intercellular spaces, lesser differentiation of tissue and organs, and 

increased accumulation of nutrients. Multiplication and spore production by the pathogen result in 

consumption of the accumulated nutrients leading to collapse and death of cells, drying of affected 

plants (Kolte 1985). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

White rust caused by A. candida (Pers. ex. Fr.) Kuntz. can result in yield loss up to 47% on oil-

seeds Brassica (Kolte 1985) and 89.9% in B. juncea (Varshney et al. 2004) with each percent of 

disease severity and staghead formation causing reduction in seed yield of about 82 and 22 kg/ha, 

respectively (Meena et al. 2002). The highest avoidable yield loss up to 28.2% with highest disease 

intensity, namely, 70.8%, has been reported in late sown B. juncea var. Varuna (Singh and Bhajan 

2005). The disease has been reported from Australia, Austria, Brazil, Canada, China, Egypt, Fiji, 

Finland, Germany, India, Iran, Japan, Korea, the Netherlands, New Zealand, Pakistan, Palestine, 

Poland, Portugal, Romania, Saudi Arabia, Sweden, Spain, Turkey, Venezuela, the United Kingdom, 

and the United States (Meena et al. 2014). 

PATHOGEN 

The obligate parasite A. candida or Cystopus candidus causes white rust of oilseeds Brassica and 

several other crucifers (Choi et al. 2009). Mycelium is aseptate, intercellular with nuclei-free globu

lar haustoria (Coffey 1975). Masses of mycelia beneath host epidermis form a palisade of cylindri

cal-shaped sporangiophores, which are thick walled at base and free laterally. The sporangiophores 

give rise to chains of spherical hyaline, smooth, and 12–18 μ diameter sporangia in a basipetal 

succession, which germinate to give rise to concave biflagellate zoospores or at times to germ tubes 

(Walker 1957). Temperature most favorable for the germination of sporangia is 10°C (Khunti et al. 

2004). Once zoospores are released from the sporangium, they exhibit chemotactic, electrotactic, 

and autotactic or autoaggregation responses to target new hosts for infection (Walker and West 

2007). Thereafter, zoospores come to rest, retract their flagella, and encyst and germinate by the 

formation of a germ tube. If germination occurs on a susceptible host, then the germ tube pen

etrates through stomata to form an intercellular mycelium (Walker 1957). Oogonia and antheridia 

are formed from the mycelium in intercellular spaces, particularly in systemically affected plants 

(Webster 1980). Oogonia are globose, terminal or intercalary, each containing up to 100 nuclei;  

its contents defined into a peripheral zone of periplasm and a single central oosphere. Antheridia 

are clavate, each with 6–12 nuclei on the sides of an oogonium (Heald 1926, Walker 1957). The 

heterothallic fungus produces restings spores or oospores, which are highly differentiated with five-

layered cell wall and at maturity are tuberculate, 40–55 μ in diameter. Germination of oospores has 

been described by de Bary (1887) and Vanterpool (1959). Germination by sessile vesicles was the 

most common. Treatment of oospores with 200 ppm KMnO4 for 10 min induced increased germina

tion (Verma and Bhowmik 1988). Oospores do not appear to require any dormancy period. Meena 

and Sharma (2012b) used animal gut enzymes (1% β-glucuronidase and arylsulfatase, Sigma make) 

for the germination of the oospores from hypertrophied plant tissue. Physiological specialization 

of the pathogen has also been reported. Zoospores produced from germinating oospores constitute 

the primary source of inoculum for the infection of rapeseed–mustard (Verma and Petrie 1980), 
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particularly when mixed with seeds. There appears to be no dormancy in the case of oospores, as 

they have been found to germinate just 2 weeks after their collection from affected tissues. The 

most likely primary infection site is the emerging cotyledon. The production of large masses of 

zoosporangia on cotyledons seems to require establishment of a large mycelial base inside the host 

tissue, and in the Albugo–Brassica system, such a base apparently develops with a minimum distur

bance of the host’s synthetic abilities (Harding et al. 1968). The sporangia become visible after the 

epidermis is ruptured, as a white powdery mass, which can readily be dispersed by wind to cause 

secondary infection. If sporangia alight on a suitable host leaf or stem surface, they are capable of 

germinating within a few hours in films of water to form biflagellate zoospores, about eight per 

sporangium. After swimming for a time, a zoospore encysts and then forms a germ tube, which 

penetrates the host epidermis. A further crop of sporangia may be formed within 10 days. The estab

lishment and maintenance of a compatible relationship between A. candida and its hosts seem to 

hinge on the successful formation of the first haustorium. In the susceptible host, such as B. juncea, 

the first haustorium forms within 16–18 h after inoculation. Haustoria are small and capitate with 

spherical heads averaging 4 μ in diameter and are connected to hyphae by slender stalks about 2 

μ in length. A haustorium usually originates near the tip of a young hypha, which then continues 

its growth leaving the haustorium as a side branch. After the formation of the first haustorium in 

the susceptible host–parasite combination, hyphal growth rate increases rapidly. An encapsulation 

similar to that observed in Raphanus sativus is seen only infrequently around haustoria in a viru

lent Albugo-susceptible B. juncea system. In a susceptible host, the hyphae appear to grow around 

palisade mesophyll cells as a downward spiral, penetrating individual cells with a variable number 

of haustoria. Verma et al. (1975) found the presence of as many as 14 haustoria in a single cell in 

“green island” tissue of artificially infected B. juncea cotyledons. In the susceptible host, most of the 

intercellular spaces appear to get occupied by mycelium within 3 days after inoculation. Some bio

chemical compounds, namely, total phenols, total sugars, and reducing and nonreducing sugars, are 

generally negatively correlated with DI, but with low disease levels, these are not always consisent 

(Singh 2005, Mishra et al. 2009). Phenol content reduced more in infected inflorescences than leaves 

and cotyledons, while free amino acids increased more in infected leaves than inflorescences and 

cotyledons. But total mineral contents did not show significant variation in both infected and healthy 

plant parts. However, total chlorophyll content decreased in cotyledons and leaves and increased in 

the malformed inflorescences (Singh 2005). Studies on quantitative changes in amino acid content 

of white rust–induced hypertrophies of the mustard plant indicated possible breakdown of protein 

due to pathogen to release tryptophane and subsequently increasing IAA content of such tissues. 

However, decrease in IAA, free proline, total proteins, and phenolic compounds in the infected host 

tissue are also reported. One protein, peptidyl-prolyl cis-trans isomerase (PPIase) isoform CYP20-3, 

was detected only in the susceptible variety and increased in abundance in response to the patho

gen. PPIases play an important role in pathogenesis by suppressing the host cell’s immune response 

(Kaur et al. 2011a). Cellulase, endo-polymethyl galacturonase (PMG), and endo-PGs were produced 

in B. juncea leaves infected with A. candida. Swelling and disruption of subcellular particles rich in 

lysomal acid hydrolases were produced by acid phosphatase activity centered primarily in the infected 

tissues of B. juncea. Acid phosphatase activity in antheridia, oogonia, and oospores of A. candida indi

cates that this enzyme plays a role in the synthesis of fungal organs. Increase in PO (Jain et al. 2009), 

invertase, alpha-amylase, IAA oxidase (Singh et al. 2011a), PAL, TAL, and lipoxygenase (LOX) (Jain 

et al. 2002) enzyme activity has been reported in infected leaves. However, nitrate reductase enzyme 

activity increased in infected cotyledons, leaves, and inflorescences (Singh 2005). Erucic acid con

tent is positively correlated with disease infection, which indicates that low-erucic lines are resis

tant, medium-erucic lines are tolerant, and high-erucic lines are highly susceptible to the disease 

(Malik et al. 2004). Beta-1,3-glucanase was found to be induced more in the resistant cultivars of 

B. juncea after inoculation with A. candida (Kapoor et al. 2003). Infection of the resistant lines 

with A. candida showed significant increase in the glucosinolates as compared to susceptible lines 

(Pruthi et al. 2001). Much work remains to be done on mutual interaction of Albugo and associated 
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microorganisms. Some of the Alternaria species are known to produce toxins and these could con

ceivably have an adverse effect on the survival of A. candida. Pathogenic and genetic diversity 

among different A. candida isolates collected from B. juncea, B. rapa, B. oleracea, B. tournefortii, 
Raphanus raphanistrum, R. sativa, E. vesicaria subsp. sativa, C. bursa-pastoris, and Sisymbrium 
irio, from different locations in western Australia, has been reported (Kaur et al. 2011b). 

Under Indian conditions, the A. candida isolate obtained from B. rapa was distinct in patho

genicity from the one obtained from B. juncea (Kolte et al. 1991). Verma et al. (1999) identified 

two new races of A. candida in India, namely, race 12 from B. juncea and race 13 from B. rapa 
var. toria, using 14 crucifer host differentials. Twenty distinct pathotypes of A. candida, 17 from 

B.  juncea (AC 18–AC 34), 2 from B. rapa var. brown sarson (AC 35–AC 36), and one from B. nigra 
(AC 37), have been identified (Jat 1999). Four distinct and new pathotypes of A. candida, namely, 

AC I4 from RL 1359, AC 15 and AC 16 from Kranti, and AC 17 from RH 30 cultivars of B. juncea, 

have been identified on the basis of their differential interactions on 11 host differentials by Gupta 

and Saharan (2002). Out of these, pathotypes like AC 23, AC 24, and AC 17 infect only one, two, 

and three host differentials, respectively, indicating a limited virulence potential, while pathotypes 

of wider virulence, namely, AC 29, AC 27, AC 30, AC 18, and AC 21 infected 21, 18, 16, 12, and 10 

host differentials, respectively (Jat 1999, Gupta and Saharan 2002). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Berkenkamp (1980) reported an increase in DI due to soil application of trifluralin herbicide. The 

optimum temperature for disease development ranged 12°C–18°C. Only 3 h of wetness was required 

for disease development at 12°C–22°C. First appearance of white rust disease (A. candida) on leaves 

and pods (staghead formation) of mustard occurred 36–131 DAS, highest being at 50 and 70 DAS 

and 60 and 123 DAS, respectively. Severity of white rust disease on leaves was favored by >40% 

afternoon RH, >97% morning RH, and 16°C–24°C maximum daily temperature. Staghead for

mation was significantly and positively influenced by 20°C–29°C maximum daily temperature, 

further aided by >12°C minimum daily temperature, and >97% morning RH. It was possible to 

predict the highest severity of white rust disease of the crop season in the initial weeks after sow

ing with the models developed by stepwise regression (Chattopadhyay et al. 2011). By using hourly 

weather data, a simple weather-based forewarning model to evaluate DI has been developed (Kumar 

and Chakravarty 2008). Oospores formed in infected plants overwintered in plant debris and soil, 

which function as the source of primary inoculum of the pathogen (Butler and Jones 1961, Verma 

et al. 1975). Oospores have also been observed in naturally infected senesced leaves of B. juncea 
and B. rapa var. toria. Oospores can remain viable for over 20 years under dry storage conditions 

(Verma and Petrie 1975). Possibility of survival and spread of the pathogen by means of oospores, 

sporangia, and mycelia carried externally on seeds have been reported (Petrie 1975, Meena et al. 

2014). The oospores germinate by releasing zoospores, which infect lower leaves during crop sea

son. Secondary infection of the pathogen occurs through sporangia produced on leaves. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Though a few sources of host resistance ([B. juncea: PWR-9541, JMMWR 941-1-2, PAB-9534, 

PAB-9511, PHR-1, PHR-2, EC-129126, EC-399299, EC-399301, EC-399300, EC-399296, BIO YSR]  

[B. rapa: PT-303, Tobin] [B. carinata: HC-1, 2, 3, 4, 5, NRCDR-515, PBC-9921, BC-2, DLSC-1] 

[B. napus: TOWER, EC-33897, EC-339000, DGS 1, GS-7055, HNS-4, GSL-441, PBN-2001,  

PBN-2002] [E. sativa: RTM-1471] [B. alba: Exotic-1, Exotic-2]) have been identified (Kolte 1985, 

AICRP-RM 1986–2014, Chattopadhyay and Séguin-Swartz 2005, Kumar and Kalha 2005), their 

success is limited to a few pockets keeping in view the volatile race pattern of the pathogen. Three  

cultivars of Indian mustard PBR 181, EC-399301, and EC-399299 and two cultivars of  B. campestris  
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were found resistant against white rust (Yadav and Sharma 2004). Meena et al. (2005) also found 

38 genotypes free from white rust infection, out of 90 genotypes of 5 oileferous Brassicas, that is, 

B. juncea, B. napus, B. carinata, B. campestris, and E. sativa in India. In the Terai region of Uttar 

Pradesh (India), 5 genotypes, namely, WRR-98-01, NDRS-2004, NDRS-2013, NDRS-2005, and 

NDRS-2007, were found disease free, and 18 genotypes, namely, RC-781, RIK-75-5, RIK-78-4, 

CSR-721, PI-43, YRT-3, NDRE-7, NNRE-10, NDYR-29 × NDRE-04, NDRE-190 × NDRE-4, 

CSCN-5, CSCN-3, CSCN-10, CSCN-12, NSRS-2006, NDRS-2009, NDRS-12, and NDRS-2014, 

were found resistant (Sinah and Mall 2007). Yellow-seeded mustard (B. juncea) variety T4, YRT

3184 and rapeseed (B. rapa var. yellow sarson), type 6 (Chattopadhyay and Séguin-Swartz 2005) 

have been reported to be resistant to white rust infection. Three Australian genotypes JM 018, JM 

06021, and JM 06026; JR 049 and JN 033; and some Chinese genotypes, namely, RK 2, Ringot, 

RH 13, Amora III, Quianxianjiecai, Yilihuang, Hatianyoucai, Jinshahuang, Manushuang, B. juncea 
1, 2, and 3, were resistant to white rust (Singh et al. 2010). Some lines of B. juncea var. Cutlass, 

namely, RESJ-1052, RESJ-1004, RESJ-1005, RESJ-1033, and RESJ-1051, have been found to be 

resistant to all the Indian isolates as well as 2 V (Canadian isolate). These resistant sources with 

combined resistance to different white rust isolates could be putative donors for further oilseed 

Brassica crop improvement programs (Awasthi et al. 2012). 

Transfer of white rust resistance in rapeseed–mustard from B. carinata to B. juncea could 

be partially successful by growing disease-free plants under high disease pressure followed by 

their repeated backcrossing with B. juncea cultivar (Singh et  al. 1988). Resistance to white rust  

in  rapeseed–mustard is dominant, governed by one or two genes with either dominant-recessive 

epistasis or complete dominance at both gene pair but either gene when dominant is epistatic to 

the other. These genes could be located on the same locus or different loci (Kumar et al. 2002). 

Resistance to the disease at true leaf infection and susceptibility at the cotyledonary leaf stage 

of the same genotype EC-399301 of B. juncea appears to be governed by two independent genes. 

Hence, screening for white rust resistance at the cotyledonary leaf stage needs to be carefully con

sidered (Mishra et al. 2009). Interspecific crosses between B. juncea and B. napus suggested that 

resistance in WW-1507 and ISN-114 to A. candida was controlled by a single dominant gene (Jat 

1999). In their study of three interspecific crosses between B. juncea and B. napus, Subudhi and 

Raut (1994) revealed digenic control with epistatic interaction for white rust resistance trait and a 

close association of parental species and different grades of leaf waxiness. Sachan et al. (1995), in 

their study using diallel crosses between two white rust–resistant Canadian B. juncea cvs. Domo 

and Cutlass and two susceptible B. juncea Indian cvs. Kranti and Varuna, reported that F1 hybrids, 

except susceptible × susceptible, were resistant; segregation pattern for resistance in F2 and test 

crosses was under the control of a single dominant gene in Domo and Cutlass, and that a reces

sive gene for susceptibility was present in Kranti and Varuna. Sridhar and Raut (1998) reported 

a monogenic inheritance showing complete dominance in four crosses and lack of dominance in 

seven crosses attempted between B. juncea and resistance sources derived from different species. 

According to Jat (1999), the resistance was dominant in all the crosses except susceptible × suscep

tible, where it was recessive. Under controlled conditions, inoculation with three different races of 

A. candida on F2 population of crosses from resistant × resistant revealed that the resistant genes 

may be located on the same locus or on different loci. Partial resistance in B. napus to A. candida 
was controlled by a single recessive gene designated as wpr with a variable expression (Bansal et al. 
2005). White rust resistance in B. juncea (Somers et al. 2002, Manjunath et al. 2007, Singh et al. 

2012, Yadava et al. 2012) and avirulence in race AC 2 of A. candida to B. rapa cv. Torch (Adhikari 

et al. 2003) is governed by single dominant gene. The resistance of B. napus var. Regent is condi

tioned by independent dominant genes at three loci designated as AC 7-1, AC 7-2, and AC 7-3. Two 

loci also controlled resistance in B. napus to A. candida race AC 2 collected from B. juncea. The 

Chinese B. napus accession 2282-9, susceptible to AC 7, has one locus controlling resistance to an 

isolate of A. candida collected from B. carinata. These studies indicated that only one allele for 

resistance was sufficient to condition an incompatible reaction in this pathosystem. In addition, a 



    
 

 

   
  

   

 

  

   

   

 

 

   

     

     
     

 

  
  

 

 

 

 

 

 

 

     

164 Diseases of Edible Oilseed Crops 

single locus controlling resistance to AC 2 in B. napus and B. rapa was mapped using restriction 

fragment length polymorphism (RFLP) marker (Chattopadhyay 2008). A dominant allele at a single 

locus or two tightly linked loci were reported to confer resistance to both races AC 2 and AC 7 of 

A. candida (Kole et al. 2002). According to Borhan et al. (2008), a dominant white rust–resistant 

gene, WRR 4, encodes a toll-interleukin receptor–nucleotide-binding site–leucine-rich repeat pro

tein that confers broad-spectrum resistance in A. thaliana to four races (AC 2, AC 4, AC 7, and AC 9) of 

A. candida. Four Chinese (CBJ-001, CBJ-002, CBJ-003, and CBJ-004) and two Australian (JR049 

and JM 06011) genotypes were consistently highly resistant to an A. candida pathotype prevailing 

in Australia throughout the different plant growth stages (Li et al. 2007a, 2008a, 2009a). 

Molecular Breeding 
White rust susceptible cultivars of B. juncea and B. napus transformed with WRR4 gene from 

A. thaliana showed resistance to the corresponding A. candida races for each host species, which 

indicates that this gene could be a novel source of white rust resistance in oilseed Brassicas (Borhan 

et al. 2010). However, there is a need to guard against the danger of breakdown of resistance due to 

mixed infection with Hyaloperonospora parasitica (Singh et al. 2002a,b). Resistant genes have been 

mapped and identified on the chromosomes of B. juncea, namely, ACr (Cheung et al. 1998), AC-21 

(Prabhu et al. 1998), AC-2 (Varshney et al. 2004), ACB1-A4.1, and ACB1-a5.1 (Massand et al. 2010); 

B. rapa, namely, ACA1 (Kole et al. 1996); B. napus, namely, ACA1 (Ferreira et al. 1994) and AC 2V1 
(Somers et al. 2002); and A. thaliana, namely, RAC-1, RAC-2, RAC-3, and RAC-4 (Borhan et al. 2001, 

2008), effective against one or more than one race of A. candida. A single gene (Acr) responsible 

for conferring resistance to A. candida was mapped on a densely populated B. juncea. Two closely 

linked RFLP markers identified (X42 and X83) were 2.3 and 4 cM from the Acr locus, respectively 

(Cheung et al. 1998). Kole et al. (2002) have worked out the linkage mapping of genes controlling 

resistance to white rust in B. napus. A tightly linked marker for white rust resistance was developed 

using amplified FLP (AFLP) in conjunction with bulk segregant analysis (Varshney et al. 2004).  

A polymerase chain reaction (PCR)-based cleaved amplified polymorphic sequence (CAPS) marker 

for closely linked random amplified polymorphic DNA (RAPD) marker OPB061000 was developed. 

Data obtained on 94 recombinant inbred lines revealed that the CAPS marker for OPBO61000 and 

AFLP marker E-AAC/M-CAA350 flank the Ac2(t) gene at 3.8 and 6.7 cM, respectively. Validation 

of the CAPS marker in two different F2 populations of crosses Varuna × BEC-144, and Varuna × 

BEC-286 established its utility in marker-assisted selection for white rust resistance. The use of both 

flanking markers in marker-assisted selection was estimated to only allow 25% misclassification, 

thus providing greater selection efficiency than traditional approaches (Varshney et al. 2004). 

Induced Host Resistance 
Tirmali and Kolte (2011, 2012) found nonconventional chemicals (plant defense activators)  effective 

in reducing disease index on leaves and staghead incidence. A plant defense activator, BTH, was 

found effective in protection from staghead development against the challenge inoculation with 

A. candida (Kaur and Kolte 2001, Kumar 2009). 

Cultural Control 
Crop rotation with nonhost crops helps in managing this pathogen. Roguing and burning of disease-

affected plants, particularly stagheads, help in minimizing inoculum buildup in soil. Overirrigation 

of crop should be avoided that helps in reducing DI. Clean, healthy, and certified seed should be 

used to avoid seed-borne white rust disease. Soil application of K as basal at 40 kg/ha resulted in 

significantly (P < 0.05) lesser white rust on leaves and number of stagheads than control. Early 

sowing of seeds may help decrease DI and staghead formation and increase seed yield (Yadav et al. 

2002, Meena et al. 2004, Thapak and Dantre 2004, Biswas et al. 2007). Suitable date of sowing 

based on location and other epidemiological considerations needs to be decided to enable the escape 

of the disease in different locations. 
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Biological Control and Effect of Plant Extracts 
In recent years, an increasing consciousness about environmental pollution due to pesticides and 

development of fungicide-resistant strains in plant pathogens have challenged plant pathologists to 

search for eco-friendly tools in disease management. Aqueous bulb extract of A. sativum 1% (w/v), 

an isolate of T. viride, as seed treatment and in combination as respective foliar sprays was statis

tically at par with that of mancozeb, combination of metalaxyl 35 ES 6 mL/kg seed treatment + 

0.2 g/L spray of combination of metalaxyl + mancozeb in checking the rust severity on leaves and 

number of stagheads per plant (Meena et al. 2003). Inhibition of oospore development in A. candida 
by a natural bioagent Psuedomonas syringe under field condition has been reported (Tewari et al. 
2000). Spray with the extract of Eucalyptus spp. (Kumar 2009) leaves can effectively manage the 

disease. 

Chemical Control 
Metalaxyl (Khunti et al. 2001, Biswas et al. 2007), metalaxyl + mancozeb (ridomil MZ) (Pandya 

et al. 2000, Godika et al. 2001, Yadav 2003), aluminium tris (Girish et al. 2007), and combination of 

metalaxyl 35 ES 6 mL/kg seed treatment + 0.2 g/L spray of combination of metalaxyl + mancozeb 

at 50 and 65 DAS (Kolte 1985, Meena et al. 2003) are reported to be able to manage the disease. 

DOWNY MILDEW 

SYMPTOMS 

Symptoms of the disease appear on all aboveground parts but usually on leaves and inflorescence. 

Usually a few days after sowing, small angular translucent light green lesions first appear on coty

ledonary or the first true leaves during seedling stage and at times could be even restricted to these 

leaves with subsequently emerging ones not showing any symptom. Such lesions later enlarge and 

develop into grayish white, irregular necrotic patches on the leaves bearing downy growth of the 

pathogen (conidia and conidiophores) on its undersurface. In severe attack, the affected leaves dry 

up and shrivel. The extent to which the necrosis occurs depends upon the type of crop species. 

Leaf symptoms (Figure 5.5) at the seedling stage, as mentioned earlier, are more conspicuous on 

FIGURE 5.5  Downy mildew affected leaves at seedling stage. 
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B. juncea compared to B. rapa. Very late in the season, downy growth may be seen on siliquae as 

well (Figure 5.6). Thickening of the peduncle/inflorescence (Figure 5.7) due to the disease suggest 

hypertrophy of affected cells, pith of the stem being more affected than the cortex (Vasudeva 1958). 

Formation of oospores in the inflorescence takes place as it dries up. The disease is also found to 

be associated with white rust symptoms on leaves and inflorescence. Systemic infection results in 

FIGURE 5.6  Downy mildew affected pods. 

FIGURE 5.7  Staghead (hypertrophied inflorescence) caused by  Hyaloperonospora. 
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thickened stunted growth of plant bearing profuse sporulation (Kolte 1985). In all the infected plant 

parts of oilseeds Brassica, total sugar, total phenol, total protein, and chlorophyll and nitrate reduc

tase activity decreased, while chlorophyll content only in inflorescence and total free amino acids 

in the infected plant parts increased. However, total mineral content did not differ in infected and 

healthy plants (Singh 2000, 2004). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The disease is found to appear more frequently in varying proportions, wherever rapeseed– mustard 

cultivation has been intensified. The disease has been reported from Argentina, Australia, Austria, 

Brazil, Bulgaria, Canada, Chile, China, Cuba, Cyprus, Czechoslovakia, Denmark, Ethiopia, Fiji, 

Finland, France, Germany, Greece, Hong Kong, Hungary, India, Iran, Iraq, Ireland,  Israel, Italy, 

Jamaica, Japan, Kenya, Korea, Malaysia, Mexico, Nepal, the Netherlands, New Zealand, Norway, 

Panama, Pakistan, Philippines, Poland, Portugal, Romania, Russia, South Africa,  Switzerland, 

Taiwan, Turkey, Uganda, the United Kingdom, the United States, Vietnam, and Yugoslavia (Kolte 

1985, Saharan et al. 2005). Reports of its occurrence either alone (Porter 1926) or in association 

with white rust on leaves or inflorescence have been made, which could result in losses up to 58% 

(Kolte 1985). Seedling death could be even up to 75% when infection occurs at cotyledonary stage 

and congenial weather conditions are prevalent. 

PATHOGEN 

The causal pathogenic fungus H. parasitica (Pers.) Constant is an obligate parasite affecting all 

crucifers though variation exists in conidial size and other fungal structures among strains infect

ing different species of cruciferae. Mycelium is hyaline, coenocytic, remains intercellular in host, 

produces large, lobed intracellular haustoria, often branched, which nearly fill the entire cell. Erect 

conidiophores singly or in groups of determinate growth emerge vertically through the epidermis 

on the undersurface of the leaves through the stomata. Conidiophores are hyaline with a flattened 

base, stout main axis, twisted at a point crossing the stomata, and measure 100–300 μm. At the 

tip, conidiophores are dichotomously branched six to eight times, sterigmata slender, and acutely 

pointed. Conidia are hyaline, broadly elliptic to globose, 24–27 μm × 12–22 μm. A single conidium 

is borne at the tip of each branch, and the same is deciduous. Detachment of conidia is possibly 

caused by hygroscopic twisting of conidiophore related to changes in humidity. Conidiophore wall 

is uniformly thick. Spherical oogonia and tendril-like antheridia are developed on separate hyphae 

in hypertrophied tissue to produce oospores that enable the survival of the pathogen for long times 

withstanding harsh conditions. On germination of the oospore or conidia, the germ tube penetrates 

the host tissue directly or through the stomata. This pathogen, in the absence of fungal reproductive 

structures, during early interaction of seedlings, in infected young leaves packed in sealed plastic 

bags, and seed stocks can be diagnosed by a fast and reliable molecular identification technique, 

that is, multiplex PCR amplification of full internal transcribed spacer (ITS) and ITS2 regions of 

H. parasitica (Casimiro et al. 2004). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The disease is favored by cool (8°C–16°C) and moist weather with low-light intensity and high 

(152 mm) rainfall (Kolte 1985). The oospores that survive in infected crop residue, soil, and seed 

serve as primary source of inoculum. These oospores germinate to infect cotyledonary and primary 

leaves. Systemic infection could result in staghead formation. Secondary infection of the plants 

occurs through airborne conidia or waterborne zoospores produced from germinating sporangia. 
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DISEASE MANAGEMENT 

Host Plant Resistance 
EC-129126 (B. juncea), PBN-9501, PBN-2002, and GSL-1 (B. napus) are reported to be resistant 

to the disease (AICRP-RM 1986–2014, Nashaat et  al. 2004, Chattopadhyay and Séguin-Swartz 

2005). However, there is danger of breakdown of resistance due to mixed infection with white rust. 

Seven genotypes, namely, Sinapis alba, B. carinata (HC-1), B. juncea (DIR-1507 and DIR-1522), 

and B. napus (GS-7027, Midas, and Tower) exhibited stable resistance to the disease (Dang et al. 

2000). Genotypes RC 17, RC 346, RC 89, RC 110, and RC 280 were also resistant to the disease 

(Singh and Singh 2005). Australian genotypes JM06014 and JM06015 and Indian genotypes JM 3 

and Kranti were resistant to downy mildew (Singh et al. 2010). Two Australian spring-type oilseed 

rape genotypes Pioneer 45Y77 and Pioneer 46Y78 were resistant to H. parasitica (Ge et al. 2008). 

Walters et al. (2005) observed three oxylipins, namely, TriHOE1, TriHOE2, and 13-HOT, in incom

patible interaction between B. napus and downy mildew pathogen while these were not observed 

in compatible interaction, which indicates their involvement in signaling and/or as antimicrobial 

compounds in rapeseed-resisting infection by the pathogen. The resistance of some genotypes of 

rapeseed–mustard to Indian isolate of H. parasitica seems to be conditioned by a single dominant 

gene (Nashaat et al. 2004). 

Cultural Control and Effect of Plant Extracts 
Selective picking of affected hypertrophied racemes immediately after formation followed by their 

destruction; rotation with noncruciferous crops could also be helpful. Suitable planting time need 

to be worked out as per location. Seed treatment and successive foliar spray with garlic bulb extract 

was found an eco-friendly alternative to manage this disease (Kolte 1985, Bhatt et al. 2009). 

Chemical Control 
Seed treatment with metalaxyl 35 SD at 6 g/kg and spray of metalaxyl at 0.01% ai were effective 

in managing the disease (Chattopadhyay 2008). Gopal (2003) found that the seed treatment with 

metalaxyl along with its two sprays could reduce the DI significantly and increase the seed yield. 

Sclerotinia ROT 

SYMPTOMS 

Based on the symptoms, the disease has been named white blight, white rot, stem blight, stalk 

break, stem canker, or rape canker. Usually, under natural conditions, the stem of the plant is 

seen affected more frequently, though all aboveground parts are subject to attack by the disease. 

Symptoms on the stem become visible as elongated water-soaked lesions that later are covered by 

a cottony mycelial growth of the fungus (Figure 5.8). Infected plants are at times overlooked until 

the fungus grows completely throughout the stem to rot it. When the stem is completely girdled by 

such lesions, the plant wilts and dries. Foliage may show little sign of attack while at times may even 

start on leaves, which wilts and droops downward and then moves on to the stem. Sometimes, the 

infection is restricted to a smaller area of pith, which results in slow stunting of the plant and pre

mature ripening rather than their sudden collapse. Such plants under field conditions can be easily 

identified because of premature ripening. The affected stem tends to shred; numerous grayish-white 

to black, spherical sclerotia appear either on the surface or in the pith of the affected stem. When 

the crop is at seed maturity, the plants tend to lodge, touching the siliquae with the soil level. Such 

plants, though remain free from stem or aerial infection throughout, show rotting of the siliquae 

with profuse fungal growth, along with sclerotial bodies just above the soil level. Appearance of the 

disease at an early stage of crop growth results in the death of whole plant (Kolte 1985). Sharma 

and Sharma (2001) reported significant reduction in seed germination percentage, radicle growth, 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

169 Rapeseed–Mustard Diseases 

FIGURE 5.8  Sclerotinia rot-affected stem. 

plumule growth, plant height, secondary branches, and number of silique on primary and secondary 

branches in Indian mustard cultivars in Haryana, India. Younger plants (up to of 40 days) are highly 

susceptible as compared to older ones (Ghasolia and Shivpuri 2009). After infection, Alizadeh et al. 
(2006) observed an increase in glucosinolate and erucic acid content, while the test weight and oleic 

acid decrease in rapeseed oil. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Rot of mustard caused by Sclerotinia sclerotiorum (Lib.) de Bary has become important in recent 

times with high (up to 66%) DI and severe yield losses (up to 39.9%) leading to discouragement 

of growers of the crop (Chattopadhyay et al. 2003), although reports of even 100% yield loss due 

to the disease are available (Saharan et al. 2005). Sclerotinia rot is also a serious threat to oilseed 

rape production with substantial yield losses worldwide including Australia, Europe, India and 

North America (McCartney and Lacey 1999, Hind et al. 2003, Koch et al. 2007, Malvarez et al. 

2007, Singh et al. 2008). There may be a great variation in losses in yield in the same area from 

year to year. Yield losses vary with the percentage of plants infected and the stage of growth of 

the crop at the time of infection. Plants infected at the early flowering stage produce little or no 

seeds and those infected at the late flowering stage set seed and may suffer little yield reduction. 

For predicting yield (Y), a linear equation (R2: 0.89) was fitted on DI (Y = 310.25 − 2.04**DI) using 

Sclerotinia susceptible cv. Rohini (Chattopadhyay et al. 2003). The disease affects broad-leaved 

crop species and is most common in temperate regions of the world. The first record of its occur

rence on rapeseed and mustard appears to have been made from India (Shaw and Ajrekar 1915). 

Since then, frequent occurrences of the disease in severe form have been reported from Argentina 

(Gaetan and Madia 2005), Brazil, Canada (loss up to 28%), China, Denmark, Finland (Kolte 1985), 
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Florida  (Young et  al. 2012), France, Germany (Kolte 1985), Greece (Tziros et  al. 2008), India  

(Kolte 1985), Italy (Corato and de Baviello 2000), Sweden (Kolte 1985), Texas (Isakeit et al. 2010), 

and the United Kingdom (Kolte 1985). The disease has been found to be causing severe losses 

in Rajasthan, Bihar, Uttar Pradesh, Uttarakhand, and Haryana states of India. In one of the sur

veys conducted at the Directorate of Rapeseed–Mustard Research, Indian Council of Agricultural 

Research, India (Jha and Sharma 2003), Sclerotinia rot has been rated as the most important of 

eight problems being faced by the farmers of Bharatpur district (Rajasthan, India) in mustard cul

ture. Due to this disease, Shukla (2005a) reported 50.88% yield loss in mustard crop. The pathogen 

is reported to have a wide host range, known to infect about 408 plant species (Boland and Hall 

1994) with no proven source of resistance against the disease reported till date in any of the hosts. 

PATHOGEN 

The pathogen is S. sclerotiorum (Lib.) de Bary (Syn. Sclerotinia libertiana Fuckel; Whetzelinia 
sclerotiorum [Lib.] Korf and Dumont). Mycelium is thin, 9–18 μ in diameter with lateral branches 

of smaller diameter than the main hyphae. The vegetative hyphae are multinucleate (n = 8). Mycelial 

growth rate on solid agar media is fast and forms a moderate to abundant amount of aerial mycelium. 

The sclerotia are black, round or semispherical in shape measuring 3–10 μm. These are formed ter

minally and produced in one or two concentric rings on agar culture media. Sclerotia can be easily 

detached from the medium. The fungus does not have an obvious true conidial stage, though for

mation of microconidia in culture media has been reported. The mature sclerotium consists of an 

outer-pigmented rind and a medulla of prosenchymatous tissues partly embedded in a gelatinous 

matrix. Several other aspects on the morphology of sclerotium development, physiological and bio

chemical aspects of sclerotia formation, maturation, and structure of sclerotium have been reviewed 

by Willets and Wong (1980). 

The sclerotial germination is mycelogenic (by mycelium) or carpogenic (by the formation of 

apothecia). On germination, the sclerotia form stalked apothecia. One to several apothecia may 

grow from a single sclerotium. The hymenium is made of palisades of asci and paraphyses. The asci 

measure 119–162.4 μ × 6.4–10.9 μ in size. These are inoperculate, cylindrical, narrow, rounded at 

the apex with eight ascospores in each ascus. Ascospores are uniform in size (n = 8). They measure 

10.2–14.0 μ × 6.4–7.7 μ in size. Each ascospore is hyaline, ellipsoid, and has smooth walls. The spores 

are bi- or triguttulate. The paraphyses are about 100 μm long, 1–2 μm in diameter, slightly swollen 

at their tips, multinucleate, sparsely septate, and occasionally branched at the bases. The effects of 

some factors, such as age of sclerotium, temperature, light, and moisture, on apothecial production 

and ontogeny of apothecia have been reviewed by Willets and Wong (1980). The fungus grows over a 

range of 0°C–35°C, optimum being 20°C–25°C. Initiation and development of apothecia occur over 

a range of 10°C–20°C, while 20°C ± 1°C was found better for the same on the sterilized moist sand 

substrate (Goswami et al. 2012). It attacks field, forage, vegetable and ornamental crops, trees and 

shrubs, and numerous herbaceous weeds. There is little or no evidence of physiological specializa

tion (Kolte 1985), though variation in pathogenicity has been reported (Goyal et al. 2013c). 

Ascospores discharged from the apothecia at the base of the plants in soil constitute important 

primary source of infection. These ascospores could be stored at −80°C in 30%–40% glycerol 

for up to 12 months and used as a reliable source of inoculum for pathogenicity test (Olivier and 

Seguin-Swartz 2006). Mycelium in soil or those arising from sclerotia is a less important initial 

source of infection because of the low competitive saprophytic ability of the fungus (Kolte 1985). 

The ascospore can germinate in the presence of a thin film of water, in less than 24 h at 5°C–30°C, 

optimum being 5°C–10°C. The ascospore gives rise to infection hypha, and initial penetration of 

the tissue takes place directly by mechanical pressure through the cuticle, or the infection hypha 

may also penetrate already wounded or injured tissue. After the entrance of the fungus into the host, 

the mycelia cause enzymatic dissolution of the cell wall in advance, and cells die some distance 

ahead of the invading hyphae. Pectolytic enzymes are responsible for tissue maceration indirectly 
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damaging the cell membrane, which results in subsequent death of cells (Kolte 1985). Production of 

cell wall–degrading PMG and cell (Cx) enzymes by S. sclerotiorum–infecting Brassica plants has 

been reported (Kolte 1985) that results in the colonization of plant tissues. Virulence of different 

isolates appears to be associated with the activity of PMG and Cx enzymes. These PGs can activate 

defense reactions in hosts, having no relation with the enzyme activity (Wang et al. 2008a). Li et al. 

(2004) reported that an sspg1d gene (endo-PG) is highly expressed in the pathogen under pathogenic 

conditions. Activities of PO and SOD enzymes were higher in resistant cultivars than susceptible 

cultivars of rape (Qi et al. 2004). A selective phytotoxin, sclerin, has been found to be produced by 

S. sclerotiorum in three susceptible cruciferous species, namely, B. napus, B. juncea, and S. alba 
(Pedras and Ahiahonu 2004), but not in a resistant species, namely, E.  gallicum. However, three 

phytoalexins, namely, indole-3-acetonitrile, arvelexin, and 1-methoxyspirobrassinin, were found to 

be elicited in E. gallicum in response to the pathogen infection. The role of protease activity in 

infection of plants of B. juncea is also reported (Kolte 1985). A gene (ssv263) encoding a hypo

thetical, novel protein with unknown function (Liang et  al. 2013), and an arabinofuranosidase/ 

beta-xylosidase precursor (Yajima et  al. 2009) from S. sclerotiorum has been identified as a 

possible virulence factor in the pathogen. A phytoalexin-detoxifying gene, namely, brassinin glu

cosyltransferase 1, that detoxifies brassinin phytoalexin in the host has been found to be induced 

in S.  sclerotiorum in response to the infection of the host (Sexton et al. 2009). It appears that inva

sion of tissues of B. juncea is also related to the infection process, mediated by production of a toxin 

that is identified as oxalic acid (Kolte 1985); the oxalic acid is formed in culture filtrate as well as 

in infected B. juncea plants, which is reported to be thermostable, translocatable, and treatment of 

the host plant with culture filtrate results in disease. Oxalic acid may play a significant role in acti

vating the glucosinolate–myrosinase system during infection (Rahmanpour et al. 2010). Resistance 

at the cellular level in B. napus against the pathogen is a result of retardation of pathogen develop

ment on the plant surface and within plant tissues. In resistant lines, formation of appresoria and 

infection cushions is suppressed that caused extrusion of protoplast from hyphal cells and produces 

a hypersensitive reaction. In susceptible lines, calcium oxalate crystals are found throughout the 

leaf tissues, while they are mainly confined to the upper epidermis of the resistant lines, and starch 

deposits are also more prevelant in susceptible lines (Garg et al. 2010a). Modulation of 32 proteins 

involved in photosynthesis and metabolic pathways, protein folding and modifications, hormone 

signaling, and antioxidant defense has been observed in B. napus in response to Sclerotinia infec

tion (Liang et al. 2008). 

According to Huang et al. (2008), on the surface of leaves and stems, infection cushions of dif

ferent sizes develop that are often flattened and increased in diameter. These infection cushions 

and network of mycelia are covered by mucilage produced by the pathogen. After removing the 

infection cushions, numerous penetration pegs enter the cuticle of leaves and stems through the 

pores. Small changes are observed in cuticle. After penetration, the hyphae grow inter- and intracel

lularly between the cuticle and epidermal cells and also colonize xylem and phloem. Pathogen may 

secrete cell wall–degrading enzymes, namely, cellulases, pectinases, and xylanases, which degrade 

cellulose, pectin, and xylan in the host cell walls during infection and spread in the host tissues. 

Increase in proline content and PO activity during decrease in malonaldehyde content, free amino 

acid contents, and polyphenol oxidase activity and conductivity have positive correlation with rape 

resistance to the pathogen (Zhao et al. 2006). 

Cultural, morphological, pathogenic characteristics and carpogenic germination of S.  sclerotiorum 
have been studied by some workers (Goswami et  al. 2012). Potato dextrose agar medium was  

the best supporting mycelia growth of the fungus and produced maximum  number of sclero

tia (Nguyen et al. 2006). Differences in the morphology of S. sclerotiorum isolates have previ

ously been observed by Li et al. (2003a), where isolates producing tan sclerotia were identified. 

Sexton et  al. (2006)  demonstrated genotypic diversity utilizing microsatellite markers among 

S. sclerotiorum isolates of oilseed rape crops from Southeast Australia. Very few reports exist 

to date describing dark-pigmented isolates of S. sclerotiorum, such as those from Canada and 
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southwestern region of the United States (Lazarovits et  al. 2000, Sanogo and Puppala 2007). 

Recently, the molecular biology approaches enable to evaluate similarity and differences 

between strains within plant pathogens. Akram et al. (2008) worked on variability among iso

lates of S. sclerotiorum. Irzykowski et al. (2004) observed genetic diversity in natural populations 

of S. sclerotiorum from China by using RAPD molecular marker in addition to comparison of 

sequences of ITS1-5.8s-ITS2 region. Sharma et al. (2013b) used RAPD analyses of 15 geographi

cal isolates, while Chen et al. (2010a) did sequence-related amplified polymorphism analyses of 

76 isolates and observed high polymorphism among them. Genetic diversity based on morpho

logical characteristics (Barari et al. 2011) was assessed by using rep-PCR genomic fingerprinting 

(Karimi et al. 2011) among geographically different isolates of S. sclerotiorum. Pathogenic diver

sity and genetic structure of the pathogen have been assessed through comparison in virulence 

and mycelial compatibility between isolates (Karimi et al. 2012). In Turkey, genetic and morpho

logical diversity has been demonstrated for the first time within a population of S. sclerotiorum– 

infecting oilseed rape (Mert-Turk et al. 2007). 

Morphogenic and pathogenic diversity among 38 isolates of S. sclerotiorum from different loca

tions of Rajasthan, India has been reported (Ghasolia and Shivpuri 2007). Nie et al. (2010) and 

Ling et al. (2011) observed pathogenic diversity among 495 isolates of S. sclerotiorum from dif

ferent regions of Shaanxi Province and 24 isolates of S. sclerotiorum from different regions of 

Anhui region of China. Garg et al. (2010b) studied the pathogenicity of morphologically different 

isolates of S. sclerotiorum from different regions of western Australia. High degree of pathogenic 

and genetic diversity has been observed among 17 isolates of S. sclerotiorum from India and the 

United Kingdom (Goyal et al. 2013c). Hence, similar holistic study should be conducted with higher 

number of S. sclerotiorum isolates from different geographical regions, which could provide a bet

ter picture of divergence among the pathogen and could be helpful in the generation of resistant 

material against the stem rot in oilseed Brassicas. 

Inoculum of S. sclerotiorum can be detected in field-based air samples (using a Burkard spore 

trap) and from petals by PCR assay of nuclear ribosomal ITS sequences (Freeman et al. 2002). The 

presence of S. sclerotiorum on plants may be detected by using immunological detection method, 

namely, dimeric single-chain fragment variable (scFv) antibody with affinity for the pathogen 

(Yajima et al. 2008) and polyclonal antibody-based immunoassay (Bom and Boland 2000). Petal 

infection by S. sclerotiorum can be rapidly detected by real-time PCR (RT-PCR) (Yin et al. 2009) 

and nested PCR (Qin et al. 2011) techniques. Although detection of ascospores of S. sclerotiorum 
can be done by using passive trap, volumetric trap, and PCR techniques (Rogers et al. 2008, 2009) 

can also be used for the quantification of the ascospores (Penaud et al. 2012). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Sclerotinia rot was positively correlated with increase in soil moisture and RH (R2: 0.87 and 0.99, 

respectively), both at sowing and during the flowering period (50–60 DAS). Gupta et al. (2004b) 

found delay in sowing of rapeseed–mustard crop and reduced DI. High seeding rate and plant den

sity increase the potential for lodging, which may be responsible for plant-to-plant spread of this 

disease (Jurke and Fernando 2008). Combination of cool weather and high soil moisture during 

the critical stage of 60–70 days age of crop favored higher incidence on Indian mustard (Sharma 

et al. 2009). Sharma et al. (2010c) observed petal infection with ascospores during full bloom stage 

and found rainfall as an important factor in carpogenic infection of S. sclerotiorum in B. juncea. 
Detection of healthy Indian mustard crop and its early differentiation from Sclerotinia rot–affected 

B. juncea plants was possible using remote-sensing technique, which could help in multistage dis

ease tracking and forecasting (Dutta et al. 2006, Bhattacharya and Chattopadhyay 2013). Singh et al. 

(2000) developed a stepwise multiple linear regression model for Sclerotinia rot of Indian mustard. 

Under epidemiological study of Sclerotinia rot, based on DI and 10 independent weather variables, 

a multiple linear regression model has been described. The equation of the fitted model is percent 
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Sclerotinia rot incidence = −11.2351 + 0.9529*BSSH + 4.93924*Eva + 3.83308*pH + 0.60885*RF 

(mm) − 0.406458*RH 720 + 0.524095*RH 1420 + 0.17386*Soil moisture (%) − 0.30461*Tmax − 
0.677744*Tmin − 2.19556*WS (DRMR 2010). The ScleroPro system is easy to handle and fully 

computerized, and based on the weather and field-site-specific data, this program has been available 

for growers and advisors since 2006 (Koch et al. 2007). 

The pathogen primarily survives from one crop period to another in the soil through sclero

tia. Such sclerotial bodies get mixed with the soil through affected plant debris after the crop is 

harvested, or when seeds contaminated with the sclerotial bodies are sown in the soil. Samples 

have been found to contain up to 432 sclerotia/kg seed, and a certain level of sclerotia in soil is 

reported to be maintained by the formation of secondary sclerotia (Kolte 1985). There are reports 

that the fungus can also survive through either mycelium or ascospores in dead or live plants, on 

testa of seed (Kolte 1985). Some wild plants that act as primary source of inoculum are hogweed 

(Heracelum sphondylium L.), cow parsley (Anthriscus sylvestris [L.] Holfm.), Chenopodium spp., 

and Asphondilia spp., which are also found to be infected and carry over the pathogen. 

The disease is also known to be airborne, while seed treatments were assessed for protection 

against seed- and soil borne nature of the pathogen. Since aerial infection, apart from that taking 

place in the soil, is dependent entirely on continued production and dissemination of ascospores, 

epidemics are common in areas of continuously cool moist weather concurrent with the susceptible 

stage of crop, particularly the flowering period. Fields sown with rapeseed for 2 years favor more 

germination of sclerotia than fields sown with the crop for 1 year. Pollen and petals of rapeseed are 

known to stimulate ascospore germination. Rapeseed crops do not appear to restrict the movement 

of airborne ascospore. Ascospores are carried into the air current as high as 147.0 cm above the 

soil level. Spores could be trapped at a horizontal distance of 150 m from source indicating that the 

ascospores being airborne are carried to sufficient distance and cause spread of the disease from 

field to field. There did not appear to be a correlation between total rainfall and ascospore incidence. 

It is observed that ascospores on pollen grains of rapeseed adhere tightly. Honeybee-carried pollen 

and pollen in honeycombs have also been reported to carry ascospores. However, in view of the 

readily available wind-borne inoculum, the relative importance of transfer of spores by the honey

bees is of less significance (Kolte 1985). 

Spray of herbicide barban on rapeseed crop, used for managing Orobanche, increased its suscep

tibility to infection by S. sclerotiorum, possibly through altering the physiology of the plant as the 

herbicide has no inhibitory effect on the B. juncea plants. The disease has been noted to be high in 

plots, where Orobanche incidence is low and vice versa. Susceptibility of the plants to Sclerotinia 
rot is more when ammonium sulfate was applied, while thiourea spray showed less intensity of the 

disease (Kolte 1985). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Because of the wide host range and lack of tissue specificity, breeding resistant varieties appears 

to be less successful. However, differences in general growth habit and morphological char

acters of plants might be important characteristics for tolerance of the disease. For example, 

the Omi nature variety of B. napus, of medium height, early maturity, with a stiff stem and 

many branches, was resistant to the disease. The Isuzu variety of B. napus had a high degree of 

resistance (Kolte 1985). Another character, that is, stem diameter of the plants, may be a useful 

parameter for tolerance of the pathogen (Li et al. 2006a). It has also been reported that the high

glucosinolate lines are more susceptible to S. sclerotiorum as compared to the low-glucosinolate 

ones (Song and Guan 2008). Several genotypes of rapeseed–mustard have been screened against 

Sclerotinia rot caused by S. sclerotiorum by using different methods under natural and artificial 

conditions (Ghasolia and Shivpuri 2005a, Chand and Rai 2009, Prasad et  al. 2009a, Sharma 

et al. 2012b). Responses of some genotypes (e.g., cv. Charlton) were observed relatively consistent 
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irrespective of the isolates of the pathogen, whereas highly variable responses were observed in 

some other genotypes (e.g., Zhongyouang No. 4, Purler) against the same isolates. Genotypes 

with higher levels of resistance need to be included in oilseed Brassica breeding programs to 

enhance the level of field resistance in cultivated B. napus and B. juncea. Although complete 

resistance has not been identified in canola, partial field resistance to Scleritinia rot in Chinese 

cultivars Zhongyou 821 (Li et  al. 1999) and Zhongshuang No. 9 (Wang et  al. 2003) has been 

identified. Four cultivars of B. napus, namely, BOH 2600, Bermuda, Capio, and Mohican, were 

found resistant to S. sclerotiorum after a 3-year study (Starzycka et al. 2004). For the three con

secutive cropping seasons, eight genotypes, namely, Hyola-401, PBN-9501, PWR-9541, Kiran, 

RH-9401, RH-492, RW-8410, and PAB-9511, were found resistant (percent DI [PDI] < 1%) to 

moderately resistant reaction (PDI = 1%–10%) to S. sclerotiorum (Ghasolia and Shivpuri 2005a). 

Genotype Ringot I of B. juncea was reported resistant to the rot (Goyal et  al. 2011b). Other 

resistant B. napus genotypes that have been previously reported are 06-6-3792 (China), ZY004 

(China), RT 108 (Australia) with mean stem lesion lengths < 3.0 cm (Li et al. 2007b, 2008b), 

and ZY006 with mean stem lesion lengths < 0.45 cm (Li et al. 2008b). In addition, the levels of 

resistance reported previously in B. juncea were, in particular, far lower, for example, B. juncea 
JM 06018 and JM 06006 with mean stem lesion lengths of 4.8 cm (Li et al. 2008b), as compared 

with B. napus genotypes. However, the situation has begun to improve because of the screening 

of the sources of Sclerotinia resistance from Chinese native cultivars (Li et al. 2009b). Garg et al. 
(2010c) reported high levels of resistance against S. sclerotiorum in introgression lines derived 

from Erucastrum cardaminoides, Diplotaxis tenuisiliqua, and Eriospermum abyssinicum. The 

novel sources of resistance identified in this study are a highly valuable resource that can be used 

in oilseed Brassica breeding programs to enhance resistance in B. napus and B. juncea culti

vars against Sclerotinia rot. Results indicate that more than one S. sclerotiorum isolate should 

be included in any screening program to identify host resistance. It has also been reported that 

concentration and culture time of mycelial suspension of the pathogen and time for maintain

ing high RH after inoculation play a major role in disease development in the inoculated plants 

(Zang et al. 2010). Unique genotypes, which show relatively consistent resistant reactions (e.g., 

cv. Charlton) across different isolates, are the best for commercial exploitation to breed for resis

tance in oilseed Brassica against Sclerotinia rot (Garg et al. 2010c). 

Molecular Breeding 
PG inhibitor genes (Bnpgip1 and Bnpgip2) (Li et al. 2003b, Hegedus et al. 2008) and EIN3 gene 

(Xu et al. 2009a) in B. napus may play an important role in resistance to S. sclerotiorum. Early 

induction of germin-like genes, namely, BnGLP3 and BnGLP12, that participates in an oxidative 

burst could play a vital role in defense of B. napus against the pathogen (Rietz et al. 2012). This 

oxidative burst can be detected in vivo in infected oilseed rape by using a modified platinum elec

trode on which Pt microparticles were dispersed and coated with a poly(o-phenylenediamine) film 

(Xu et al. 2009b). Sequential activation of salicylic and jasmonic acid signaling has been found to 

be associated with defense in oilseed rape against the pathogen (Wang et al. 2012). The SA levels in 

Sclerotinia rot–infected oilseed rape can be detected by using copper nanoparticles–modified gold 

electrode (Wang et al. 2010a). The LOX2 gene (Ren et al. 2010a) and PDF1.2 gene (Ji et al. 2009) 

in B. napus may be involved in jasmonate-mediated defense against S. sclerotiorum. Transformed 

lines of canola showed improved resistance to S. sclerotiorum with A9Ss gene from Pseudomonas 
alcaligenes strain A9 (Guo et al. 2006), oxalate oxidase gene (Zou et al. 2007, Dong et al. 2008), 

hrf2 gene (harpinXooc protein) from Xanthomonas oryzae pv. oryzicola (Ma et al. 2008), Ovd gene 

from Orychophragmus violaceus (Wu et al. 2009), pathogen-specific scFv antibody (Yajima et al. 

2010), and pgip1 gene (PG-inhibiting proteins [PGIPs]) from bean cv. Daneshjoo (Abedi et al. 2011). 

Introduction of glucose oxidase gene into B. napus has also been reported to increase resistance to 

the pathogen (He et al. 2007). 
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Cultural Control 
Management is difficult, inconsistent, and uneconomical due to the presence of wide host range and 

long-term survival of the resting structures. Since the disease is carried over through sclerotia with 

crop debris and refuse of the plants stimulate sclerotial formation, it is advisable to collect and burn 

all the infected stubbles to kill the sclerotia (Vasudeva 1958). For sowing, sclerotia-free clean seeds 

should be used. In view of the airborne infection through ascospores and a wide host range of about 

408 species, use of crop rotation appears to be a less successful method for managing the disease. 

However, deep summer ploughing and crop rotation with nonsusceptible hosts (rice, maize), use of 

only recommended dose of nitrogenous fertilizer, irrigation and keeping plant population within 

limits of recommendation, and flooding of soil, if possible, appear to minimize the sclerotial popu

lation in the soil, which subsequently might prove useful in control of the disease resulting from 

soil borne inoculum (Yuan et al. 2009). Avoidance of overcrowding of plants in a row to minimize 

plant-to-plant contact through root and stem to aid reduction of disease spread by mycelial means 

appears effective. Keeping a check on broad-leaf weeds like Chenopodium spp. is important in 

checking the disease. Occurrence of Sclerotinia blight can be reduced or avoided by late sow

ing of the rape (Fei et al. 2002). Late sowing might be helpful under the conditions of Canada by 

shortening the overlap between phenological susceptibility and exposure to maximum ascospore 

load (Kolte 1985). In Rajasthan (India), some conditions like sandy soil with late sowing and less 

irrigation were helpful in lowering DI (Ghasolia et al. 2004), while in Haryana (India), conditions 

like late sowing with presowing and three supplemental irrigations at branching, flowering, and pod 

formation were helpful in reducing DI (Sharma et al. 2001). Soil application of compost inhibited 

carpogenic germination of S. sclerotiorum and reduced Sclerotinia infection (Couper et al. 2001). 

Extracts of five organic amendments, namely, sunflower cake, safflower cake, mustard cake, neem 

cake, and farmyard manure, significantly reduced mycelial growth of the S. sclerotiorum (Tripathi 

et al. 2010). The enzymatic hydrolysis of glucosinolates in the Brassica releases ITCs, which could 

be potentially useful in curbing the pathogen (Kurt et al. 2011). Combination effect of micronutri

ents, namely, B at 1 g/L, Mo at 1 g/L, S at 2 g/L, and Zn at 2 g/L, in reduction of Sclerotinia rot 

incidence and increase in yield in rapeseed–mustard have been reported (Mondal 2008). Role of N 

in incidence of Sclerotinia rot of oilseeds Brassica is confusing (Gupta et al. 2004c, Shukla 2005b). 

Biological Control 
Chattopadhyay et al. (2002) reported a few of the biological treatments (seed treatment with T. viride 
and A. sativum aqueous bulb extract) to be effective against the disease coupled with effects of 

growth promotion and better plant stand and yields, which surpassed the efficacy of carbendazim 

on Sclerotinia-infested farmers’ fields (Meena et al. 2006). Integration of the seed treatment with 

foliar sprays reaped better reduction of the disease (Chattopadhyay et al. 2004, 2007, Yadav 2009). 

Trichoderma atroviride showed coil formation and penetration of pathogen hyphae (Matroudi et al. 

2009). Soil application of T. harzianum at 15 g/kg soil simultaneously or 7 days prior to the pathogen 

resulted in low disease intensity (Mehta et al. 2012). Wu and Wang (2000) reported that W-1 strain 

of Caseobacter spp. can manage the pathogen. Carpogenic germination of sclerotia of the pathogen 

could be reduced by using a bioagent Gliocladium virens (Ghasolia and Shivpuri 2005b). Antifungal 

activity of 11-3-1 strain of Streptomyces longisporoflavus against S. sclerotiorum has been observed 

(Han et al. 2012). The Pseudomonas fluorescens P13 isolated from oilseed rape field soil produced 

hydrogen cyanide (Li et al. 2011), and Pseudomonas chlororaphis PA-23 induced canola plants to 

produce more hydrolytic enzymes, namely, chitinase and beta-1,3-glucanase (Fernando et al. 2007), 

in response to the infection of S. sclerotiorum, thus was effective against the pathogen. However 

the control of pathogen by Psuedomonas strain DF41 is dependent upon lipopeptide production 

and the presence of a functional Gac system in the bioagent (Berry et al. 2010). Chitinase activity 

of different genotypes of B. napus is significantly correlated with their Sclerotinia rot scores and 

suggested that chitinase can be used in breeding program for improving disease resistance in rape. 
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Seed treatment with a bacterial strain, namely, Mesorhizobium loti MP6, isolated from root nodules 

of Mimosa pudica resulted in enhanced seed germination, early vegetative growth, and seed yield 

with drastic decline in incidence of Sclerotinia rot (Chandra et al. 2007). Y1 (Yan et al. 2005), NJ-18 

(Yang et al. 2009a), YS45 (Zhang et al. 2009), Tu-100 (Hu et al. 2005, 2011), and EDR2 (Gao et al. 

2013) strains of B. subtilis and BS6 strain of Bacillus amyloliquefaciens (Fernando et al. 2007) have 

been promising against this disease in oilseed rape. A new antifungal protein produced by Bacillus 
licheniformis W10 could be used as biofungicide to curb this disease (Sun et al. 2007). A bioag

ent, namely, Coniothyrium minitans, that destroys the hyphae (Jiang et al. 2000) and the sclerotia 

(Cael et al. 2001, Penaud and Michi 2009) of S. sclerotiorum has been used to control the disease. 

This bioagent degrades oxalic acid to nullify the pH effect thereof. Further, this may stimulate the 

production of beta-1,3-glucanase by the bioagent and may improve the mycoparasitism of the agent 

on S. sclerotiorum to result in protection of the plants from infection by the pathogen (Ren et al. 

2007). Water-assisted application of C. minitans at the time of transplanting oilseed rape seed

lings has been found effective in suppressing carpogenic germination of the pathogen (Yang et al. 

2009b). Treatment of soil with this bioagent was found effective in reducing ascospore production 

by the pathogen (Huang and Erickson 2004). Drenching of deep soil with spores of C. minitans 
could be done before or after crop planting for increasing long-term efficacy on a regular basis 

on infected plots (Luth et al. 2012). Li et al. (2006b) reported aerial application of this bioagent 

as an effective method to curb the mycelial growth of the pathogen on petals. Tautomycin pro

duced by Streptomyces spiroverticillatus and other related compounds, namely, 2,3-dimethylmaleic 

anhydride, diphenylmaleic anhydride, and dimethyl maleate, have significant potential against the 

pathogen (Chen et al. 2011). Sawdust soil–based bioformulation of P. fluorescens PS1 caused mor

phological alternation by hyphal perforation that enable to curb the disease (Aeron et al. 2011). 

Chemical Control 
In addition to contamination of seed, viable sclerotia present a potential quarantine hazard in export 

of seed. Viable sclerotia in infested seed of oilseed Brassica could be eradicated by fumigation with 

methyl bromide (Kolte 1985). In order to check the secondary spread of the disease, the possibility 

of control of the disease through foliar sprays of chemicals has been investigated. Since the patho

gen is soil borne, application of chemicals to soil for managing the disease is not only of limited 

value but also hazardous to environment. Certain chemicals such as quintozene, fentin acetate, and 

calcium cyanamide have been found effective to inhibit the apothecial development of the fungus. 

The efficacy of calcium cyanamide in controlling the disease by 40%–90% has been confirmed 

under field conditions in Germany (Kolte 1985). Ridomil MZ (mancozeb + metalaxyl) as a seed 

dresser effected highest germination with no postemergence mortality by S. sclerotiorum (Pathak 

and Godika 2002a). Seed treatment at sowing and foliar spray at first budding/flowering with 0.2% 

of benomyl proved best on farmers’ field (Chaudhary et al. 2010). Use of carbendazim at 0.25% as 

foliar spray could be effective in controlling this disease (Kolte 2005). Application of fungicides 

at full flowering phase (Jajor et al. 2010) by using venturi nozzle technology (Kutcher and Wolf 

2006) was effective in reducing infection by the pathogen. Foliar spray of zinc pyrithione curbed 

the pathogen (Wang and Yang 2007). 

Since no single method can effectively manage S. sclerotiorum, the best approach to control 

the pathogen is by integration of various eco-friendly measures. In recent years, an increasing 

consciousness about environmental pollution due to pesticides, and development of fungicide-

resistant strains in S. sclerotiorum (Penaud et al. 2003) has challenged plant pathologists to search 

for eco-friendly tools for Sclerotinia rot management. Boscalid (trade name Cantus in China) is a 

new broad-spectrum fungicide belonging to carboxamides class. It inhibits the enzyme succinate 

ubiquinone reductase (Complex II), also known as succinate dehydrogenase, in the mitochondrial 

electron transport chain (Wang et al. 2009, Zhang et al. 2009, Gu et al. 2012). Use of such methyl 

benzimidazole fungicides in oilseed Brassicas to manage Sclerotinia rot has been reported to result 

in widespread fungicide-resistant strains of S. sclerotiorum (Penaud et al. 2003). A new fungicide, 
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namely, prochloraz-manganese chloride, is found to be effective in delaying both myceliogenic and 

carpogenic germination of S. sclerotiorum; thus, it has both protective and therapeutic effects on 

the disease (Ren et al. 2010b). 

POWDERY MILDEW 

SYMPTOMS 

Powdery mildew appears in the form of dirty-white, circular, floury patches on both sides of lower 

leaves (Figure 5.9) of the infected plants. Under favorable environmental conditions (relatively 

higher temperature), the floury patches increase in size and coalesce to cover the entire stem and 

leaves. Severely affected plants remain poor in growth and produce less siliquae. Green siliquae also 

show white patches in the initial stage of infection. Later, such siliquae become completely covered 

with a white mass of mycelia and conidia. Severely diseased siliquae remain small in size and pro

duce small shrivelled fewer seeds at the base with twisted sterile tips. As the season advances, under 

favorable conditions, cleistothecia may be formed on both sides of affected leaves, stems, and sili

quae, which become visible in the form of black scattered and/or concentrated bodies (Kolte 1985). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Occurrence of powdery mildew on oilseeds Brassica is reported from France, Germany, India, 

Japan, Argentina, Australia, Sweden, Turkey, the United Kingdom, and the United States (Kolte 

1985, Gaetan and Madia 2004, Kaur et al. 2008b). It is generally believed that the disease does not 

cause much damage to oilseed Brassica crops except in occasional severe outbreaks, when all the 

leaves and siliquae get covered with the powdery growth of the fungus at early phonological stage. 

In certain states of India such as Gujarat, Haryana, Madhya Pradesh, Rajasthan, and Uttar Pradesh, 

the disease has been found to occur quite severely, possibly as an effect of climate change (Kumar 

et al. 2013) resulting in considerable loss in yield. Kohire et al. (2008a) observed 40% yield loss in 

FIGURE 5.9  Powdery mildew. 
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Indian mustard. Considering the differences in disease intensity from year to year, it appears that 

the loss is proportional to the disease intensity, which varies considerably depending on the stage 

at which it occurs. 

PATHOGEN 

The pathogen is Erysiphe cruciferarum Opiz ex. Junell. The mycelium is ectophytic. Penetration 

is confined to the epidermal cells, in which haustoria form, the remainder of the fungus being 

extramatrical. Conidiophores arise from the superficial hyphae on the host surface. Conidiophore 

is septate, and conidia are borne singly. Conidia are ellipsoid to cylindrical. Ripe conidia fall 

off quickly and are disseminated by wind. Conidial size ranges 8.3–20.8 μm × 20.8–45.8 μm 

with an average range of 12.58–14.9 μm × 31.0–36.9  μm. Conidia germinate at optimum of 

20°C–25°C by the formation of two types of straight germ tubes, one is short with slightly 

lobed appressoria and another is long with unlobed appressoria. The length of germ tube ranges 

20–30 μm. Cleistothecia are globose to subglobose with numerous hypha-like brownish septate 

appendages. They are pinkish brown when young and turn brown to dark brown on reach

ing maturity. Cleistothecia measure 83.2–137.3  μm in diameter (av. 104.4–119.1 μm) on dif

ferent species and varieties of Brassica. The number of asci varies 3–8 per cleistothecium, 

each ascus producing 2–6 ascospores. Asci are subglobose to broadly ovate, not stalked, light 

brown to yellowish in color, and measure 25.0–37.4 μm × 41.6–66.6 μm with an average range 

of 31.7–34.5 μm × 52.3–62.0 μm on different species and varieties. Ascospores are ovoid and 

measure 19–22 μm × 11–13 μm. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The disease is favored by relatively dry weather conditions (Kohire et  al. 2008b). Initiation 

of powdery mildew disease in mustard occurred during 50–120 DAS. Severity of the disease  

was favored by >5 days of ≥9.1 h of sunshine, >2 days of morning RH of <90%, afternoon RH 

24%–50%, minimum temperature >5°C, and a maximum temperature of 24°C–30°C. Regression 

analysis showed maximum temperature and afternoon RH of the week preceding the date of 

observation was positively and negatively linked, respectively, to the disease severity (R2: 0.9) 

(Desai et al. 2004). It is possible to forecast the occurrence of the disease using weather-based 

models (Laxmi and Kumar 2011). Cleistothecial formation appears to be favored by alternating 

low and moderate temperature, low nutrition of the host, low RH, dry soil, and aging of the host 

(Kolte 1985). Late sowing and frequent crop irrigation increase the incidence and severity of dis

ease (Kohire et al. 2008c). B. rapa, B. nigra, B. juncea, C. bursa-pastoris, Coronopus didymus, 

and R. sativus have been found susceptible to E. cruciferarum (Kolte 1985). The pathogenic fun

gus is likely to carry over from season to season through cleistothecia or as mycelium in volunteer 

host plants. These cleistothecia release ascospores that cause infection on lower leaves during 

favorable condition. The secondary spread of the disease occurs through the conidia produced in 

infected leaves. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Limited sources of resistance against the powdery mildew has been reported in B. alba, 

B.  alboglabra, B. rapa var. brown sarson, B. chinensis, B. japonica, and E. sativa (Kolte 1985). Five 

genotypes, namely, RN-490, RN-505, PBC-9221, PBN-9501, and PBN-9502, were resistant against 

powdery mildew (Pathak and Godika 2002b). Two Australian (JM06009, JM06012) and two Indian 

(JM3, Kranti) genotypes were resistant to powdery mildew (Singh et al. 2010). 
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Molecular Breeding 
Transgenic plants of B. napus expressing the bacterial catalase katE in the chloroplast could 

inhibit the growth of E. cruciferarum. These plants revealed constitutive expression of the catalase 

enzymes, PO, polyphenoloxidase, and high levels of free polyamines like putrescine, spermidine, 

and spermine (El-Awady et al. 2008). 

Cultural Control 
Choice of suitable planting dates according to the locale appears to offer a promising method of 

managing the disease. Irrigation scheduling only at the 50% branching stage could manage the 

disease (Hingole and Mayee 2003). 

Biological Control 
Some trends of efficacy of seed treatment and foliar sprays by T. viride and aqueous bulb extract of 

A. sativum against the disease have been reported by Meena et al. (2003, 2013), which may need 

confirmation. 

Chemical Control 
Should the disease become serious, it no doubt could be managed by dusting plants with sulfur. 

Karathane when sprayed thrice at 10-day intervals also gives good control of the disease (Kolte 

1985). Foliar spray of carbendazim at 0.25% could be effective in controlling this disease (Kolte 

2005). Dinocap or tridemorph (0.1%) could be sprayed thrice on leaves to reduce the disease sever

ity significantly, which may also increase the yield of mustard (Shete et al. 2008). Spray of 0.04% 

tridemorph followed by 0.05% hexaconazole, 0.05% tebuconazole, and 0.20% wettable sulfur on 

leaves was found effective against this disease (Patel and Patel 2008). 

BLACKLEG OR STEM CANKER 

SYMPTOMS 

Severe infection of the pathogen can cause seedling death, but stem cankering may occur at any 

plant growth stage on any plant part. During infection, the pathogen grows systemically down 

toward the tap root of the plant. Blackleg disease causes two distinct types of symptoms, namely, 

leaf lesions and stem canker. Stem cankering is the major reason of yield loss associated with black

leg. Root rot symptom on oilseed rape has also been reported in Australia as an extension of the 

stem canker disease caused by Leptosphaeria maculans. It appeared before flowering and increased 

in severity during flowering and at maturity. Infection of B. napus roots by L. maculans can occur 

via invasion of cotyledons or leaves by airborne ascospores and directly by the entry of hyphae at 

sites of lateral root emergence in the soil. The pathogen grew within stem and hypocotyl tissue dur

ing the vegetative stages of plant growth and proliferated into the roots within xylem vessels at the 

onset of flowering. Hyphae grew in all tissues in the stem and hypocotyl but were restricted mainly 

to xylem tissue in the root (Sprague et al. 2007, 2009). 

Symptoms appear first as water-soaked lesions on cotyledons, hypocotyls, and leaves of the 

host. These lesions turn white to gray color, round to irregular in shape, and become dotted with 

numerous pinhead-sized black asexual fruiting bodies called pycnidia. When in a mature state and 

under moist conditions, the pycnidia exude spores in pink ooze on the host. This disease can be 

distinguished from A. brassicae infection by the presence of pycnidia, which are not formed by 

the A. brassicae on Brassica crops. Black lesions are generally also seen on the leaves and deep 

brown lesions with a dark margin that can be seen on the base of stem (Marcroft and Bluett 2008). 

In severe epidemic conditions, the pathogenic fungus girdles the stem at the crown, leading to lodg

ing and death of the plant. Typical lesions of blackleg can also occur on pods. Pod infection may 

lead to premature pod shatter and seed infection. The seed beneath pod lesions may be sunken or 
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shrivelled and pale gray in color. Li et al. (2008b) reported cytological changes, namely, condensa

tion of cytoplasm, shrinkage in cell size, nuclear DNA fragmentation, shrinkage and condensation 

of the cytoplasm, chromatin fragmentation, and lobing of the nucleus due to hypersensitive reac

tion in cotyledon and stem tissues of B. napus, respectively, after infection by an avirulent strain of 

L. maculans. 
Li et al. (2008c) reported that L. maculans may elicit apoptosis as a dependent component of 

pathogenesis in susceptible B. napus, and that the pathogen may use apoptotic cells as a source 

of nutrition for reproduction and further growth. Some proteins, namely, SOD, nitrate reductase, 

and carbonic anhydrase, were identified as being unique in the resistant plants, and upon pathogen 

challenge, some other proteins like photosynthetic enzymes (fructose bisphosphate aldolase, triose 

phosphate isomerase, sedoheptulose bisphosphatase), dehydroascorbate reductase, peroxiredoxin, 

malate dehydrogenase, glutamine synthetase, N-glyceraldehyde-2-phosphotransferase, and PPIase 

were observed to be increased in the resistant plants that were generated by an interspecific cross 

between the highly susceptible B. napus and the highly resistant B. carinata plants (Subramanian 

et al. 2005). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Blackleg or stem canker is one of the major diseases of  Brassica crops such as turnip rape  

(B.   rapa   L.), cabbage (Brassica oleracea L.), rapeseed (B. napus L.), and Indian mustard  

(B. juncea L.) grown in temperate regions of the world. For the first time it was reported on stems  

of red cabbage (Tode 1791). This disease is found in all continents and its world-wide importance  

and spread has been reported (Fitt et al. 2006). It has been reported as a serious disease also  

in Argentina (Gaetan 2005a), Australia (Lamey 1995), Brazil (Fernando et  al. 2003), Canada  

(Lamey 1995), China (West et  al. 2000), France (Lamey 1995), Greece (Vagelas et  al. 2009),   

Latvia (Bankina et  al. 2008), Lithuania (Brazauskiene et  al. 2011, 2012), Poland (Kaczmarek   

et al. 2009a, Dawidziuk and Jedryczka 2011), the United Kingdom (Stonard et al. 2010a), and the  

United States (Mendoza et al. 2011). Yield losses up to 20% due to blackleg disease were recorded  

in Canada (Petrie 1978). Pedras et  al. (1995)   indicated crop losses due to blackleg in Canada  

alone exceed $30 million annually. It is the most important global disease of B. napus crops and  

causes annual yield losses of more than $900 million in Europe, North America, and Australia  

(West et  al. 2001, Howlett 2004, Fitt et  al. 2006). Both spring and winter types are affected  

by blackleg disease, particularly in Australia, Europe, and North America. Under epiphytotic  

conditions, this disease can cause yield losses of up to 90% (Kolte 1985, Sosnowski et al. 2004,  

Marcroft and Bluett 2008). 

 

PATHOGEN 

Blackleg or stem canker is caused by the heterothallic ascomycete fungus L. maculans (Desm.) 

Ces. et de Not. (anamorph: Phoma lingam Tode ex. Fr.). Another species, namely, Leptosphaeria 
biglobosa Shoem et Brun, has also been identified as causal agent of blackleg of canola in Australia 

(Wouw et al. 2008, Zhou et al. 2010), Canada (El-Hadrami et al. 2010), Lithuania (Brazauskiene 

et  al. 2011, 2012), Poland (Kaczmarek et  al. 2009, Dawidziuk and Jedryczka 2011), the United  

Kingdom (Stonard et al. 2010b), and the United States (Dilmaghani et al. 2009). Both species dif

fer in their biochemical and molecular characteristics as well as in pathogenicity (Kaczmarek et al. 

2009a), but are often found together in infected tissues of the same host (Dawidziuk et al. 2010). 

L. maculans can infect a wide variety of cruciferous crops, including cabbage, oilseed rape, and 

cruciferous weeds. Up to 28 crucifer species have been reported as hosts (Petrie 1969). L. macu
lans reproduces both sexually by forming pseudothecia and asexually by forming pycnidia on host 

species. The development of pseudothecia on stubble and the subsequent discharge of ascospores 

are greatly influenced by the genotype of the crop species (Marcroft et  al. 2003). Pseudothecia 
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of the pathogen are black, immersed, globose with protruding ostioles, ranging 300–500 μm in 

diameter, and are normally found on woody plant tissues. Asci are cylindrical to clavate, sessile or 

short stipitate measuring 80–125 × 15–22 μm; the ascus wall is bitunicate. Ascospores are hyaline 

and spindle shaped when young but yellow tan and five septate at maturity measuring 30–70 μm × 

4–9 μm (Boerema 1976, Sawatsky 1989). 

Two types of pycnidia of P. lingam (anamorph phase), designated Group I and Group II, have 

been found on Brassica spp. As a parasite, the pathogen produces Group I pycnidia with a pseu

dosclerenchymatous wall structure, which are initially closed developing a papillate opening 

(sometimes with a neck), while as a saprophyte, the pathogen produces Group II pycnidia with a 

pseudoparenchymatous wall structure. Group II pycnidia have dark walls, are often irregular in 

shape and may or may not have a papilla. Hyaline, oval, single-celled pycnidiospores measuring 

1–2 × 2.5–5 μm are exuded from the pycnidia (Boerema 1976). Under high-humidity conditions, 

ascospores and pycnidiospores adhere to cotyledons or young leaves and germinate to produce 

hyphae that penetrate through stomata and wounds (Chen and Howlett 1996, West et al. 2001, Hua 

et al. 2004) and grow into substomatal cavities without forming appressoria (Hammond et al. 1985). 

After entering into substomatal cavities, the fungus grows between the epidermis and palisade layer 

and then into intercellular spaces in the mesophyll of lamina. The pathogen then reaches the vascu

lar strands of the petiole and grows systemically within the plant without forming symptoms. The 

pathogen moves down the petiole and into the stem where it eventually invades and kills the cells of 

the stem cortex more commonly at the crown and cause the stem canker symptom (Hammond et al. 

1985, Sprague et al. 2007, Travadon et al. 2009). 

L. maculans exists in two forms, namely, avirulent and virulent. The avirulent form usually 

infects plants near maturity and causes only superficial disease symptoms, which results in shal

low stem lesions, and rarely forming extended cankers that girdle the stem, while the virulent form 

attacks the crop earlier and causes severe stem canker and economic yield losses. It is especially 

virulent on B. napus. If basal infection begins early, stem cankers appear from flowering onward. 

As the season progresses, cankers penetrate, deepen, and may girdle stem bases, often completely 

severing the plant. 

A pathogenicity gene that encodes isocitrate lyase has been identified in L. maculans. Isocitrate 

lyase is a component of the glyoxylate cycle and is essential for the successful colonization of 

B. napus (Idnurm and Howlett 2002). Sexton et al. (2000) have cloned a gene encoding endo-PG, 

pg1, and two genes encoding cellulases, cel1 and cel2, in L. maculans. The sp1 and sp2 genes 

are also expressed in L. maculans during the infection of B. napus plants, and later the gene 

secretes a serine protease with protease activity (Wilson and Howlett 2005). The Lmpma 1 gene of 

L.  maculans encodes a plasma membrane H+-ATPase isoform, which is essential for pathogenicity 

toward oilseed rape (Remy et al. 2008). Remy et al. (2009) reported that the Lmepi gene encodes 

a highly conserved UDP-glucose-4-epimerase enzyme of the Leloir pathway, which is involved in 

galactose metabolism, and indicated a link between this primary metabolism and pathogenicity in 

L.  maculans toward oilseed rape. 

A non-host-selective phytotoxin, Sirodesmin PL, which causes blackleg disease of canola, is 

produced by L. maculans (Elliott et al. 2007). The selective phytotoxin maculansin A has been 

isolated from L. maculans, which was more toxic to resistant (B. juncea cv. Cutlass) than the sus

ceptible plants (B. napus). However, it did not elicit phytoalexin production either in resistant or in 

susceptible plants (Pedras and Yu 2008). 

The pathogen induced production of chitinase in cotyledons of the host in a time-dependent 

manner. This enzyme started to accumulate before symptom appearance. The proteins, namely, 

antioxidant enzymes, photosynthetic, and metabolic enzymes, and those involved in protein pro

cessing and signaling were found to be significantly affected by the pathogen in the host. The 

enzymes specifically involved in the detoxification of free radicals increased in response to the 

pathogen in the tolerant B. carinata, whereas no such increase was observed in the susceptible 

B. napus (Sharma et al. 2008b). Brassica plants produce some phytoalexins, namely, brassinin and 
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camalexin, in response of L. maculans. Camalexin was found a substantially stronger inhibitor of 

the pathogen than brassinin (Pedras et al. 2007). 

For the first time, variability for virulence in L. maculans was reported by Cunningham (1927). 

Pathogenic variability among L. maculans isolates of oilseed rape has been reported in southern 

Australia (Sosnowski et al. 2001) and western Canada (Kutcher et al. 2007). Australian popula

tions of L. maculans have a high level of genetic variability as compared to European and North 

American isolates (Kutcher et al. 1993), along with a high diversity of avirulence genes (Balesdent 

et al. 2005). However, a low degree of genetic differentiation between isolates of L. maculans from 

seven sites in both eastern and western Australia has been observed by using AFLP marker (Barrins 

et al. 2004). Genetic diversity among different Australian, European, and North American isolates 

of L. maculans has also been studied by using AFLP marker (Purwantara et al. 2000). Molecular 

analyses of populations of L. maculans have shown high gene flow within and between populations. 

Pathogenic and genetic variation in L. maculans isolates on rapeseed–mustard has been reported in 

Australia, and microsatellite marker has been developed to study genetic variation in the Australian 

L. maculans population (Hayden et al. 2003). Isolates of L. maculans are usually classified either on 

the basis of their aggressiveness or by pathogenicity groups (Koch et al. 1991). Chen and Fernando 

(2006a) reported five pathogenicity groups (PG1, PG2, PG3, PG4, and PGT) of L. maculans on 

the basis of a series of inoculations on canola cultivars (Westar, Glacier, and Quinta) in western 

Canada and the United States. The PG3 and PG2 of L. maculans have also been reported on winter 

rape in Hungary (Szlavik et al. 2006) and Iran (Mirabadi et al. 2009), respectively. Nine races of 

L.  maculans have been described and designated as AvrLm 1–9 (Mitrovic and Trkulja 2010). 

Kenyon et al. (2004) developed a method for the detection of systemic growth of L. maculans in 

oilseed rape using quantitative RT-PCR. Sosnowski et al. (2006) used a quantitative PCR assay for 

the detection of L. maculans in soil. PCR-based molecular diagnostic techniques enabled detection, 

identification, and accurate quantification of airborne inoculum at the species level. Species-specific 

primers targeted at the ITS region of L. maculans and L. biglobosa were used to detect the quantity 

of the pathogen by traditional end point and quantitative RT-PCR methods, the latter being com

paratively more sensitive, especially in years with low ascospore numbers (Kaczmarek et al. 2009b). 

The pathogen L. maculans on B. napus seeds was detected by using PCR-based techniques (Chen 

et al. 2010b, Yi et al. 2010). The ratio between airborne propagules of species, namely, L. maculans 
and L. biglobosa, of oilseed rape in Poland was evaluated by using a molecular approach based on 

species-specific primers and quantitative RT-PCR (Kaczmarek et al. 2009a). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Infection of B. napus by L. maculans and subsequent development of leaf and stem lesions is influ

enced by cultivar resistance and weather conditions. Agronomic practices such as cultivar choice 

and fungicide use may also indirectly influence phoma stem canker epidemics at the regional level 

(Stonard et al. 2010b). Temperature and rainfall affect not only the development of pathogen but also 

the resistant response of the host (Fitt et al. 2008a). Elliott et al. (2011) for the first time isolated the 

L. macunlans and L. biglobosa canadensis isolates from B. juncea stuble in Australia. Dry climates 

lengthen the persistence of infected debris and may synchronize the release of airborne ascospores 

with seedling emergence; disease spread within plants is most rapid in regions with high tempera

tures from flowering to harvest (West et al. 2001). Kruse and Verreet (2005) reported that precipita

tion is of particular importance for L. maculans ascospore release during September in Germany. 

This effect was reduced in October and November while the influence of temperature increased. 

A very close correlation could be established between L. maculans ascospore release and leaf infec

tion in autumn (September–November: r = 0.82**). The correlation between the autumn infection 

of the leaves and root collar was highly significant (October–November: r = 0.83**). Huang et al. 

(2006) reported that Rlm6-mediated resistance to L. maculans in B. napus leaves is affected by 

ambient temperature. High humidity and moderate temperatures during vegetative growth promote 
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disease development (Ghanbarnia et al. 2009). Under high RH condition, L. biglobosa can cause 

increase in disease, which may coincide with reduced accumulation of lignin at early stages of 

infection (El-Hadrami et al. 2010). According to Brazauskiene et al. (2007), the abundance of asco

spores in the air depended on the weather factors, especially the amount and frequency of rainfall. 

During the daily period, the abundance of ascospore spread was influenced by the ambient RH. 

Magyar et al. (2006) found that high RH, rainfall, melting snow, and moderate wind act as the most 

important factors in the dissemination of the ascospores. 

Dawidziuk et  al. (2012) reported that higher winter temperatures may increase the ability of 

pseudothecia to release ascospores and the discharge of ascospores of the pathogen into the air, 

and cause early plant infections. This in turn will increase the number of infected plants, the DI at 

harvest, and reduce the yield of oilseed rape. Differences in climate, especially temperature, and 

cultural conditions may affect the proportions of L. maculans and L. biglobosa in stem base lesions 

of oilseed rape in the United Kingdom (Stonard et al. 2008). Lo-Pelzer et al. (2009) reported that it 

is possible to forecast the quantity of available primary inoculum for a given disease severity. 

A regional preharvest forecast for stem canker incidence and a crop-specific risk assessment 

method that predict the onset of Phoma leaf spotting using postharvest weather data and thermal 

time relationships for canker development and canker severity, have been developed (Gladders et al. 

2004). Evans et al. (2006) developed an empirical model to predict the date when incidence (per

centage plants affected) of phoma leaf spot can be expected to reach 10% on oilseed rape and to 

guide timing of fungicide applications against this disease to prevent pathogen spread from leaf 

to stem and the subsequent development of damaging stem cankers. Two weather-based models 

(Improved Blackleg Sporacle and SporacleEzy) were developed to predict the first seasonal release 

of ascospores of L. maculans or L. biglobosa from oilseed rape debris under many climates and 

thus could contribute to the development of the strategies for the control of the disease (Salam et al. 

2003, 2007). A forecasting system for a autumn application of fungicide against the important rape 

pathogen L. maculans has been developed (Bremer 2007). Ghanbarnia et al. (2009) developed a 

nonlinear model to evaluate the combined effect of total rainfall and average maximum temperature 

per week on the mean blackleg disease severity of canola. However, Fitt et al. (2008b) developed a 

model to describe the spread of L. maculans across Alberta Province, Canada and was used to esti

mate the potential spread of L. maculans across the oilseed rape growing areas of Yangtze River, 

China and its associated costs. 

The System for Forecasting Disease Epidemics (SPEC) is a joint initiative of the Institute of 

Plant Genetics PAS and DuPont Poland for stem canker forecasting in the world. It monitors 

the concentration of ascospores of the L. maculans–L. biglobosa species complex as a tool for 

disease prevention against stem canker (blackleg), and it is addressed to oilseed rape farmers, 

associated farm service personnel, breeders, commercial company representatives as well as to 

students and researchers with an interest in plant pathology and plant protection (Jedryczka et al. 

2004, 2006, 2008). 

L. maculans has a very complicated life cycle. It survives as a saprophyte by forming mycelium, 

pycnidia, and pseudothecia on crop residues, mainly on stubble (Hall 1992) subsisting from one sea

son to the next. The inoculum production of L. maculans decreases with the increasing burial dura

tion in field soil over 10 months, before ceasing, which may be due to associated microbiota (Naseri 

et al. 2008). This pathogen has both a teleomorph (ascospores) and an anamorph (pycnidiospores) 

phases on host species and can complete several disease cycles during a single growing season. In 

Australia and Europe, the main sources of infection of seedlings are infected seed, and for mature 

plants are wind-dispersed ascospores that are produced within pseudothecia on crop residues dur

ing summer. Maturation of pseudothecia is greatly affected by wetness (Liu et al. 2007). Soil borne 

ascospores and pycnidiospores of L. maculans were also able to cause seedling death, even after 

the spores had remained in a plant growth medium for up to 21 days before sowing (Li et al. 2007c). 

Ascospores can travel up to 8 km in Australia (Bokor et al. 1975) and 1.5 km in the United Kingdom 

(Gladders and Musa 1980) and enter into the host through stomata to infect the plant. Soon after the 



  

 

 

 

 
    

      

 

 

  
     

      

     
    

   

   
    

                

 

  

                  

              

             

               

    

 

184 Diseases of Edible Oilseed Crops 

infection, they produce gray whitish lesions and black pycnidia on the leaves. During the growing 

season, these pycnidia produce conidia or pycnidiospores that are dispersed by rain splash. These 

spores cause a secondary infection, which is usually less severe than primary infection with asco

spores. However, in western Canada and Poland, asexual pycnidiospores are the primary source of 

inoculum (Ghanbarnia et al. 2011). The pathogen overwinters as pseudothecia and mycelium in the 

stubble. In spring, the pseudothecia release their ascospores and the cycle repeats itself. 

Krause et al. (2006) reported that the severity of P. lingam stem infection increased significantly 

with increasing number of oviposition punctures of Ceutorhynchus napi, which is one of the most 

destructive insect pests of winter oilseed rape in Central Europe. Females of C. napi deposit their 

eggs into the top of elongating stems that cause punctures in the stem and thought to predispose the 

stems to early secondary infections by P. lingam (L. maculans). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Two types of genetic resistance to L. maculans are usually identified in Brassica, that is, qualitative 

resistance (monogenic/race-specific/vertical resistance) that is expressed at the seedling stage and 

the quantitative one (polygenic/race-nonspecific/horizontal resistance) that is expressed in the adult 

plants. Qualitative resistance controlled by single major dominant gene has been reported in several 

spring and winter cultivars of B. napus, namely, Cresor, Maluka, Dunkeld, Maluka, Skipton, and 

Major (Stringam et al. 1992, Dion et al. 1995, Ferreira et al. 1995, Mayerhofer et al. 1997, Rimmer 

et al. 1999, Raman et al. 2012). Eighteen major genes for resistance to L. maculans, Rlm1 to Rlm11, 

RlmS, LepR1 to LepR4, BLMR1, and BLMR2, have been identified in Brassica species; B. rapa, 

B. napus, B. juncea, and B. nigra (Rimmer and van den Berg 1992, Balesdent et al. 2002, 2013, Yu 

et al. 2005, Delourme et al. 2006, Rimmer 2006, Van de Wouw et al. 2008, Yu et al. 2008a, Long 

et al. 2011, Raman et al. 2012). Six of them, Rlm1, Rlm2, Rlm3, Rlm4, Rlm7, and Rlm9, were identi

fied in B. napus, all of them except Rlm2 were clustered genetically on chromosome A07 (Delourme 

et al. 2004). Rlm2 was mapped on chromosome A10 (Delourme et al. 2006). The Rlm5 and Rlm6 
were identified in B. juncea, Rlm8 and Rlm11 in B. rapa, and Rlm10 was identified in B. nigra. Four 

resistance genes, LepR1, LepR2, LepR3, and LepR4, were introgressed into B. napus from B. rapa 
subsp. sylvestris. Recently, two genes BLMR1 and BLMR2 were identified in Surpass 400, which is 

an Australian cultivar developed from an interspecific cross between wild B. rapa subsp. sylvestris 
and Brassica oleracea subsp. alboglabra (Buzza and Easton 2002, Long et al. 2011). 

Christianson et al. (2006) reported that resistance to L. maculans in B. juncea populations is 

controlled by two independent genes, one of them being dominant and positioned on linkage group 

J13 and a recessive gene positioned on linkage group J18 based on segregation for resistance in 

the F2 population. In B. rapa, it is governed by three specific genes, namely, Rlm1, Rlm2, and 

Rlm7 (Leflon et al. 2007). Saal et al. (2004) identified a B. juncea–derived recessive gene termed 

rjlm2 that conferred resistance to L. maculans in oilseed rape. Gladders et al. (2006) reported that 

B. napus lines with Rlm6 resistance gene gave very effective control of leaf spot and stem canker 

caused by L. maculans in Europe, while Stachowiak et  al. (2006) found both Rlm6 and Rlm7 

resistant genes effective for the same. However, populations of L. maculans in Europe are known to 

have a high frequency of virulence to overcome resistance genes Rlm1–4 and Rlm9, and therefore, 

quantitative resistance makes an important contribution to stem canker control. Li et al. (2003c) 

reported the breakdown of a B. rapa subsp. sylvestris single dominant blackleg resistance gene 

in rape field of western Australia. Sprague et al. (2006) also reported that the B. napus cultivars 

derived from B. rapa ssp. sylvestris with single major gene resistance showed higher disease sever

ity than cultivars with polygenic resistance in South Australia. Jedryczka et al. (2009) reported that 

Rlm6 and Rlm7 resistance genes for genetic protection of rapeseed against the present population 

of L. maculans in Poland. 



 

 

 

  

   

 

 

 

     

 

   

 

 

 

 

   

  

 

  

 

 

    
    

  

 

 
 

  

 

  

     

 

     

 

 

 

185 Rapeseed–Mustard Diseases 

Till date, nine resistance genes (Rlm1–9) have been identified in Brassica species (Gout et al. 

2006). The corresponding nine avirulence genes designated as AvrLm1–9 have been identified in 

L. maculans (Balesdent et al. 2006), mapped at four independent loci, thereby revealing two clus

ters of three-and four-linked avirulence genes (Gout et al. 2006). The avirulence gene, AvrLepR1, 

of L. maculans corresponds to a resistance gene LepR1 of B. napus, and this plant gene con

trol dominant, race-specific resistance to this pathogen (Ghanbarnia et al. 2012). Tollenaere 

et al. (2012) identified and characterized candidate Rlm4 blackleg resistance genes in B. napus 
by using next-generation sequencing technique. This major qualitative resistant locus (Rlm4) 

was mapped on chromosome A7 by using simple sequence repeat marker (Raman et al. 2012). 

B. napus cv. Surpass 400 was reported to have a single dominant resistant gene to L.  maculans 
(Li and Cowling 2003), while Wouw et  al. (2009) found at least two resistance genes, one of 

which is Rlm1 in B. napus cv. Surpass 400, with sylvestris-derived resistance. Two blackleg 

resistance genes, namely, LepR1 and LepR2, were mapped on N2 and N10 linkage groups of 

DHP95 and DHP96 lines of B. napus, respectively. The LepR1 generally conferred a higher level 

of cotyledon resistance than LepR2, because LepR1 prevented hyphal penetration, while LepR2 

reduced hyphal growth and inhibited sporulation (Yu et al. 2005). The resistant gene LepR3 was 

found in B. napus cv. Surpass 400 (Yu et al. 2008a). This gene provides race-specific resistance 

to the fungal pathogen L. maculans. LepR3 is the first functional B. napus disease resistance 

gene to be cloned and encodes a receptor-like protein. It has also been demonstrated that aviru

lence toward LepR3 is conferred by AvrLm1 avirulence gene, which is responsible for both the 

Rlm1- and LepR3-dependent resistance responses in B. napus (Larkan et al. 2013, Rouxel and 

Balesdent 2013). 

The pathogen L. maculans, carrying AvrLm1 avirulence gene, when inoculated on B. napus 
plants carrying Rlm1 resistance gene, increased the biosynthesis of SA and ethylene (ET) and 

induced expression of the SA-associated genes ICS1, WRKY70, and PR-1, and ET-associated genes 

ASC2a, HEL, and CHI (Sasek et al. 2012a). Huang et al. (2009) found that quantitative resistance to 

L. maculans operates during colonization of B. napus stems by the pathogen. 

Sinapis arvensis contains high resistance against various aggressive isolates of the blackleg fun

gus; so this species is valuable for the transfer of blackleg resistance to oilseed rape (B. napus) 
(Snowdon et al. 2000). Brassica species containing the B genome (i.e., winter B. napus, B. nigra, 

B. juncea, and B. carinata) are resistant to blackleg disease. Promising recombinant katanning 

early maturing (KEM) breeding lines derived from B. napus × B. juncea crosses were crossed with 

the spring-type B. napus cv. Dunkeld, which has useful polygenic resistance to blackleg. KEM 

recombinant lines showing regular meiotic behavior and a high level of blackleg resistance were 

screened using isolates of L. maculans having different AvrLm genes, which indicated B. juncea 
resistance gene Rlm6 had been introgressed into a B. napus spring-type cv. Dunkeld carrying poly

genic resistance. The combination of both resistances would enhance the overall efficacy of resis

tance against L. maculans (Chevre et al. 2008). 

Several B. napus and B. juncea germplasm from Australia, China, and India have been evalu

ated against Australian populations of L. maculans. B. napus genotypes from Australia were found 

more resistant than the Chinese and Indian genotypes (Li et al. 2008d). Two cultivars, namely, 

Aviso and Twister, of B. napus were found resistant to L. maculans in all seasons of the United 

Kingdom (Stonard et al. 2007). Light et al. (2011) reported that winter B. napus and B. nigra lines 

have outstanding potential for improving blackleg disease resistance under Australian conditions. 

Two blackleg-resistant lines, 16S and 61446, have been developed through interspecific hybrid

ization between B. napus and B. rapa subsp. sylvestris and backcrossing to B. napus (Yu et al. 

2013). In these lines, resistance to L. maculans is controlled by a single recessive gene (at LepR4 

locus), and resistance alleles are allelic. Line 16S that carry LepR4a was found highly resistant, 

while line 61446 that carry LepR4b was found moderately resistant to stem canker under field 

conditions. 
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Molecular Breeding 
Ananga et al. (2006) demonstrated that RAPD primers could be effectively used to identify DNA 

markers that are associated with blackleg disease resistance, which might also exist in the A and 

C genomes. Derivation of double haploid lines with superior levels of resistance to L. maculans 
compared with parental populations, and their multiyear, multisite (in locations with high pathogen 

diversity) evaluations could be an efficient practice to develop lines with high resistance to black

leg disease (Delourme et al. 2008). Dusabenyagasani and Fernando (2008) developed a sequence 

characterized amplified region marker available for marker-assisted selection in breeding canola for 

resistance against blackleg caused by PG3 of L. maculans. 
Transgenic B. napus plants expressing pea DRR206 constitutively are resistant to the PG2 of 

L. maculans (Wang and Fristensky 2001). Kazan et  al. (2002) reported that transgenic canola 

expressing MiAMP1 from the seeds of Macadamia integrifolia may be useful for the management 

of blackleg disease. A transgenic oilseed rape, B. napus cv. Hanna, with increased blackleg resis

tance has been developed by transferring Lm1 gene from B. nigra (Wretblad et al. 2003). 

Induced Host Resistance 
Resistance in canola can be induced by either pre- or coinoculation with the weakly aggressive iso

lates of the L. biglobosa and L. maculans (Chen and Fernando 2006b, Li et al. 2006c, El-Hadrami 

and Daayf 2009). After inoculation, the accumulated hydroxycinnamates act as precursors for the 

synthesis of lignin and phenylamide phytoalexins that could explain the restricted development 

of further inoculated highly aggressive isolates of the pathogen. Pretreatment of B. napus leaves 

with ascospores of L. biglobosa or chemical defense activators, namely, acibenzolar-S-methyl or 

menadione sodium bisulfite (MSB), delayed the appearance of L. maculans Phoma leaf spot lesions 

on the plants (Liu et  al. 2006). MSB induced resistance locally and systemically (Borges et  al. 

2003). Treatment of B. napus plants with the SAR-inducing chemical benzo-(1,2,3)-thiadiazole

7- carbothioic acid S-methyl ester (BTH) significantly enhanced resistance against L. maculans 
(Potlakayala et al. 2007). Abscisic acid (Kaliff et al. 2007) and BABA (Sasek et al. 2012b) can 

induce callose- and SA-independent resistance, respectively, in B. napus against L. maculans. The 

gacS gene of P. chlororaphis was found to be responsible for antifungal and biocontrol activity 

against L. maculans of canola. Some low level of induced systemic resistance was observed in 

P. chlororaphis biocontrol of blackleg of canola (Ramarathnam et al. 2011). 

Cultural Control 
Various management practices such as crop rotation, careful stubble and residue management, time 

of sowing, use of certified seed, hot-water treatment of seeds, and control of volunteer cruciferous 

weeds have been recommended. A rotation including barley, field peas, and wheat for 3 years fol

lowing oilseed rape helped eliminate potential sources of pathogen inoculum of L. maculans under 

all tillage systems (Turkington et  al. 2000). The appropriate combination of rotation and tillage 

may lower airborne inoculum and reduce infection of rape by L. maculans (Guo et al. 2005, 2008), 

while Marcroft et al. (2003, 2004) reported that canola crops should be sown at distances greater 

than 100 m and preferably 500 m from last season’s canola stubble, rather than extending rotation 

length between crops. Low seed rate and row spacing can increase the percentage of infestation of 

rape stem by P. lingam (Pusz 2007). Infested residue should be buried deep, and a shallow tillage 

or direct seeding method should be used in the spring to avoid bringing infected canola residue 

back to the surface. Since the primary infection of the plants occur by the airborne ascospores, 

canola should not be seeded within 1 km of infested land for 3–4 years (McGee and Emmett 1977). 

Soil borne ascospores and pycnidiospores can be managed by allowing the sand to dry between 

infestations and sowing by adding a 20 mm layer of uninfested sand over the top of the infested 

sand, respectively (Li et al. 2007c). The control of volunteer oilseed rape and susceptible crucifer

ous weeds should be done to prevent the establishment of the pathogen in fields. Wild mustard 

(S. arvensis) is highly susceptible to the virulent isolate of L. maculans (Petrie 1979). 
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Damage from blackleg could be minimized by sowing canola crops as early as possible before 

the onset of maturation of pseudothecia thus avoiding major ascospore showers at the seedling 

stage of maximum susceptibility and by doing fungicide protection in case of a late break season 

(Khangura and Barbetti 2004). Sowing of B. napus cultivars with different complements of resis

tance genes in subsequent years, that is, rotation of resistance genes minimizes disease pressure by 

manipulating fungal populations (Marcroft et al. 2012). Sprague et al. (2010) reported that defo

liation of plants before stem elongation tended to develop less disease than defoliation during the 

reproductive phase of plant growth. In the future, this management strategy could be applicable in 

canola crops defoliated by grazing animals. 

Biological Control 
A bacterial isolate Paenibacillus polymyxa can inhibit the growth of L. maculans by producing 

antifungal peptides (Beatty and Jensen 2002). Cyathus striatus can reduce the production of the 

initial inoculum (pseudothecia) of the pathogen on rape stubble (Maksymiak and Hall 2000, 

2002). A mixture of biological agents, namely, designated strain 17-1 (an associative endorhizo

sphere bacterial strain stimulating plant growth and protecting plants from pathogens) and 38-22, 

gave the highest increase in disease resistance and the best yield of spring rape (Farniev et  al. 

2009). Seed treatment with a commercial biofungicide of Serratia plymuthica reduced L. maculans 
activity by 50% in Germany (Marquardt and Ehlers 2010). Seed treatment with S. plymuthica 
and P. chlororaphis bioagents reduced mean disease by 71.6% and 54.0%, respectively, in canola 

(Abuamsha et al. 2011). More frequent treatments with commercial product, namely, Trifender WP 

of Trichoderma asperellum bioagent, during vegetation of oilseed rape could be effective against 

the blackleg disease (Kowalska and Remlein-Starosta 2011). 

Chemical Control 
Canola plants after 3–5 leaf growth stage are known to be less susceptible to blackleg than seed

lings, so the protection of seedlings at that growth stage is an important method to manage this 

disease. Seed treatment with some fungicides, namely, thiram, fenpropimorph, benomyl, thiaben

dazole, and iprodione, has been found effective in managing the disease. However, these treatments 

do not protect plants grown in infested fields. 

Ballinger et  al. (1988) found that flutriafol applied as a fertilizer dressing on superphosphate 

granules significantly reduced the levels of stem canker in areas where the disease was prevalent. 

However, in western Canada, this fungicide had only limited efficacy (Xi et al. 1989). Dressing of 

canola seeds with fluquinconazole fungicides before sowing was found effective against L.  maculans 
in situations of high disease severity, and grain yield increased when cultivars had lower blackleg 

resistance (Marcroft and Potter 2008). Chemical treatment of canola residues is a significant method 

to reduce the disease pressure on seedling. A number of chemical fungicides, such as fluquincon

azole, flutriafol, and glufosinate ammonium (glufosinate), were able to delay pseudothecial develop

ment and decreased the subsequent ascospore discharge by more than 95% (Wherrett et al. 2003). 

However, impact (flutriafol) at 0.5 and 1 g/L, roundup (glyphosate) at 40 g/L, and copper sulfate 

inhibited the development of pseudothecia of L. maculans on canola residues and subsequently 

reduced ascospores production by 99% (Khangura 2004). Application of fungicides tended to be 

more beneficial at higher N rates and on upper slope positions since incidence was greatest under 

these conditions (Kutcher and Malhi 2004, Kutcher et al. 2005). 

Pretreatment of host leaves with acibenzolar-s-methyl decreased the incidence of Phoma leaf 

lesions on seedling leaves (Liu et al. 2007). Azoxystrobin (Amistar 250 SC at 0.7 dm3/ha) was 

found effective in decreasing blackleg infection of rape (Ratajkiewicz et  al. 2009). Cytokinin,  

especially 6-benzyl amino purine, is able to significantly reduce disease symptoms and mycelial 

growth within plant tissues (Sharma et al. 2010c). CaraxReg is an innovative combination of 210 g/L 

mepiquat chloride and 30 g/L metconazole and is approved for the control of blackleg on oil-

seed rape (Gerber et al. 2010). Eckert et al. (2010) studied the effect of flusilazole, tebuconazole, 
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and methyl benzimidazole carbamate fungicides (benomyl and carbendazim) on the germination 

of ascospores, conidia, and germ-tube growth of L. maculans and L. biglobosa. Triazole-based 

fungicides, namely, metconazole, protioconazole, tebuconazole, and flusilazole, were most effi

cient, and mixture of protioconazole and tebuconazole or flusilazole and carbendazim were very 

active against the L. maculans on oilseed rape (Jedryczka and Kaczmzrek 2011). The most effec

tive timings for the application of flusilazole + carbendazim were when leaves 7–11 were pres

ent on most plants and at least 10% of plants were affected by phoma leaf spot. Two half-dose 

applications of fungicide reduced Phoma stem canker and increased yield more than a single full 

dose application when Phoma leaf spot epidemics were early (Steed et al. 2007). Kaczmarek et al. 

(2009c) found that the application of fungicides at the time following the maximum ascospores 

concentration significantly reduced DI and caused the highest increase of yield. Early treatment of 

carbendazim + flusilazole fungicides was found more effective than the late treatment (Hood et al. 

2007). Only one spray of flusilazole fungicide may result in the highest reduction of infected plants 

when it was done on the day of the highest ascospore release till no longer than 3 weeks afterward 

(Kaczmarek et al. 2011). Application of flusilazole fungicide on oilseed rape increased the glu

cobrassicin, protein content, and yield while decreased the total alkenyl glucosinolate content in 

seeds (Brachaczek et al. 2011). 

DAMPING-OFF AND SEEDLING BLIGHT 

SYMPTOMS 

A necrotic lesion 1–2 cm long may be seen at the base of the stem, with girdling sometimes taking 

place near the soil level. The taproot may be discolored and sometimes wire-stem symptoms may be 

seen. Salmon-colored spore masses of Fusarium are often observed on affected tissues. Sometimes, 

the symptoms are confined to roots consisting of light-brown lesions on the taproot and at the bases 

of larger lateral roots. Girdling of the main root may take place, which may lead to loss of the entire 

root system. Damping-off and seedling blight are mostly encountered due to the use of infested 

seed. Primary lesions consisting of small, circular necrotic spots, along with secondary lesions with 

large irregular borders, appear on leaves. Under high-moisture conditions, whitish hyphae appeared 

on the stems (Yang et al. 2004). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Several species of fungi are involved in causing seed rot and seedling blight around the world. 

Among them, Rhizopus stolonifer is reported to be a more important cause. Postemergence mortal

ity is not frequent, with Pythium aphanidermatum, Pythium butleri, Rhizoctonia solani, Sclerotium 
rolfsii, Macrophomina phaseolina, and Fusarium spp. being the pathogens involved in India, caus

ing 6%–15% incidence (Kolte 1985, Khan and Kolte 2002). Bottom rot of B. campestris L. caused 

by R. solani has also been reported in Japan (Eimori et al. 2005). They mostly survive on crop 

debris and soil as different resting structures to infect the following crop. 

DISEASE MANAGEMENT 

Molecular Breeding 
Transgenic B. napus plants expressing pea DRR206 were found resistant against biotrophic root 

pathogen R. solani (Wang and Fristensky 2001). Development of transgenics by the transfer from 

bean (Phaseolus vulgaris) cv. Goli of pgip2 gene, which encodes PGIPs, can be useful in the future 

(Akhgari et al. 2012). 
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Cultural Control 
Drainage from the crop field should be ensured at the time of sowing the crop in order to avoid water 

stagnation. Clean cultivation and removal of crop debris before sowing are important to manage the 

problem. 

Biological Control 
Significant combined effect of B. napus green manuring as well as of Trichoderma seed treatment 

against different soil pathogenic fungi (Pythium and Rhizoctonia) could be useful (Galletti et al. 

2006). The mutant strain of T. viride 1433, namely, Tvm6, can be used to control P. aphanidermatum 
pathogen of mustard (Khare et al. 2010). Root colonization by P. fluorescens can prevent the estab

lishment of R. solani on the root system (Tehrani et al. 2007, Zanjani et al. 2011). 

Chemical Control 
Seed treatment with thiophanate methyl 70 WP at 2 g/kg ensured better plant stand with protec

tion against S. rolfsii, R. solani, and Fusarium oxysporum (Khan and Kolte 2002). Seed treatment 

with Metalaxyl 35 SD 6 g/kg + carbendazim 1 g ai/kg or with any other suitable seed protectant 

fungicide may be helpful in increasing the stand of the crop. Application of glyphosate herbicide 

10 days before seeding increased seedling emergence and seed yield of canola in field infested with 

R. solani (Rashid et al. 2013). 

CLUBROOT 

SYMPTOMS 

At the initial stages the affected plants show normal healthy growth, but as the disease develops, 

the plants become stunted showing pale green or yellowish leaves. The plant is then killed within a 

short time. When the plants are pulled, overgrowth (hypertrophy/hyperplasia) of the main and lat

eral roots (Figure 5.10) becomes visible in the form of small or spindle or spherical-shaped knobs, 

called clubs. Depending on the type of root of a species, the shape of the club varies. When many 

FIGURE 5.10  Club root. 
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infections occur close together, the root system is transformed into various-shaped malformations. 

The swollen roots contain large numbers of resting spores and plasmodia. The older, more particu

larly the larger, clubbed roots disintegrate before the end of the season. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Incidence and severity is greater in regions with severe winters than in regions with spring-type 

climates. It occurs more frequently in soils, which are acidic and poorly drained. More damage due 

to the disease results on vegetable crops such as cabbage (B. oleracea L.) and turnip (B. rapa var. 

rapifera) than on oilseed rape (B. rapa var. oleracea) and mustard (B. juncea). Woronin (1878) was 

the first to study the disease in a systematic manner, life cycle of the fungus, and its relation to host 

tissue in detail. Walker (1952) described the disease in detail on cabbage. On oilseeds Brassica, the 

disease is reported to occur in East Germany, Malaya, New Zealand, Poland, Sweden, the United 

Kingdom, and the United States (Kolte 1985). The disease has been reported from the hills of 

Darjeeling (Chattopadhyay and Sengupta 1952) and Nilgiri (Rajappan et al. 1999) in India on veg

etable Brassicas. On B. rapa var. yellow sarson (Laha et al. 1985) and var. toria (Das et al. 1987), 

the disease has been reported from West Bengal and Orissa, respectively, with losses in yield being 

up to 50% (Chattopadhyay 1991). For the first time, this disease has also been reported on E. sativa 
in Brazil (Lima et al. 2004). This disease has also been reported on canola in Australia (Khangura 

and Wright 2012) and on rapeseed in Luxembourg (Desoignies et al. 2009). Internationally, this 

disease causes up to 50% yield loss and is considered a serious disease of rapeseed in France, 

Canada, Czechoslovakia, Sweden, the United Kingdom, and Germany (Donald and Porter 2003). 

In southern districts of New Zealand, losses due to clubroot on rape are reported high, and this 

factor has been the major cause of decline in crop acreage in that country (Lobb 1951). It has been 

reported to cause 10.2% yield loss on rape in China (Wang et al. 2008b) and 70%–90% in Canada 

(Pageau et al. 2006). 

PATHOGEN 

The pathogen is Plasmodiophora brassicae Woronin, which is an obligately biotrophic fungus. 

Biology of the pathogen has been reviewed (Kolte 1985). There is no evidence that pathotypes 

of Plasmodiophora exist with a single genus or group of related genera within the host family, 

Cruciferae. Hence, the taxonomic concept formae speciales has not been applied to P. brasssicae. 

There is also much morphological variation to justify the taxonomic division of the species on the 

basis of morphology. Genetic and pathogenic variability in the field isolates of P. brassicae has 

been reported by some workers (Xue et al. 2008, Strehlow et al. 2010). The fungus has a plasmodial 

vegetative stage characterized by a naked, amoeboid, multinucleate protoplast without a definite 

cell wall. The plasmodium is produced only in the cells of the host plant and remains intracellular, 

with two distinct phases. The first, the primary one, usually results from infection by primary zoo

spores derived from the resting spores, and the secondary one results from infection by secondary 

zoospores derived from a zoosporangium. 

The resting spore is hyaline, spherical, and measures up to 4 μ in diameter. It germinates by 

giving rise to single biflagellate primary zoospores (the first motile stage) having one long and one 

short flagella. The zoospore swims by means of its flagella, the long flagellum trailing and short 

flagellum pointing forward. This zoospore penetrates the host root hairs, and there it develops into 

a primary plasmodium in the affected cell. The plasmodium formed in this manner later cleaves 

into multinucleate portions surrounded by separate membranes, and each portion develops into 

zoosporangia. The zoosporangia come out of the host tissue through pores formed in the host cell 

wall. About 4–8 biflagellate secondary zoospores are formed upon germination of a single zoo

sporangium. Each secondary zoospore, except for their small size, is indistinguishable from the 

primary zoospore. The exact role of the secondary zoospores is not known, but it is likely that the 



   

  

  
  

 

 

 
 

 

 

 

 

 

 

 

  

  

  
 

 

 

 

 

 

191 Rapeseed–Mustard Diseases 

secondary zoospores pair and unite to produce a zygote to cause fresh infection of the roots, produc

ing new plasmodium called secondary or zoosporangial plasmodium, which in turn forms resting 

spores (Kolte 1985). 

Though there are no formae speciales in P. brassicae, the fungus shows a lot of variation in 

pathogenicity. Physiologic specialization in P. brassicae was first demonstrated by Honig (1931). 

Information on the variation of the fungus has been reviewed, and a uniform set of differential hosts 

is described and proposed for research as an international approach for the identification of physi

ologic races of P. brassicae. Such a set of host genotypes is referred to as the European Clubroot 

Differential (ECD) set. The set consists of 15 different host varieties: 5 each of B. rapa, B. napus, and 

B. oleracea. Using the ECD set, 34 physiologic races have been identified in Europe (Kolte 1985). 

The resting spores in soil serve as primary source of inoculum. Infection of the host takes place 

when uninucleate primary biflagellate zoospores are released on the germination of the resting spores. 

Germination of resting spores was most favored at 24°C, 2.6 pH, and 5 days of dark period (Wang 

et al. 2002). The zoospores may collide several times with a root hair before becoming attached; 

later, it appears to be attached at a point opposite to the origin of the flagella through adhesorium. The 

zoospores then encyst and penetrate the root hair or epidermal cells. The process of penetration of 

such cells appears to be direct but it has not been ascertained whether enzymes or toxins are involved 

in pathogenesis. After the entrance of the pathogen through root hairs, the formation of plasmodium 

and the subsequent development of zoosporangia take place in the infected tissue as described earlier. 

Then the zoospores derived from the zoosporangia are believed to reinfect the root and initiate for

mation of secondary plasmodia. Primary zoospores can directly cause secondary infection when the 

host is already in primary infection (Feng et al. 2013). Whether the secondary plasmodia penetrate 

the cell wall or if they are transformed passively from cell to cell during cell division is not certain. 

The plasmodium has no specialized feeding structure such as haustoria. It remains immersed in the 

host cytoplasm surrounded by a thin plasmodial envelope. There is also no evidence for phagocytic 

inclusion of the host cell organelles with the plasmodium. The plasmodium enlarges, and repeated 

nuclear division takes place, and the cells containing these become hypertrophied, although the host 

nucleus remains active. Hypertrophy of the host cells is apparently brought about by increased DNA 

synthesis and restriction of the cell division process. Presence of plasmodia in the host (B. napus) cell 

is associated with increased nuclei, at least in callus culture. Galling of susceptible B. rapa roots is 

the result of P. brassicae infection, enabling the enzyme glucosinolase to act on glucobrassicin, the 

indole glucosinolate. It is that the formation of the auxins, 3-indole acetonitrile and/or 3-indoleacetic 

acid, the characteristic extensive proliferation of tissue takes place. Since crucifers commonly con

tain indole glucosinolates, it has been suggested that this explains their susceptibility to galling. 

It appears that there is a close correlation between increase in the oxidative process and gall growth. 

As the galls develop on roots of the rape plant, the activity of glucose-6-phosphogluconate dehydro

genase, aldolase, triose phosphate isomerase, isocitrate dehydrogenase, and malate dehydrogenase 

increase is to reach a peak at 28–33 DAS. Then there is accumulation of glucose-6-phosphate, pyru

vate, ketoglutarate, and malate in the affected cells. At sporulation, the activity of the aforementioned 

enzymes and concentration of the metabolites is decreased. During pathogenesis, these phenomena 

parallel the vegetative growth of the fungus. The metabolic regulation of phytoanticipins and phy

toalexins has been found to be correlated with the infection period in the infected roots of oilseed 

canola (Pedras et al. 2008). Infectious pathogen spores can be detected by one-step PCR protocol, 

a quantitative/semiquantitative PCR-based technique in the soil and on the seed or tubers harvested 

from disease infested fields (Cao et al. 2007, Perek et al. 2010, Yin et al. 2010, Rennie et al. 2011). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Development of the disease is favored by high soil moisture and cool weather; however, the disease can 

occur at any soil temperature between 9°C and 30°C. While development of clubroot was not observed 

at or below 17°C, it was slower above 26°C than at 23°C–26°C temperature (Gossen et  al.  2012). 



 

 

 

 

 

     

    

 

 

  

 

 

 

 

 

 

    
   

 

  

  

  

 

   
    

 

   

192 Diseases of Edible Oilseed Crops 

The fungus survives in the form of resting spores in soil. After the death of the galls, the resting spores 

are released in the soil; the pathogen thus becomes soil borne and is dispersed in soil as resting spores 

through farm implements, footwear, floodwater, etc. There is no evidence that the fungus lives as a 

saprophyte, yet soils are known to remain infested for 10 years or longer without the presence of a 

host. The pathogen can also survive on cruciferous weeds, namely, C. bursa-pastoris. Some of the 

noncruciferous hosts are also affected by P. brassicae. They are Agrostis spp., Dactylis sp., Holcus sp., 

Lolium spp., Papaver sp., and Rumex sp. Whether these noncruciferous plants play any part in main

taining the continuity of the disease in the absence of a cruciferous host is not known. However, it has 

been reported that secondary zoospores produced on Lolium spp. can infect canola (Feng et al. 2012). 

Wallenhammar (2010) studied the presence of clubroot in soil samples from 190 fields using a bioas

say based on baiting the soils with B. rapa subsp. pekinensis (Chinese cabbage) Granaat. Clubroot 

incidence was significantly decreased after Brassica crops ceased to be grown. The half-life of spore 

inoculum was determined to 3.6 years for a field with 100% infestation. The level of infestation declined 

to below the detection level after a period of 17.3 years. Observations on yield loss from P. brassicae 
infections in spring oilseed rape (B. napus L.) are reported. In field tests of partly resistant cultivars of 

spring oilseed turnip (B. rapa L.), multiplication of clubroot was moderate. 

Repeated cropping of susceptible host results in greater gall mass, reduced plant height, and 

increased numbers of resting spores in the soil mix compared to resistant host (Hwang et al. 2013). 

Increase in inoculum density, inoculation of young seedling could increase the disease severity and 

decrease the plant height and seed yield (Hwang et al. 2011a). Clubroot infection decreases abun

dance of adenosine kinase, which is involved in cytokinin homeostasis and also reduces host lignin 

biosynthesis. Enzymes level of ROS metabolism also declined sharply at 12 h after infection but 

increased at 24–72 h. These observations exhibit major changes in crop metabolism shortly after 

infection, which may result in the susceptibility of the host (Cao et al. 2008). 

DISEASE MANAGEMENT 

Host Plant Resistance 
The control of the disease is difficult because of the longevity of resting spores in the soil. Among 

different methods, use of resistant varieties appears important to manage the disease. Certain kinds 

of Brassica spp. seem to have a natural resistance to the disease. Some genotypes of B. juncea, 

B. rapa var. toria, and B. rapa var. yellow sarson were found resistant in field condition (Sharma 

et al. 2012c). Deora et al. (2012) found 45H29 cultivar of canola resistant to disease. Hasan et al. 

(2012) observed pathotype-specific resistance in diploid species, namely, B. rapa (AA), B. nigra 
(BB), and B. oleracea (CC), and in the amphidiploid B. napus (AACC). Among B. rapa genotypes, 

turnip was most resistant, followed by winter- and spring-type oilseed rape. Contrastingly, rutabaga 

group of B. napus was observed homogeneous for resistance to Canadian P. brassicae pathotypes. 

The European winter canola (B. napus) cultivar Mendel has been used for the development of open-

pollinated as well as hybrid canola cultivars (Rahman et  al. 2011). It appears that resistance in  

B. rapa lines of a known genotype is associated with hypersensitive cortical cell death following 

invasion of P. brassicae from infected root hairs. Black mustard (B. nigra L.) is commonly reported 

as a resistant host due to volatile mustard oil, which remains to be proven (Kolte 1985). However, a 

positive correlation between clubroot susceptibility and clubroot-induced accumulation of several 

amino acids was found (Wagner et al. 2012). Sowing of a resistant variety could reduce the inoculum 

potential, while the cropping of susceptible variety increased the same (Hwang et al. 2011b, 2012a). 

There are several physiologic races of P. brassicae, which vary in their ability to infect Brassica 
spp., and this complicates the problem of breeding-resistant varieties. Resistant varieties bred for 

clubroot resistance in one country may be completely susceptible to strains of the pathogens derived 

from another. Differential hosts used in ECD set are resistant to some races and susceptible to oth

ers. Development of resistant varieties through interspecific hybridization appears to be logical. 
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Resistance to P. brassicae Race 3 was successfully transferred from the turnip rape (B. rapa) 

variety Wasslander to rape (B. napus) variety Nevin by production of the fertile species, Brassica 
napocampestris, followed by two generations of back crossing of Nevin. Some cultures of B. napus 
(GSL-1, WBBN-1, WBBN-2, PCRS-80, WW-1507, ISN-700, MNS-3), B. carinata (HC-1, HC-4, 

HC-5, 9221, PC-3, PCC-2, PPSC-1, PC-5), and B. nigra (ACCBN-479) are reported resistant to the 

disease (Chattopadhyay et al. 2001). 

Molecular Breeding 
Suwabe et al. (2003) found that clubroot resistance in B. rapa is under oligogenic control, and at 

least two loci, that is, Crr1 and Crr2, are necessary for resistance. A resistance gene Crr1a has been 

identified in B. rapa L. (Hatakeyama et al. 2013). Yu et al. (2008b) reported that the resistant charac

ter in the resynthesized B. napus line HW243 is controlled by a single dominant gene for resistance 

to the disease. But durability of resistance seems unlikely to be profitable due to the development of 

newer pathotypes of P. brassicae keeping in view the faster rate of sexual reproduction in the patho

gen. Wu et al. (2012) estimated the expression of stage-specific genes, namely, Pb-YPT, Pb-Brip9, 

and Pb-PSA, during infection of the pathogen in B. rapa by RT-PCR. 

Development of transgenic lines by introducing thaumatin-like protein Hv-TLP8 from barley 

into oilseed rape via Agrobacterium-mediated transformation has been reported, which exhibits 

enhanced resistance to the pathogen (Reiss et al. 2009). 

Cultural Control 
Development of clubroot is significantly affected by cultivars, sowing date, soil moisture, and infec

tion date (Wang et al. 2002). In Germany, pot experiments conducted (under field conditions) indi

cated that clubroot in yellow mustard can be reduced from 100% to 66% by mixing 50% compost 

into naturally infested soil. Early sowing can reduce infection compared to the late sowing of the 

crop (Hwang et al. 2012b). In view of the long viability of resting spores in soil, short-term crop 

rotation is not feasible, and traces of the pathogen could be detectable after more than 19 years of 

host plant absence, making its eradication very difficult (Rastas et al. 2012). Since P. brassicae also 

infects cruciferous weeds such as C. bursa-pastoris, it may be important to control the weeds in 

order to check the incidence of the disease. Use of 10–30 mg/kg boron and calcium nitrate in soil of 

pH 6.5 or 7.3 was effective in reducing clubroot severity (Ruaro et al. 2009). 

Growing the crop in fields known to be infested with the clubroot pathogen should be avoided. 

General measures aimed at mitigating the incidence of the disease through improved drainage and 

application of lime brings about control of the disease. Spores of P. brassicae do not germinate or 

germinate very poorly in alkaline soils. On this basis, amendment of infested soil with lime is sug

gested. The amendment is done so as to raise the pH of the soil to 7.2. Treating the soil with lime 

1  kg/m2 area has been reported to control clubroot in mustard (AICRP-RM 2000). Application 

of worm cast as base fertilizer could effectively control the clubroot of rape, with an efficacy of 

56.3%–61.4%, decrease the soil acidity, and increase the soil organic content (Wang et al. 2010b). 

Plant tolerance and resistance can be effectively increased against clubroot disease of mustard by 

using nutrients, namely, B, Mo, and Ca. These nutrients result in increase in yield and reduction 

in average weight of clubs per plant (Sen 2005, Deora et al. 2011). Nitrogenous fertilizers, namely, 

calcium ammonium nitrate and calcium nitrate, could be used to control the disease and increase 

shoot dry weight and seed yield (Bhattacharya and Mandal 2006). 

Biological Control 
Mixing or pouring of some antagonists, namely, Serratia spp. and Trichoderma spp., by using 

mushroom compost as a carrier for the antagonists was found effective in reduction of infection by 

up to 40% (Preiss et al. 2010). Lahlali et al. (2013) found that the biofungicide serenade (B. subtilis) 
suppresses the disease on canola via antibiosis and induced host resistance. 
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Chemical Control 
Although certain chemicals like azoxystrobin, benomyl, fluazinam, flusulfamide, methyl thiophan

ate, quintozene, limestone, and other soil fumigants are known to be effective against P. brassicae, 

such disease management methods are not feasible and economical because of the high cost of 

chemicals and their application. 

Fusarium WILT 

SYMPTOMS 

The leaves of the affected plants show drooping, vein clearing, and chlorosis, followed by wilt

ing, drying, resulting in the death of the plant. The symptoms progress from the base upward. 

The expression of the disease symptoms varies with the age of the plants. In the early stage of 

development, affected plants do not show all the typical symptoms. Plants affected in preflower

ing and early flowering stages show defoliation, and stems of such plants externally develop lon

gitudinal ridges and furrows, which are generally not observed in the later stages. Diseased plants 

often show stunting, which is more pronounced when the plants are attacked in preflowering  

stages. Such plants have small pods with no seeds. Unilateral development of the disease is also 

observed in some of the cases when only one side of the plant shows symptoms of the disease. 

Roots of the diseased plants show no external abnormality or decay of the tissue until the plants 

are completely dried. Vascular tissues of stem and root show the presence of the mycelium and/or 

microconidia of the pathogen. Such tissues show browning of their walls and their plugging with 

a dark gummy substance, which is one of the characteristic symptoms of vascular wilts. At later 

stages of the disease, epidermis of roots sloughs off. The diseased plants eventually collapse and 

die (Kolte 1985). 

GEOGRAPHICAL DISTRIBUTION 

Mustard is affected by Fusarium wilt caused by F. oxysporum f. sp. conglutinans (Wr.) Snyder and 

Hansen. The first authentic report of F. oxysporum f. sp. conglutinans as the cause of the disease 

in B. juncea was made from India, followed by another on B. nigra (Kolte 1985). It has also been 

reported on canola in Argentina (Gaetan 2005b). 

PATHOGEN 

The causal fungal pathogen is F. oxysporum f. sp. conglutinans. Two types of cultures were iso

lated as Group A and B isolates and found that both were pathogenic to B. rapa var. toria, B. rapa 
var. yellow sarson, Brassica oleracea var. botrytis, B. oleracea var. capitata, E. sativa, Matthiola 
incana, B. nigra, S. alba, Symphytum officinale, and R. sativus. Susceptibility of B. carinata, 

Crambe abyssinica, and C. hispanica has been reported from the United States (Kolte 1985). Devi 

et al. (2009) reported Fusarium moniliforme as causal agent of Fusarium wilt of rapeseed from four 

districts of Manipur, India. 

DISEASE MANAGEMENT 

Extracts of plants Vitex trifolia and Artemisia nilagirica were found to have significant fungicidal 

properties (Devi et al. 2009). Seed treatment with carbendazim at 0.1% ai or a suitable biofungicide 

could be effective in managing the disease. 
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OTHER FUNGAL DISEASES 

Rotting of seed is reported to be caused by Nematospora sinecauda (Oram et al. 2003), while white 

leaf spot caused by Pseudocercosporella capsellae has also been reported, when grayish white to 

brownish lesions on leaf (often with a distinct brown margin) and some grayish stem lesions occur 

(Eshraghi et al. 2005). 

BACTERIAL STALK ROT 

Symptoms 
Symptoms of the disease are characterized by the appearance of water-soaked lesions at the collar 

region of plants, which is usually accompanied by a white frothing. The tender branches are also 

affected as the lesions advance further to cover larger areas. The leaves show signs of water stress 

and wither. The affected stem and branches, particularly the pith tissues, become soft, pulpy, and 

produce dirty white ooze with a foul smell. The infected collar region becomes sunken and turns 

buff white to pale brown. Badly affected plants topple at the basal region within a few days. 

Geographical Distribution and Losses 
The first report about the occurrence of stalk rot caused by Erwinia carotovora (Jones) Holland 

appears to have been made in B. juncea in Rajasthan (India) by Bhowmik and Trivedi (1980). On 

an average, about 40%–60% of plants may be affected by the disease. Presence of the disease in 

fodder varieties of Brassica spp. is also observed. Vigorously growing succulent plants, due to an 

extra dose of N, as well as those growing in poorly drained soil are more severely affected. Root 

rot caused by Erwinia carotovora pv. carotovora (Jones) Bergy is an emerging threat for rape

seed–mustard production system, recently reported from the farmers’ field in some pockets of India 

(AICRP-RM 2006–2008, Meena et al. 2010b). 

Pathogen 
The bacterium is Gram negative, rod shaped with blunt ends, capsulated, and motile with perit

richous flagella. It forms grayish, circular, translucent, shining, smooth colonies on nutrient agar 

with a raised centre and wavy margin. The bacterium can infect B. oleracea var. botrytis, Daucus 
carota, Lycopersicon esculentum, and Nicotiana tabacum. 

Epidemiology and Disease Cycle 
The disease is favored by warm and humid weather. It usually appears after first irrigation in mus

tard. The pathogen survives on diseased plant debris in soil. 

Disease Management 
Bacterial stalk rot can be managed to some extent by using cultural practices, namely, crop rotation 

with nonhost crops, deep ploughing in summer months, and roguing and burning of diseased debris. 

These practices help in minimizing inoculum buildup in soil. Early sowing of crops, removal of 

weeds, and avoidance of overirrigation are effective in reducing the DI. This disease can be reduced 

by spraying streptocycline 100 ppm and copper oxychloride at 0.2%. 

BACTERIAL ROT 

Symptoms 
Symptoms appear when the plants are 2 months old. In the initial stages, dark streaks of vary

ing length are observed either near the base of the stems or 8–10 cm above the ground level. 

These streaks gradually enlarge and girdle the stem. Finally, the diseased stem becomes very 
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soft and hollow due to severe internal rotting, and this often results in total collapse of the plant. 

Sometimes, cracking of the stem is observed before the toppling of the plant. Occasionally, symp

toms appear on leaves. Lower leaves show the symptoms first, which include midrib cracking and 

browning of the veins; when extensive, it brings about withering of the leaves. Profuse exudation 

of yellowish fluid from affected stems and leaves may also occur. Blackened veins and V-shaped 

necrotic lesions on the leaf margins are surrounded by yellow halos. The advanced phases of the 

disease include lesion enlargement, foliar chlorosis, and death of leaves. The disease develops 

from the lower leaves to the apex, resulting in complete leaf necrosis and defoliation. The affected 

plants, on stripping, show a dark brown crust full of bacterial ooze. The black rot does not cause 

any disagreeable odor. 

Geographical Distribution and Losses 
Patel et al. (1949) first observed the black rot symptoms in B. juncea in India under natural con

ditions. In 1970, 100% incidence on cauliflower was reported, and during 1969, National Seed 

Corporation of India suffered heavy losses of about 0.5 million rupees in 10 ha of cauliflower seed 

crop due to combined infection of stump rot and black rot. The disease is now reported to occur in a 

severe form (60% incidence) in the Indian State of Haryana (Kolte 1985). Occurrence of the disease 

has also been reported in Brazil, Canada, Germany, Serbia (Popovic et al. 2013), Mozambique (Bila 

et al. 2013), Sweden, and the United States. In fact, monoculture is presently the dominant form 

of crop management worldwide, which plays a major role in disease progression (Zhu et al. 2000). 

Pathogen 
The pathogen is Xanthomonas campestris pv. campestris (Pammel) Dowson. The bacterium is a 

short rod with rounded ends, occurring singly, rarely in pairs. In culture on potato dextrose agar, it 

measures 1.5 μ (1.2–2.1 μ) × 0.7 μ (0.5–1.0 μ). It is motile with a single polar flagellum, Gram nega

tive, not acid fast, aerobic, and capsulated without spore formation. On nutrient dextrose agar, col

ony is dark yellow, circular, nonfluidic, convex, and opaque. The thermal death point is 50°C–58°C. 

Genetic and pathogenic variability among the isolates of X. campestris pv. campestris has been 

identified by several workers (Gaetan and Lopez 2005, Miguel-Wruck et al. 2010, Singh et al. 2011b, 

Raghavendra et al. 2013). A DNA probe has been developed for rapid identification of strain of this 

pathogen in plant tissues (Shih et al. 2000). This pathogen can be specifically and rapidly detected 

by several methods, namely, multiplex polymerase chain reaction (Berg et al. 2005, Leu et al. 2010), 

multiplex RT-PCR assay (Berg et al. 2006), Bio-PCR (Singh and Dhar 2011), classical biochemical 

assays, enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies, Biolog identifi

cation system, and PCR with specific primers and pathogenicity tests (Bila et al. 2013). 

Epidemiology and Disease Cycle 
The host range includes B. alba, B. rapa var. brown sarson, B. rapa var. yellow sarson, B. carinata, 

B. chinensis, B. hirta, B. napus, B. nigra, B. oleracea, B. rapa, B. tourneforti, and R. sativus. The 

pathogen does not infect E. sativa and C. sativa (Kolte 1985). Details of the mode of penetra

tion and the infection process have not been studied using rapeseed–mustard plants. However, it is 

believed that the pathogen overwinters in diseased plant refuse or in seed and penetrates the host 

through either stomata or hydathodes and establishes the infection in a similar manner as in other 

crucifers (Berg et al. 2005). 

Disease Management 
Host Plant Resistance 
Race-specific resistance to the pathogen has been found in Brassicas with B and D genomes (Ignatov 

et al. 2001). Griffiths and Nickels (2001) reported that a single dominant gene may control the resis

tance. In progeny of B. carinata, the resistance is conferred by a major dominant gene Rb that can 
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be used for breeding purposes (Ignatov et al. 2001). Some new alien addition lines resistant to black 

rot have been generated by somatic hybridization between cauliflower and black mustard (B. nigra) 

(Wang et al. 2011). Some degree of resistance to races 1 and 4 of X. campestris pv. campestris in 

different B. napus crops, mainly in underexplored pabularia group, has been identified (Lema et al. 

2011). Resistance was identified in five accessions of B. carinata (PI 193460, PI 193959, PI 194254, 

PI 280230, PI 633077) and four accessions of B. nigra (PI 197401, A 25399, A 25401, PI 458981) 

determined by repeated symptomless responses after inoculation. Five accessions of B. rapa (PI 

633154, A9285, PI 340208, PI 597831, PI 173847) represent promising new sources of resistance 

to the pathogen. Incomplete resistance was identified in an accession of E. sativa (PI 633207), 

Lepidium spp. (PI 633265), S. arvensis (PI 296079), and two accessions of B. napus (PI 469733 

and PI 469828). These identified accessions represent germplasm that can be used in breeding for 

resistance to Xcc in the future (Griffiths et al. 2009). 

Biological Control 
Foliar spray or the combined seed soaking and soil drenching with Pseudomonas aeruginosa 
(KA19 strain) and Bacillus thuringiensis (SE strain) are also found effective in reducing black rot 

lesions compared to untreated control (Mishra and Arora 2012). 

Chemical Control 
Captafol spray (0.2% ai) at 20-day intervals is reported to give good control of the disease; aureomy

cin (chlorotetracycline) 200 μg/mL was most effective in reducing the infection from 85% to about 

15% resulting in an increase in yield by 60%. Among fungicides, carboxin was most effective, reduc

ing the infection by 79% with a corresponding increase in yield by 49%. Spray application of copper 

oxychloride is also reported to give a considerable degree of control of the disease (Kolte 1985). 

OTHER BACTERIAL DISEASES 

Bacterial leaf spots are also reported to be caused by Pseudomonas viridiflava, which result in 

white and corky brown spots on leaves and sometimes water-soaked spots on the lower leaf sur

face (Myung et  al. 2010). Brownish-black color leaf spots are also reported to be triggered by  

Pseudomonas syringae pv. maculicola (Peters et  al. 2004) and Pseudomonas cannabina pv. 

alisalensis (Bull and Rubio 2011). 

MOSAICS 

Symptoms 
Symptoms on B. juncea appear as vein clearing, green vein banding, mottling, and severe puckering 

of the leaves. The affected plants remain stunted and do not produce flowers, or very few flowers are 

produced on such plants. When siliquae are formed, they remain poorly filled and show shrivelling, 

which results in decrease in yield and oil content (Jasnic and Bagi 2007). Symptoms of vein clearing, 

stunting, and pod malformation have been observed (Sahandi et al. 2004). According to Sahandi 

et al. (2004), the symptoms appear as systemic conspicuous vein clearing, vein banding, yellowing, 

and distortion of young leaves. During the later stages of infection, numerous raised or nonraised 

dark green islands of irregular outline appear in the chlorotic area between the veins, giving rise 

to a mottled appearance. Curvature of the midrib and distortion of the leaf blade on affected leaves 

can also be a prominent symptom. Plants infected early are usually stunted and killed, but those 

infected late show reduced growth only slightly (Kolte 1985). The number of primary branches, 

seeds per pod, and percentage oil per seed is reduced; the glucosinolate concentration in the oil is 

also significantly increased in infected plants (Stevens et al. 2008). 
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Geographical Distribution and Losses 
Occurence of the virus disease has been reported on different cruciferous plants in Iran (Shahraeen 

et al. 2002, Tabarestani et al. 2010), New Zealand (Kolte 1985), Taiwan (Chen et al. 2000), on winter 

oilseed rape in Austria (Graichen et al. 2000), and on B. nigra (Thurston et al. 2001) and B. rapa ssp. 

sylvestris (Pallett et al. 2002) in the United Kingdom. Biswas and Chowdhury (2005) reported the 

disease in B. juncea and R. sativus in the Himalayan regions of West Bengal, India, and indicated 

that it may be a strain of turnip yellow virus (TuYV). 

Yield could decrease by more than 70% (Jasnic and Bagi 2007). Over 30% of the crop has been 

reported to be destroyed by the disease in China resulting in 37%–90% loss in yield (Kolte 1985). 

In Australia, yield loss due to TuYV on oilseed rape may reach up to 46% (Stevens et al. 2008). 

In Iran, canola field infection with turnip mosaic virus (TuMV), CaMV, and beet western yellows 

virus (BWYV) was 1.7%–8.3% (Tabarestani et al. 2010). 

Pathogen 
Some of the more common crucifer mosaic diseases are caused by viruses included in turnip virus 

I group. On rapeseed–mustard, the mosaic diseases caused by this virus group are described under 

different names, namely, (1) rape mosaic in China and Canada, (2) mustard mosaic in the United 

States and Trinidad, (3) Chinese sarson mosaic in India, (4) B. nigra virus in the United States, and 

(5) turnip mosaic in China, Germany, Hungary, Soviet Union, and the United Kingdom (Kolte 1985). 

Occurence of six viruses, namely, BWYV, CaMV, turnip crinkle virus, TuMV, turnip rosette 

virus, and turnip yellow mosaic virus (TYMV), were detected on B. nigra (Thurston et al. 2001) 

and B. rapa ssp. sylvestris (Pallett et al. 2002) in the United Kingdom. TuMV, CaMV, and BWYV 

are considered as the most important viruses of canola in Iran (Tabarestani et al. 2010) and of rape 

(including TYMV) in Europe (Mamula 2008). Cai et  al. (2009) found two new strains, youcai 

mosaic virus–Br and oilseed rape mosaic virus (ORMV)-Wh, which are related to the ORMV 

cluster of tobamoviruses and distantly to tobacco mosaic virus as a pathogen of oilseed rape in 

China. The pathogen can be detected by tissue blot immunoassay (Coutts and Jones 2000), ELISA 

(Thurston et  al. 2001, Pallett et  al. 2002), double-antibody sandwich-ELISA (Chen et  al. 2000,  

Graichen et al. 2000, Sahandi et al. 2004), antibody sandwich-ELISA and PCR (Farzadfar et al. 

2005), and RT-PCR technique (Tabarestani et al. 2010). Polyclonal antiserum has been produced 

against CaMV isolate that can also be used in indirect ELISA system for virus survey and iden

tification (Sahandi et  al. 2004). Graichen et  al. (2000) detected no TuYV infection in virus-like 

symptoms having plants and infection in symptomless plants, which highlights the necessity of 

serological testing of plant samples for the determination of virus infection in oilseed rape. 

Epidemiology and Disease Cycle 
Disease intensity varies among years and depends on weather conditions during season, source of 

inoculum, and vector population (Jasnic and Bagi 2007). Coutts and Jones (2000) found wild radish 

(R. raphanistrum) as a substantial virus reservoir in canola field in Southwest Australia. If TuMV 

and CaMV viruses are transferred from S. arvensis to oilseed rape with aphid, then wild mustard 

could be a reservoir of these virus infections for oilseed rape under natural condition (Dikova 2008). 

TuYV can be transmitted by Myzus persicae (act as main vector),  Brachycorynella asparagi, 
Cavariella aegopodii, Macrosiphoniella sanborni, Macrosiphum albifrons, Myzus nicotianae, 

Nasonovia ribisnigri, Pentatrichopus fragaefolii, Rhopalosiphum maidis, Acyrthosiphon pisum 
(green race), Aphis gossypii, Aulacorthum circumflexum, Aulacorthum solani, Brevicoryne bras
sicae, Rhopalosiphum padi, and Sitobion avenae (Schliephake et  al. 2000). Green peach aphid  

(M. persicae), turnip or mustard aphid (Lipaphis erysimi), cabbage aphid (B. brassicae) and cowpea 

aphid (Aphis craccivora) may serve as vector of BWYV, TuMV, and CaMV on rape and Indian 

mustard in New South Wales, Australia (Hertel et al. 2004). Stevens et al. (2008) found peach-

potato aphid, M. persicae, as vector of TuYV and reported 72% of winged M. persicae carry this 

virus on oilseed rape in Australia. He also reported that milder autumn and winter conditions favor 
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the development of the aphid vectors and encourage virus spread. Green peach aphid requires 

minimum 0.5–1.0 h for acquisition and inoculation process for BWYV transmission on mustard. 

This transmission is influenced by temperature, and the highest transmission rate could be obtained 

at 20°C–25°C. After virus acquisition, aphid could retain BWYV for at least 2 weeks. The virus 

could not pass onto the progeny of its vector. BWYV replicated well in mustard at 15°C–25°C 

(Chen 2003). 

Maling et al. (2010) modified a previously developed hybrid mechanistic/statistical model, which 

was used to predict vector activity and epidemics of vector-borne viruses, to simulate virus epidem

ics in the BWYV-B. napus pathosystem in a Mediterranean-type environment. 

Disease Management 
Coutts et al. (2010) found that B. napus, which has some resistance to BWYV, can be used in con

junction with imidacloprid seed dressings as component of an integrated pest management strategy 

to manage BWYV in B. napus crops. The genetically engineered cross protection of Brassica crops 

with weak strain Bari-1 Gene VI of CaMV and its genetic regularity have been studied by Gong 

et al. (2001). Lehmann et al. (2003) were able to induce coat protein–mediated resistance to TuMV 

in B. napus. Control measures include the elimination of inoculum source, isolation from areas, 

which contain inoculum, aphid control, and growing virus resistant or tolerant oilseed rape geno

types (Jasnic and Bagi 2007). Seed dressing with imidacloprid in sufficient amount (525 g ai/100 kg 

of seed) before sowing is a good prospect for the control of BWYV and M. persicae in B. napus 
crops (Jones et al. 2007). Seed treatment of oilseed rape with thiamethoxam is an excellent alterna

tive to insecticide spray for controlling TuYV transmission by M. persicae (Dewar et al. 2011). 

PHYLLODY  AND ASTER YELLOWS 

Symptoms 
The characteristic symptom is the transformation of floral parts into leafy structures. The corolla 

becomes green and sepaloid. The stamens turn green and become indehiscent. The gynoecium is 

borne on a distinct gynophore and produces no ovules in the ovary. In addition, there are some leafy 

structures attached to the false septum. The affected plants may show varying degrees of severity of 

the disease, and the affected part of the raceme does not form siliquae. Some plants may show only 

terminal portion of the branches affected with the disease, whereas in others, the whole branches 

show the symptoms. 

Geographical Distribution and Losses 
Under natural conditions, the phyllody has been reported to occur on oilseed rape (B. napus) in 

Greece (Maliogka et al. 2009), Italy (Rampin et al. 2010), Poland (Zwolinska et al. 2011), Iran 

(Salehi et al. 2011), Canada on B. rapa (Olivier et al. 2006), India on toria (B. rapa var. toria), 

and yellow sarson (B. rapa var. yellow sarson) in the states of Punjab, Haryana, New Delhi, and 

Uttar Pradesh (Kolte 1985, Azadvar and Baranwal 2010) in India. In Canada, aster yellows (AY) 

has also been reported on B. napus and B. rapa (Olivier et al. 2010). Yield loss may go up to 90% 

(Kolte 1985). 

Pathogen 
The phyllody disease is reported to be caused by the Candidatus Phytoplasma asteris (Phytoplasma 
asteris) phytoplasma of subgroup 16Srl-A, 16Srl-B, and 16SrlX-C (Olivier et al. 2006, Maliogka 

et al. 2009, Azadvar and Baranwal 2010, Rampin et al. 2010, Zwolinska et al. 2011). The AY disease 

is reported to be caused by the phytoplasma of 16Srl-A and 16Srl-B subgroup (Olivier et al. 2010). 

Phytoplasma are nonhelical, mycoplasma-like bacteria that lack cell walls. They almost exclusively 

inhabit the phloem sieve-tube elements of the infected plant and is transmitted from plant to plant 
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by phloem-feeding homopteran insects mainly plant hoppers (Laodelphax striatellus) (Azadvar and 

Baranwal 2010) or leafhoppers (Circulifer haematoceps) (Salehi et al. 2011), and less frequently 

psyllids and Cicadellidae (Jajor 2007). Seed transmission of phytoplasma in winter oilseed rape has 

also been reported (Calari et al. 2011). This pathogen can be detected by several methods, namely, 

nested PCR (Olivier et al. 2006, Azadvar et al. 2011, Calari et al. 2011), PCR, and RFLP (Wang and 

Hiruki 2001, Zwolinska et al. 2011). Sequencing and phylogenetic analysis of 16S rRNA, a part of 

23S rRNA, partial sec A genes, rp gene and 16S–23S intergenic spacer region, and RFLP pattern 

of 1.25 kb 16S rDNA sequences of the pathogen has also been done (Azadvar and Baranwal 2010). 

Epidemiology 
Early planting of toria in late August or at its normal planting time in September has been shown 

to favor the development of the disease in toria under Indian conditions. As high as 24% incidence 

of the disease, depending on the variety, can be seen in plants sown in August (Kolte 1985). The 

disease development is favored by prolonged dry and warm weather. The pathogen survives on 

alternate hosts like sesame, which serves as primary source of infection. The disease is transmit

ted through leafhopper and seeds. The disease spreads by repeated cycles of secondary infection 

through the process of transmission. 

Disease Management 
Weed management in and around fields that serve as hosts for the pathogen and increasing planting 

population may reduce the incidence of phyllody. Roguing and destruction of the infected plants will 

reduce further spread of disease. The population of insect vectors should be controlled by using appro

priate insecticides when they are at their peak. Two sprays of dimethoate or metasystox at 0.1% at an 

interval of 15 days starting from the initiation of symptoms should be done to manage the insect vectors. 
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Section IV
 

Sunflower 
The cultivated sunflower (Helianthus annuus L. var macrocarpus (DC) Ck II) belongs to the 

Compositae (an Asteraceae) family. It is a sparingly branched annual herb about 1.0–3.0 m in height. 

It is insensitive to photoperiods. The basic chromosome number of H. annuus is 20 pairs (2n = 40). 

Sunflower has a large genome (3600 Mbp) with abundant repetitive sequences (Baack et al. 2005, 

Kane et al. 2011). 

Sunflowers are referred to as composites because what looks like a single large sunflower head is 

actually an inflorescence composed of a composite of many tiny, usually 1000–2000, individual flow

ers joined to a common base called the receptacle. The flowers around the circumference are lingulate 

ray florets with neither stamens nor pistil. The fertile disk florets are located within the head. Each 

disk floret is a perfect flower. The flowering behavior facilitates cross-pollination, and insects, par

ticularly the bees, represent the essential vector of sunflower pollen. The degree of cross-pollination 

may be to the extent of 100%. The sunflower seed is a specific type of elongated rhomboid indehiscent 

achene, which may be white, black, or striped gray and black. The oil content is more than 40%. The 

oil is characterized by a high concentration of linoleic acid and a moderate level of oleic acid. While 

the sunflower seed could still be harvested for edible oil, the woody stalk could be used as a biofuel. 

By producing food and biomass, such a crop would be both economically and politically viable. 

The center of origin of the sunflower is believed to be North America from where it has spread 

to Europe and Asia. Now it is grown in all continents except the Antarctica. Europe and America 

account for nearly 70% and 80% of the total production, respectively (Harter et al. 2004, Damodaran 

and Hegde 2007). Sunflower cultivation in Asian countries is comparatively recent. Asia accounts 

for nearly 20%–22% of the global sunflower and contributes to about 18% of the production. The 

productivity of sunflower in Asia is about 1.0 ton/ha, which is lower than the world average. India 

is the largest grower of sunflower in the Asian continent. This is a short-duration crop that is adapt

able to a wide range of agroclimatic situations, having high yield potential, suitable for cultivation 

in all seasons due to its day neutral nature and can fit well in various intercropping and sequence 

cropping systems. However, the average yield of this crop in India is lowest; it is less than half the 

world average and static hovering around 0.5–0.6 ton/ha. 

The crop performs well and yields more oil in temperate zones. It grows well in a well-drained 

soil, ranging in texture from sandy to clay. The emergence of new diseases and large climatic varia

tions, particularly recurrence of drought stress during critical growth stages, has affected stability 

and yield on a regular basis. With continuous cropping in the same field area, the crops suffer from 

diseases resulting in large losses in yield. Sunflower diseases are described in the following chapter. 
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6 Sunflower Diseases 

RUST 

SYMPTOMS 

Symptoms of sunflower rust appear on all the aboveground plant parts but are more prevalent on 

leaves. Small, orange to yellowish spots appear in compact circular groups followed by brownish, 

circular to elongated, and pulverulent uredinia scattered over the upper and lower surfaces of the leaf. 

Uredial pustules usually appear first on the lower leaves. They are small, circular, 0.5–1.00 mm in 

diameter, powdery, orange to black in color, and usually surrounded by chlorotic areas (Figure 6.1). 

The uredia may coalesce to occupy large areas on the affected plant parts. Usually late in the crop 

season, as the plant approaches maturity or is subjected to physiological stress, teliospores appear in 

the uredia and develop into telia on the affected senescent tissues, and the black rust stage appears. 

In the case of highly resistant varieties, no uredia are produced, and only small chlorotic or 

necrotic flecks develop at the point of infection. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The first report of sunflower rust described by Lewis von Schweinitz from the southeastern United 

States dates from 1822 (Sackston 1981). The disease now occurs in virtually all the sunflower-

growing areas of the world and is more common in temperate and subtropical regions (Kolte 1985). 

It is, however, considered an important disease of sunflower in Argentina (Gutierrez et al. 2012), 

Australia (Sendall et al. 2006), Canada (Rashid 2004, Gulya and Markell 2009), Cuba (Perez et al. 

2002), India (Mayee 1995, Amaresh and Nargund 2002a), Israel (Shtienberg and Johar 1992), 

Pakistan (Mukhtar 2009), Russia, South Africa (Los et al. 1995), Turkey (Tan 1994, 2010), and the 

United States (Harveson 2010, Friskop et al. 2011). It has also been recorded in almost all European 

and adjacent Mediterranean countries engaged in sunflower production (Sackston 1978). 

Severe infection can decrease head size, seed size, oil content, and yield. On an average, in North 

American conditions, yield losses ranging from 25% to 50% have been reported in areas of inten

sive sunflower cultivation. Loss estimates are based on field observations or yield comparisons of 

resistant and susceptible varieties in performance trials (Zimmer et al. 1973). Still further, the sever

ity of sunflower rust in the states of Manitoba in Canada in 2003 (Rashid 2004) and in Nebraska, 

North Dakota, South Dakota, and Minnesota in the United States has increased steadily from 17% 

to 77% through the 1990s and 2000s, and dramatic yield reductions have been recorded in localized 

hot spots (Gulya et al.1990a, Gulya and Markell 2009, Harveson 2010, Friskop et al. 2011). 

Quantitative assessment of the effect of rust on yield of sunflower in Australia has shown reduc

tion up to 76% (Middleton and Obst 1972, Brown et al. 1974). Siddiqui and Brown (1977) from 

Australia reported that oil yield losses in sunflower are generally influenced by the growth stages of 

plant when infection occurs and by the degree of intensity of infection. The effect of rust on growth 

parameters varies according to the moisture stress to which the plant is subjected. In Kenya, the 

disease caused 60% yield losses in severe cases; consequently, sunflower acreage dropped dramati

cally from 24,280 ha in 1949 to 1,420 ha in 1952 (Singh 1974). 

The quality of seed is also adversely affected by reduction in test weight and oil content and by 

increased hull to kernel ratio (Middleton and Obst 1972). 
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FIGURE 6.1  Sunflower rust. Note the minute uredopustules on the leaf. (Courtesy of Dr. Chander Rao and 

Dr. Varaprasad, DOR, Hyderabad, India.) 

PATHOGEN: Puccinia helianthi SCHW. 

Classification 
Kingdom: Fungi 

Phylum: Basidiomycota 

Class:  Urediniomycetes 

Subclass:  Incertae  sedis 

Order:  Uredinales 

Family: Pucciniaceae 

Genus:  Puccinia 
Species:  helianthi 
Binomial name: Puccinia helianthi Schwein. 

P. helianthi is a macrocylic heterothallic, autoceious fungus. Production of all the stages of spore 

forms on sunflower has been reported from important sunflower-producing countries (Kolte 1985, 

Sendall  et al. 2006) and India (Mathar et al. 1975). The morphological characteristics of   different 

fruiting structures of the fungus have been described in detail by Baily (1923) and Sendall  et al. 
(2006). The life cycle of P. helianthi is represented by five (a–e) spore types:

 a.  Urediniospores: These are unicellular, dikaryotic, repeating spores produced in uredosori in  

5–7 days after infection. They are brown and vary from subglobose to obovate in shape mea

suring 25–32 μm × 10–25 μm in size. The wall of these spores is cinnamon brown, 1–2 μm  
thick, and finely echinulate, usually with two equatorial germ pores. The spores are often  

slightly thickened at the apex and base. The urediniospores best germinate at 18°C–20°C by  

giving rise to germ tubes from equatorial germ pores. Germination of fresh spores is little  

affected by light intensity (2,200–4,300 lux) during spore production, but increasing light  

intensity is unfavorable for germination of urediniospores (Sood and Sackston 1972).

 b.	 Teliospores: These are diploid resting spores produced in teliosori. They are bicelled, 

smooth, oblong, elliptical, and slightly constricted at the septum and measure 40–60 μm × 

18–30  μm in size. The wall of the spore is smooth, chestnut brown, 1.5–3 μm thick at the 

sides, and 8–12  μm thick above with an apical pore. The spores are pedicellate; the  pedicel 

may be colorless or pale luteous, fragile, and 60–150 μm. The teliospores produced at 



  

 
      

 

 

 

 

233 Sunflower Diseases 

FIGURE 6.2  Aecial cups of  P. helianthi under Argentina conditions. (Courtesy of Dr. Tom Gulya, USDA

ARS, Northern Crops Research Lab, Fargo, ND.) 

lower temperature (10°C) begin to germinate about 15 days after their formation, but those 

formed at higher temperature do not germinate (Hennessy and Sackston 1970).

 c.  Basidiospores (sporidia): These are monokaryotic, nonrepeating spores produced on 

promycelium.

 d. Pycniospores: These are haploid gametes; are small, oval, and hyaline; appear shining 

and viscous in mass; and represent the sexual spores (spermatia) produced in flask-shaped 

(1 mm in diam.) pycnia (sexual stage) formed on young seedlings on the cotyledons or 

on true leaves, primarily on the first leaf in about 8–14 days following infection resulting 

from inoculation with sporidia (Bailey 1923). Insects transfer nectar containing haploid 

p ycniospores of one mating type (+) to the receptive hyphae (–) of the opposite mating 

type, thereby affecting cross-fertilization.

 e.  Aeciospores: These are unicellular, dikaryotic, nonrepeating spores produced in aecia. 

Aecia develop on the abaxial surface of the leaf under the fertilized pycnia and discharge 

dikaryotic aeciospores (Figure 6.2). Aeciospore infection results in the formation of ure

dinia that produce prodigious numbers of dikaryotic urediniospores. The urediniospores 

are disseminated by wind and become airborne to cause infection to nearby neighboring 

or distant sunflower plants. 

VARIABILITY, HOST SPECIFICITY, AND PATHOTYPES 

Variability and differences in pathogenicity among isolates of P. helianthi have been clearly dem

onstrated as reviewed by Kolte (1985) and Pandey et al. (2005). Though P. helianthi is common 

on cultivated sunflower (H. annuus), it also attacks a number of other Helianthus species such as 

H. decapetalus, H. petiolaris, H. subcanescens, and H. tuberosus (Parmelee 1977, Shopov 1980). 

The occurrence of distinct physiologic races of P. helianthi on the cultivated sunflower was estab

lished first by Sackston (1962) using well-defined 0–4 infection types on a set of host differentials 

and provided a basis for the explanation of pathogenic differences observed by earlier workers on 

a variety of Helianthus species. A modified Sackston’s (1962) numerical rating system described 

by Yang et al. (1989) can be currently used for rust evaluation as follows: 0 = immune, no uredia or 
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hypersensitive flecks; 1 = high resistance, presence of hypersensitive flecks or lesions, or pustules 

smaller than 0.2 mm in diameter with or without chlorotic halo; 2 = resistant, pustules smaller than 

0.4 mm; 3 = susceptible, pustules 0.4–0.6 mm in diameter; and 4 = highly susceptible, pustules 

larger than 0.6 mm in diameter. Reactions 0, 1, and 2 are classed as resistant, while reactions 3 and 

4 are rated as susceptible. Rust reaction can be thus rated visually on the basis of both pustule size 

(infection type) and leaf area covered by pustules (severity). Recent advances allow every isolate 

to be characterized by its virulence and avirulence toward all known resistance genes in the host. 

Differentiation of such pathotypes is by reference to their interaction with sunflower cultivars car

rying specific genes/genetic factors R1, R2, R3, R4, R5, and R6 conditioning the response (Putt 

and Sackston 1963, Limpert et al. 1994, Qi et al. 2011). This high-resolution technique obviates 

the need for detailed race description. New races or, in modern terms, new virulence combina

tions (pathotypes) appear frequently in response to the selection pressure extended by cultivars 

resistant at the time of introduction. Surveys of virulence, that is, of pathotypes (races) in the late 

1990s and in the 2000s, have been carried out in Argentina (Huguet et al. 2008, Moreno et al. 

2011), Australia (Kong et al. 1999, Sendall et al. 2006), Canada (Rashid 2004, Gulya and Markell 

2009), South Africa (Los et al. 1995, Anonymous 2010), Turkey (Tan 1994, 2010), and the United 

States (Qi et al. 2011). 

In North America 
In North America (NA) particularly in Canada and the United States, four NA races (1, 2, 3, and 4) 

of P. helianthi were identified by Sackston (1962) using three standard Canadian sunflower rust 

differential lines, following a maximum of 23 races to be differentiated. Later, the sequential num

bering system of race identification was changed to a coded triplet system to produce a virulence 

formula using a set of nine differentials, which allows theoretical 29 races to be identified, assuming 

no duplication of genes between lines (Gulya et al. 1990a, Gulya and Markell 2009). An interna

tional ad hoc committee approved the use of these lines and triplet code for rust race nomenclature 

(Gulya and Masirevic 1988). To compare the older race classification system and the triplet coding 

system, the previous NA race 1 corresponds to race 100 of the coded triplet system, NA race 2 to 

race 500, NA race 3 to race 300, and NA race 4 to race 700. The differentials used in this system 

include inbred lines S37-388; Canadian lines MC 90, MC 29, and P-386; and lines HA-R1 through 

HA-R5. S37-388 is universally susceptible to all races, and others have different reaction patterns 

and are all derived from diverse pedigrees (Gulya and Masirevic 1996, Rashid 2006). 

In Australia 
Kong et  al. (1999) have given a chronological record of the appearance of major pathotypes in 

Australia from 1978 to 1997, and 23 pathotypes have been recognized, mostly from commercial 

crops. Frequent shifts in virulence have occurred since the first change was determined in 1983.  

These have resulted in successive boom and bust cycles where commercial sunflower hybrids with 

resistance to the prevalent pathotypes became susceptible during the rapid shifts in virulence. 

Almost all pathotypes identified since 1986 trace to a common progenitor, Aus 4. Results of vir

ulence surveys (avirulence and virulence)   data accumulated over 25  years revealed that diverse  

pathotypes of P. helianthi evolve in wild sunflower populations providing a continuum of genetically 

heterogeneous hosts on which P. helianthi can potentially complete its sexual cycle. This results in 

sexual recombination in the causal fungus in seasons that favor completion of the sexual cycle and 

subsequent selection of recombinant pathotypes and that mutation too contributes steadily to the 

development of new virulence genes in the population of P. helianthi (Gulya 2006, Sendall et al. 

2006). Many new pathotypes have been identified due to an increase in the number and availability 

of differential hosts. At present, 21 differential hosts are routinely used for pathotype identification, 

whereas only 4 were available in 1983. Many of these differential hosts have not been characterized 

genetically, but based on their rust reaction, many are presumed to contain more than a single gene 

for rust resistance. 



  

 

 

 

 

  

  

 

 

 

 

 

              

               

                

                

               

              

 

              

              

              

            

               

235 Sunflower Diseases 

In Other Countries: Argentina, Turkey, and India 
The occurrence of different races of P. helianthi in Argentina was first recognized in 1957. Races 

100, 300, and 500 were discovered during the 1960 decade and the race 700 during the 1970s. There 

has been a significant change in the composition of the races of P. helianthi in Argentina since 1985. 

Interestingly, presently (in the 2000s), no isolate of P. helianthi belongs to the group of races 100, 

300, or 500. In fact all the collected isolates belong to the group of race 700, the first predominant 

race being 700 followed by race 740. Other variants of race 700, namely, 701, 704, 720, 744, and 

760, have also been reported (Huguet et al. 2008, Moreno et al. 2011). This indicates that the deploy

ment of several rust resistance genes (viz., R1 and R2) in sunflower commercial hybrids during the 

last 30 years determined a selection pressure over rust populations and an associated drift in the 

frequency of virulence genes. In Turkey, Tan (2010) accomplished race identification of P. helianthi 
under field conditions where seedlings of 23 differential genotypes were naturally infected in the 

main sunflower production area and concluded the prevalence of rust race 1 (= newly designated 

as race 100) and race 3 (= race 300) in Turkey, and races 2 (= race 500) and 4 (= race 700) being 

nonprevalent in that country. Pathogenic variability in P. helianthi in India has been studied, but the 

reports about variability for this pathosystem appear to be scarce (Patil et al. 1998, 2002). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Sunflower rust can occur at any time during the growing season, but disease onset is dependent 

on the environment and inoculum source. When the disease occurs early, it is usually the result of 

primary infection originating from primary inoculum sources such as sporidia from germination 

of surviving teliospores on previous sunflower crop or wild sunflowers, or from aeciospores on vol

unteer seedlings or from urediniospores formed on volunteer seedlings in high-altitude areas and 

carried through air currents. The secondary infection occurs usually through repeatedly produced 

urediniospores in a crop season, and late-season epidemics are generally a result of urediniospores 

blown in from distant fields (Kolte 1985). 

When teliospores act as primary sources, they germinate early in the spring by producing a 

promycelium from each cell bearing four haploid sporidia also referred to as basidia. The sporidia 

are of (+) and (−) mating groups, which results through meiosis, while the teliospores undergo the 

germination process (Kolte 1985, Pandey et al. 2005). Under favorable conditions, when a sporidium 

comes in contact with the surface of the cotyledon, leaf petiole, or hypocotyl of a sunflower, it pro

duces a germ tube that penetrates directly and establishes the infection, resulting in the development 

of flask-shaped pycnium producing pycniospores. The (+)- and (−)-type sporidial infections result 

in the development of their respective types of pycnia and pycniospores where receptive hyphae (−), 

the female, and spermogonia (+), the male, cross-fertilize, and mating between these two opposite 

types occurs through insects or rainwater to produce a dikaryotic thallus, which subsequently forms 

aecia with binucleate aeciospores in about 8–10 days. Aeciospores become airborne and infect sun

flower foliage usually near where they are produced. They germinate at 6°C–25°C with an optimum 

temperature of 16°C for 1 h. But the establishment of infection requires 10 h. Aeciospores, like ure

diniospores, usually germinate by producing a single germ tube from one of the germ pores, within 

4 h after inoculation if the free moisture is present. The germ tube forms an irregularly shaped 

appressorium over stomata 6–8 h after inoculation. The infection peg is then formed from the lower 

surface of the appressorium and penetrates the substomatal vesicle, from which two or more infec

tion hyphae arise. When the infection hypha contacts a cell, a septum is formed and a haustorial 

mother cell is produced, from which knob-shaped to elongated numerous haustoria are formed in 

the host cell establishing a nutritional relationship with it (Sood and Sackston 1972). The invading 

hypha grows rapidly in susceptible varieties and culminates in the aggregation of hyphae under 

the epidermis, resulting in the formation of uredosori containing dikaryotic urediniospores, the 

economically important stage of the disease cycle. Urediniospores can be disseminated to long 

distances by wind and infect most of plant tissues. The process of infection through urediniospores 
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is similar to the one described for aeciospores. In favorable conditions of free moisture (dew) and 

warm temperatures (12°C–29°C), the uredial stage repeats its cycle every 10–14  days. Because 

infection is favored by free moisture, infection may be most severe in leaf depressions, on leaf veins, 

where moisture persists. When temperature falls beyond the favorable range for infection and dis

ease development, the repeating cycle (uredinia) slows and stops. Late-season cold temperatures or 

host maturity will initiate the changes from the uredinial stage into the overwintering telial stage. 

Once the telia occur, the disease cycle for that growing season ceases. In the spring, teliospores 

germinate and produce sporidia, which are visible by microscopic observation only. Sporidia will 

infect leaves, leading to the formation of pycnium, and the cycle repeats. 

FACTORS AFFECTING INFECTION  AND DISEASE DEVELOPMENT 

Kolte (1985) reviewed factors affecting sunflower rust infection and disease development. A day tem

perature range of 25°C–30.5°C with relative humidity of 86%–92% promotes greater rust intensity, 

and the relative humidity is positively correlated with the severity of rust. Water-congested sunflower 

plants are more susceptible to P. helianthi. A day temperature of 25°C and a night temperature of 

18°C have been found more conducive for the development of the disease under Canadian conditions. 

Temperature also affects the incubation period. The incubation period following infection through 

the uredospores is reported as 5, 8, and 7 h at temperatures of 18°C, 14°C, and 22°C, respectively. 

Light intensity in the range of 1200–2000 fc influences the maximum production of pustules. 

Darkness at the time of inoculation and throughout the early stages of infection tends to diminish 

the intensity of symptoms. 

The severity of rust is reported to be less on 15-day-old plants and increases with age, the maxi

mum being on 75-day-old plants. Susceptibility during senescence is directly related to reduced 

protein synthesis and not to changes in protein content of leaves. 

Excess nitrates in the soil or in solution encourage rust infection and defoliation by the rust, but 

boron and other micronutrients applied to soil reduce its incidence. 

DISEASE MANAGEMENT 

Host Resistance 
Among the various strategies for rust control, the deployment of diverse resources of resistance 

in commercial hybrids and varieties remains the most effective approach. Cultivated sunflower 

originated from the genus Helianthus that consists of 51 wild species, 14 annual and 37 perennial, 

and all are native to the Americas. A large amount of genetic variation in terms of host resistance 

exists in the wild species, providing genetic diversity for improvement. The origin of most rust 

resistance genes present in the cultivated sunflower can be traced to wild species mainly H.  annuus, 
H. argophyllus, and H. petiolaris (Hennessy and Sackston 1970, Zimmer and Rehder 1976, Jan et al. 

1991, Quresh et al. 1991, 1993, Quresh and Jan 1993, Gulya et al. 2000). One line (PS 1089) derived 

from H. argophyllus × cultivated sunflower and two lines (PS 2011 and PS 2032) derived from 

H.  petiolaris × cultivar crosses are reported to be immune to the prevalent races in India (Sujatha 

et al. 2003). Thus, several sources of rust resistance are known, and the R1, R2, R3, R4, R5, and R6 

genes have been characterized and used widely to develop rust-resistant commercial hybrids and 

varieties (Seiler 1992, Rashid 2006, Sendall et al. 2006, Gulya and Markell 2009, Lawson et al. 

2010, Qi et al. 2011, 2012). Genome localization of sunflower rust resistance genes has been docu

mented (Bulos et al. 2012, 2013). 

The rust resistance genes R1 and R2 were the first to be discovered in sunflowers and originated 

from the wild sunflower. Gene R1 present in the inbred lines MC 69 and MC 90 conferred resistance 

to rust races 100 and 500 (old races 1 and 2). A sequence characterized amplified region (SCAR) 

marker SCTO6 (950) was found that cosegregates with rust resistance gene R1 and mapped to 

linkage group (LG) 8 (Lawson et al. 1998, Yu et al. 2003). However, R1 gene is no longer effective 
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against current virulent races (Qi et al. 2011). In contrast, the gene R2 present in inbred line MC 29, 

an old Canadian line, showed resistance to 90% of 300 rust isolates tested in the United States in the 

years 2007 and 2008 including race 336, the predominant race in North America. However, MC 29 

is moderately susceptible to race 777, the most virulent race currently known in North America 

(Qi et al. 2011). R2 has been used in Australian sunflower breeding program and provides resistance 

to all known Australian races (Sendall et al. 2006, Lawson et al. 2010). 

Rust resistance gene R3 identified in the line PhRR3 conferred resistance to two Australian rust 

races (Goulter 1990). Selecting from Argentinean open-pollinated varieties, five multirace resis

tant lines, HA-R1 to HA-R5, were released in 1985 (Gulya 1985). The R4 locus is located on LG 

13 in H. annuus (Sendall et al. 2006). The rust resistance gene R4 present in the germplasm line 

HA-R3 was derived from an Argentinean interspecific pool with Russian open-pollinated varieties 

crossed with H. annuus, H. argophyllus, and H. petiolaris (Gulya 1985, de Romano and Vazquez 

2003). These lines HA-R1, HA-R4, and HA-R5 were also reported to carry alleles of the R4 locus, 

whereas the line HA-R2 had a different gene, R5 (Miller et al. 1988). HA-R2 was a selection from 

the Argentinean open-pollinated cultivar Impira INTA. This cultivar was developed from the 

interspecific cross between H. argophyllus and H. annuus cultivar Saratov selection Pergamino 

(de Romano and Vazquez 2003). Therefore, it is believed that the R5 gene in HA-R2 originated 

from H. argophyllus. Gene R5 conferred resistance to 86% of 300 rust isolates tested in the United 

States in the years 2007 and 2008, including the predominant race 336, but conferred susceptibil

ity to race 777. Sunflower rust-resistant lines previously released by the USDA were evaluated for 

their reaction to current virulent races. This evaluation identified nine germplasm lines, HA-R6, 

HA-R8, RHA 397, RHA 464, PH3, PH4, PH5, TX16 R, and RFANN-1742, that were resistant to 

both races 336 and 777 (Miller and Gulya 2001, Jan et al. 2004, Jan and Gulya 2006, Hulke et al. 
2010, Qi et al. 2011). Similarly germplasm lines in sunflower have been screened for rust resistance 

in India (Velazhahan et al. 1991). 

It is thus revealed from the previous text that incorporating effective resistance genes into 

sunflower inbred lines and commercial hybrids should mitigate the threat posed by current virulent 

rust races not only in the North American situation but also in rest of the sunflower-growing coun

tries in the world. The potential to reduce losses due to rust stimulates genetic efforts to develop 

molecular markers linked to effective rust resistance genes in order to facilitate marker-assisted 

selection (MAS) (Tang et al. 2002, 2003, Knapp 2003). Molecular markers have been identified for 

a number of sunflower rust-resistant R genes. These markers have been used to detect resistance 

genes in breeding lines and wild sunflower. For example, two SCAR markers, SCT06950, which 

is associated with the rust resistance gene R1, and SCX20 (600), which is linked to the Radv gene, 

mapped to linkage groups (LGs) 8 and 13, respectively (Yu et al. 2003, Qi et al. 2011). Lawson et al. 
(2010) reported mapping of the R2 gene to sunflower LG 9. Qi et al. (2011) mapped the R4 gene 

to a large nucleotide-binding site and leucine-rich repeat (NBS-LRR) cluster on LG13. Molecular 

mapping of the gene R5 has not been reported in the literature. However, this gene is reported to be 

associated with two simple sequence repeats (SSRs) as reported by Sendall et al. (2006). A germ-

plasm line HA-R2 carrying the rust resistance gene R6 was released as a multirace rust-resistant 

line in 1985 but has not been widely used in commercial hybrid production. R6 remains effective 

against the prevalent rust races of sunflower in North America. Molecular marker analysis demon

strated by Qi et al. (2012) revealed that the LG2 markers showed association with rust resistance. 

Genotyping of the 94 F2 individuals (progenies derived from the crosses HA 89 with HA-R2) with 

23 polymorphic SSR markers from LG2 confirmed the R6 location on LG2, flanked by two SSR 

markers, ORS1197-2 and ORS653a, at 3.3 and 1.8 cM of genetic distance, respectively. The markers 

for R6 developed by Qi et al. (2012) will provide a useful tool for speeding up deployment of the 

R6 gene in commercial sunflower hybrid production. 

The future of the development of sunflower inbred lines or hybrids with high levels of  durable 

resistance will depend on the ability to select genotypes that have combinations of effective resis

tance genes. Knowledge of virulence evolution of the pathogen population and available DNA 
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markers closely linked to host R genes is a prerequisite for successful gene pyramids. MAS is the 

choice. To improve the efficiency of MAS, it is important that the recombination frequency between 

the target gene and the marker be as low as possible. Developing a molecular marker that is located 

within the rust resistance gene (gene-specific marker) will eventually solve the problem, and the 

durable genetic resistance through gene pyramiding will be effective for the management of rust. 

Chemical Control 
Though fungicides may be considered as a last alternative in controlling the rust disease, lack of 

genetic resistance to some races of causal fungus, P. helianthi, necessitates the use of effective 

fungicides to reduce the impact of rust disease on sunflower yield and quality of seed. Earlier 

fungicides like dithiocarbamates (maneb, zineb, mancozeb), elemental sulfur, Bordeaux mixture, 

benodanil, and oxycarboxin were established to be effective for the control of the disease (Kolte 

1985). Now newer fungicides, tebuconazole 39 (Folicur) at 0.125 kg/ha, pyraclostrobin 25 (Headline) 

at 0.15 kg/ha, prothioconazole 48 (Proline) at 0.2 kg/ha, boscalid 25 (Lance) at 0.25 kg/ha, and 

propiconazole 12.5 + trifloxystrobin 12.5 (Stratego) at 0.18 kg/ha, are reported to be highly effective 

in managing the sunflower rust (Gulya 1991, Shtienberg 1995, Markell 2008, NDSU 2009). The 

action  threshold for fungicide application is 3% uredopustule coverage on upper leaves (Shtienberg 

1995). This, therefore, means fungicidal management of rust should be considered when rust is 

found on the upper leaves and the plant is in the range of vegetative stages up to the R6 growth 

stage, or when rust pustules cover 5% of the lower leaves at or before flowering. Recommendations 

from fungicide research trials indicate that when rust has infected the upper four leaves at 1% or 

less, then fungicides like Headline and Quadris can be used. If the infection of the upper four leaves 

is 3% or greater, then Folicur may be used. All effective fungicides (Proline, Folicur, Headline, 

and Stratego) can reduce the rust incidence and severity as expressed in area under the disease 

progress curve (AUDPC). Triazoles (Proline and Folicur) tend to have lower AUDPC values than 

strobilurins (boscalid). The AUDPC due to the triazole group of fungicide spray is reduced by 50%, 

consequently increasing the crop yield by 10%–20%. Confection sunflower, with their higher value 

and greater susceptibility, would more likely pay back the cost of fungicide application. The effec

tiveness of early or late applications or both may vary between years depending on the earliness of 

the rust infection and disease development. An infection on the upper leaves at the growth stage of 

R6 or later will not likely have a negative yield effect (Shtienberg 1995, NDSU 2009), and hence, 

fungicide spray may not be necessary. 

In the United States, no fungicides have the federal label or use against sunflower rust. A specific 
exemption under any emergency may be granted by the Environmental Protection Agency (EPA) 

in some years for use of a specific fungicide for that single year (NDSU 2009). Interestingly, the 

Colorado State in that country supported the request for the recommendation of use of Folicur 3.6 F 

when rust epidemics threaten the crop. 

Cultural Control 
Cultural management practices include plowing under or early-season management of volunteer 

sunflower plants carrying infection and all crop remnants by removal and destruction by fire. 

Growing of the sunflower crop 500 m away from the site of the previous years’ plot is useful in 

minimizing the incidence and severity of the sunflower rust (Mitov 1957). Sunflowers should not be 

planted 2 years in a row in the same field. If possible, avoid planting next to a field that had sunflower 

last year. If rust occurs on volunteer plants in the vicinity of a planted field, they should be destroyed 

as soon as possible to prevent the spores from blowing into the planted field. Depending on the 

occurrence of disease in a particular locality, the choice of planting dates may be used to advantage 

to avoid the disease (Kolte 1985). Early planting and short-season hybrids will generally have less 

rust. Avoid dense plant stand and high-nitrogen fertilization (Perez et al. 2002). 

Controlling wild sunflowers is a very important step in the management of sunflower rust. All 

51 species of Helianthus found in North America are hosts to the rust pathogen. All spore stages 
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readily occur on wild sunflowers, which increase the sunflower rust problem in two ways. First, 

when the early spore stages appear on wild and volunteer sunflowers, the onset of uredinia is earlier. 

This allows more infection cycles to take place, which creates a greater yield loss potential. Second, 

sexual recombination occurs when the pathogen completes its sexual cycle. This may result in new 

races that overcome available resistance. Therefore, removal of wild sunflower populations around 

fields is desirable and strongly recommended. 

DOWNY MILDEW 

SYMPTOMS 

Disease symptoms of various kinds depending on the age of tissue, level of inoculum, environ

mental conditions (moisture and temperature), and cultivar reaction become evident as seedling 

damping-off, systemic symptoms, local foliar lesions, and basal root or stem galls. 

Damping-Off 
When susceptible sunflower plants are subject to subterranean infection by the downy mildew fun

gus, damping-off in the seedling stage occurs, particularly under cool (12°C–13°C) and very wet 

soil conditions. Seedlings are killed before or soon after emergence, resulting in reduced plant 

stands under field conditions. Affected plants dry and become windblown. 

Systemic Symptoms 
Sunflower plants carrying systemic infection are severely stunted. Close correlation has been found 

between fungal growth and height of the seedlings following inoculation, depending on the suscep

tibility and direction of spread of the fungus. In a susceptible variety, the pathogen tends to colonize 

the whole plant. Leaves of affected plants bear abnormally thick, downward-curled leaves that show 

prominent yellow and green epiphyllous mottling (Figure 6.3). A hypophyllous downy growth of 

FIGURE 6.3  Downy mildew of sunflower. (Courtesy of Dr. Chander Rao and Dr. Varaprasad, DOR, 

Hyderabad, India.) 
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the fungus, consisting of the conidiophores and conidia, develops and covers large areas that are 

concurrent with the epiphyllous yellow spot (Cvjetkovic 2008). The stem becomes brittle. The sys

temically infected sunflower plants show loss of phototropic and negative geotropic responses. Such 

plants also show pronounced reduction of the development of secondary rootlets. Flower heads of 

the affected plants remain sterile and produce no seeds, or only occasionally the seeds are produced 

on such heads. When the older plants are infected, the symptom expression may be delayed until 

flowering without visible chlorotic symptoms on leaves. 

Local Foliar Lesions 
Small, angular greenish-yellow spots appear on leaves as a result of secondary infection through 

zoospores liberated from wind-borne zoosporangia. The spots may enlarge and coalesce to infect 

a larger part of the leaf. Plants are susceptible to such infection for a longer period than to systemic 

infection. The fungal growth becomes visible at the lower surface of the diseased area and persists 

for some time under humid conditions. Such local foliar symptoms usually do not result in systemic 

symptoms and are, therefore, considered to be of less economic importance. 

Basal Root or Stem Galls 
Development of basal gall symptoms occurs independently of the infection that results in systemic 

symptoms. The root infection may result in the formation of galls at the base of the plants on pri

mary roots. Such roots are discolored, scurfy, and hypertrophied; the number of fibrous secondary 

roots is reduced, and the plants become susceptible to drought. The percentage of plants with basal 

gall symptoms seldom exceeds 3% in a particular field. Such plants are less vigorous and subject 

to lodging. Lodging of plants with basal gall symptoms results in fracturing directly through the 

galled area, thus causing total loss of a particular plant. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Downy mildew of sunflower generally is found in more temperate regions where emerging 

seedlings are exposed to low temperature and abundant precipitation. Like sunflower, its 

major host, the causal fungus Plasmopara halstedii (Farl.) Berl. and de Toni, is considered 

to be of North American, Western Hemisphere, origin. The disease was first described in the 

northeastern United States in 1882, and in 1892, it was found on H. tuberosus in Russia (Kolte 

1985). As the sunflower expanded to other countries, the disease has followed it closely, espe

cially after World War II. The fungus has been distributed by seed trade rapidly and is reported 

to occur in various sunflower-growing countries all over the world except in Australia and New 

Zealand, though downy mildew on Arctotheca and Arctotis in Australia and New Zealand 

has been attributed to P. halstedii (Constantinescu and Thines 2010). It takes first place on its 

economic importance for sunflower production in the United States, Canada, and European 

countries. Epidemic outbreak of the disease in 2007 and 2008 caused 85% losses in sunflower 

yield in Turkey (Göre 2009). The overall loss directly attributed to downy mildew was esti

mated to be a half million dollars in the Red River Valley in 1970. When long periods of pre

cipitation and cool weather follow the planting, losses to the extent of 80% have been reported 

from major sunflower-producing areas of eastern Europe. In France, where the sunflower is 

grown continuously for 2 years, about 70%–80% of plants have been reported to show inci

dence of the disease. In certain fields, about 90% incidence of the disease has been reported 

from Yugoslavia. Systemic infections are most destructive, occasionally causing 50%–95% 

yield reduction (Rahim 2001). Yield losses may be due to the total loss of seedlings, resulting 

from damping-off of the seedlings induced by the disease. Yield losses may also become more 

noticeable and serious when large field areas such as low spots are affected. Yield losses are 

generally additive, the combination of plant mortality, lighter, and fewer seeds produced by 

surviving plants, and lower oil content. 
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PATHOGEN: Plasmopara halstedii (FARL.) BERL. AND DE TONI 

Classification 
Domain: Eukaryota 

Kingdom: Chromista 

Phylum: Oomycota 

Class: Oomycetes 

Order: Peronosporales 

Family: Peronosporaceae 

Genus: Plasmopara 
Species: halstedii 

The pathogen P. halstedii (synonym P. helianthi) is an obligate parasite conveniently used for a 

group of closely related pathogens that cause downy mildew on sunflowers and many other genera 

and species of the subfamilies Asteroidae and Cichorioideae of the family Compositae. 

The sporangiophores are slender, monopodially branched at nearly right angles with three 

sterigmata at the very end bearing ovoid to ellipsoid zoosporangia singly at the tips of branches. 

It is interesting that entirely new types of sporangia are formed on sunflower roots differing from 

those produced on leaves. The sporangiophores emerge through stomata on leaves. The size of spo

rangia is variable as is the number of biflagellate zoospores released by one single sporangium. The 

zoosporangia germinate by the formation of biflagellate zoospores or by germ tubes. The sporangia 

germinate in 2% sucrose in tap or distilled water. The temperature range for the germination of 

zoosporangia is 5°C–28°C, with an optimum temperature range being 16°C–18°C. The zoosporan

gia formed at low temperature (8°C) may show low germination (1%–6%), whereas those formed at 

high temperature (27°C) are reported to show high germination (86%–95%). The vegetative thallus 

is composed of intercellular hyphae that produce globular haustoria that penetrate into the host cells 

allowing the obligate biotrophic fungus to absorb nutrients. 

Sexual reproduction is by means of oogamy resulting in the formation of thick-walled oospores 

in the intercellular spaces of roots, stems, and seeds that act as surviving structures. The oospores 

are brown with a slightly paler wall and measure about 27–32 μm in diameter. 

Physiological Races 
The fungus completes the sexual cycle annually, affording maximum opportunity for the recombi

nation of virulence genes and the development of new races, which is evident from reports of work 

done by several workers from different parts of the world. The identification and nomenclature of 

these races are based on the reaction of a set of differential lines (Sackston et al. 1990, Tourvieille 

de Labrouhe et al. 2000). Physiological races of P. halstedii were first reported by Zimmer (1974) 

and distribution of races appeared to be geographically separated. For example, in 1991, a total 

eight races of the fungus were reported. Races 1, 4, and 6 were confined in Europe and races 2, 3, 

and 4 in Asia. Race 5 was confined to greenhouse; race 7 was reported in Argentina, and race 8 was 

reported in North Dakota in the United States (Gulya et al. 1991). Currently worldwide, 36 races 

have been identified controlled by 15 dominant resistance genes, and such a set of 15 differential 

host lines is RHA 265, RHA 274, RHA 464, DM 2, PM 17, 803, HAR-4, HAR-5, HA 335, HA 337, 

RHA 340, HA 419, HA 428, HA 458, and TX 16; among them about 6–7 are the world’s dominant 

races, the four races (DM 700, DM 710, DM 730, DM 770) being the prominent ones (Gulya 2007a, 

Gulya et al. 2011, Viranyi and Spring 2011). In the United States, 11 races have been identified 

(2000–2008), but no isolate of P. halstedii from that country could overcome the PI (6) gene (HA 

335) since it was released in 1988 until 2009 when the first hot race (DM 734) attacking the PI (6) 

gene was identified, and in 2010, it was further detected to be prevalent in North Central Dakota and 

Minnesota in the United States. Four more hot races (DM 314, DM 704, DM 714, DM 774) that are 

able to overcome the PI (6) gene (HA 335, HA 336) and PI 7 gene (HA 337, HA 338, HA 339) have 

been identified to be prevalent mostly in North Dakota and also in Minnesota in the United States. 
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In France, race 100 was first identified in 1965 and was well controlled by two resistance-specific 

genes PI (1) and PI (2). Zimmer and Fick (1974) found that the gene PI (1) provides resistance against 

race 100 and PI (2) against races 100 and 300. These two genes controlled the downy mildew 

population in Europe until 1998 when new races emerged (710 and 703) in France (Tourviellie de 

Labrouhe et al. 2000, Delmotte et al. 2008, Jocic’ et al. 2012). Later research showed that these 

races were introduced from the United States via infected seeds (Roeckel-Drevet et al. 2003). Since 

then, a monitoring network that includes breeders and extension partners has been conducted by 

the French Ministry of Agriculture allowing to follow the evolution of the pathogen. Thus, 15 races 

more could be identified, especially race DM 304 (the first race in France to overcome the PI (6) 

gene) since 2000 and in 8 years (2000–2008). Six more hot races (DM 307, DM 314, DM 334, DM 

704, DM 707, DM 714) have been identified in France (Sakr et al. 2009, Sakr 2010, Tourvieille de 

Labrouhe et al. 2010, Ahmed et al. 2012). 

In Bulgaria, during 1988–2000, over a period of 12 years, only two downy mildew races were 

known. Now there are five races 300, 330, 700, 721, and 731; race 700 is dominant in the largest 

area (Shindrova 2013). In Romania, for approximately 35 years, there existed only two races, but 

in the last decade, five races of the downy mildew pathogen have been reported (Teodorescu et al. 
2013). Races 100, 300, 310, 330, 710, 703, 730, and 770 have been identified in Spain. Race 703 is of 

high virulence in the northeast, while Race 310 seems to occur over the south, the main sunflower-

growing region of the country (Molinero-Ruiz et al. 2003). In Hungary, five races (100, 700, 730, 

710, 330) are prevalent (Kinga et al. 2011). In Russia, seven races of the pathogen could be identified 

in the Krasnodar region of the Russian Federation, and it is determined that against a background 

of dominant race 330, races 710 and 730 are also economically significant. A conclusion has been 

made about the necessity of separate testing on resistance of sunflower to these races and extraction 

of a material with complex resistance to them (Antonova et al. 2010). In Italy, HA 335 containing 

the efficient genes for resistance to P. halstedii never shows any symptoms under varied favorable 

climatic conditions (Raranciuc and Pacureanu-Joita 2006). In Serbia, race 100 was the race until 

1990. In 1991, the presence of race 730 was confirmed in that country (Lac’ok 2008). The most 

predominant single race in sunflower-growing Karnataka, Andhra Pradesh, and Maharashtra states 

of India appears to be race 100 (Kulkarni et al. 2009). 

In the last decade, advanced tools of biotechnology have enabled discernment of intraspecific 

groups of Plasmopara on the molecular level and led to the shift from a morphological to a phyloge

netic species concept (Spring and Thines 2004, Viranyi and Spring 2011). With molecular markers 

based on the partial sequence of the nuclear internal transcribed spacer (ITS) regions, Spring et al. 
(2006) and Thines et al. (2005) detected polymorphism between profiles of races 100, 310, and 330, 

as well as between groups of populations representing races 700, 701, 703, 710, and 730. Giresse 

et al. (2007) found high genetic variability between isolates from France and Russia using single 

nucleotide polymorphism (SNP) markers, whereas Sakr (2010) utilized expressed  sequence tags 

(EST)-derived markers to determine the genetic relationship between races. Evidence for asexual 

genetic recombination in P. halstedii is also reported (Spring and Zipper 2006). 

Disease Cycle and Epidemiology 
Pathogen survives through oospores in the residue of the preceding sunflower crop in soil or through 

oospores on seeds from the systemically infected plants. Some oospores have been reported to remain 

dormant up to 14 years. Overwintering oospores in plant residues in soil or seed germinate mostly 

under wet conditions the following spring. Primary infection is effected during seed germination in 

the soil and the emergence of sunflower seedlings. It may be caused by fungus mycelium or oospores 

present on infected seeds, or by oospores present in infected soil into which healthy seeds are sown. 

Starting from a single oospore that germinates and gives rise to a single sporangium, zoospore dif

ferentiation and release follow. In the presence of free water, the zoospore swarms rapidly and, if 

a host tissue (root, root hair, stem, or less commonly leaf) is available, settles on an infection site 

where encystment and subsequent germination take place. Penetration of the host is direct through 
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the epidermis. Once established, the fungus grows intercellularly, and in a compatible host/pathogen 

combination, it starts with systemic colonization toward the plant apex. Systemic mycelium may be 

present in all plant tissues except meristems. When conditions are favorable, asexual sporulation 

takes place by means of sporangiophores arising primarily through stomata or other openings on 

the invaded tissue. Oospores are also produced in infected plant parts, primarily in roots and stem. 

The number of diseased plants depend on the amount of inoculum on seeds and in soil. No matter 

if primary infection starts from seeds or soil, the course of disease development in infected plants 

is identical. The fungus develops in unison with the development of young plants. It  penetrates the 

root, stem, and cotyledons and reaches the meristematic tissue at the top of young plants. The fun

gus develops inside the infected plants intercellularly, in all plant parts, invading the young tissues 

and depriving the infected plants of assimilates and water. This is why infected plants lag behind 

healthy ones in growth and development. This way of fungus expansion inside the plant tissues is 

called a systemic infection. It begins with the infection of the germ and ends with the infection of 

the head and seeds. The fungus penetrates all parts of the seed (husk, endosperm, and germ), which 

then produces a new infected seedling. In that way, conditions are created for the occurrence of the 

disease in the subsequent sunflower-growing season. 

For the development of the downy mildew of sunflower, rain is the critical factor during the 

first fortnight of growth, because only then are the seedlings susceptible to systemic infection. The 

period of maximum susceptibility to systemic infection is as short as 5 days at 22°C–25°C under 

greenhouse conditions. Under field conditions where mean air temperature during emergence is 

13.2°C, plants remain susceptible for at least 15 days, provided enough rain during this period 

becomes available to provide soil water for only a few hours (Raranciuc and Pacureanu-Joita 2006). 

The percentage of infected plants is increased with depth of sowing. 

The age of the sunflower seedlings is also an important factor in the development of systemic 

symptoms of downy mildew. Susceptibility of the seedlings decreases as the age advances; 3-day

old seedlings are the most susceptible to systemic infection. Therefore, any environmental factor 

that favors rapid seedling development shortens the interval of maximum susceptibility. Although 

seedling development is directly proportional to soil temperature, the range of soil temperature 

that normally prevails during the spring planting season is not a factor-limiting infection by downy 

mildew, particularly in the Red River Valley area of the United States and Canada (Kolte 1985). 

Spread of the disease in relation to soil type has been studied. The heavy clay soils and flat 

topography of the Red River Valley area result in poor drainage, which favors downy mildew. The 

spread of the disease under field conditions preferentially follows the line of slope. Besides, tillage 

and running water are likely to be important factors in the spread of the disease. Sunflower plants 

suffering from boron deficiency become more susceptible to downy mildew. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Host plant resistance using race-specific genes designated as Pl, of which 22 have been described, 

is the most effective (Gulya 2007). Genes that confer resistance to downy mildew are dominant 

and often form clusters (As-Sadi et al. 2012, Vincourt et al. 2012). A number of Pl genes have been 

reported (Pl (1) to PI (15), Plv, Plw, Plx-z, Mw, Mx, Plarg, Pl HA-R4), and the position of 11 genes 

has been determined on the SSR genetic map (Mulpuri et al. 2009, Jocić et al. 2012, Liu et al. 2012). 

Sunflower and P. halstedii have a typical gene-for-gene relationship for each virulence gene pre

sented in the pathogen exists a corresponding resistance gene in the host plant. If the plant has an 

effective resistance gene that will counteract the virulence gene in the pathogen, the infection will 

be stopped near the penetration site expressing a hypersensitive reaction (HR) that is manifested as 

an extensive cell death in the infected tissue. The constant evolution of new physiological races, due 

to pathogenic variability and selection pressure resulting from the use of resistant hybrids and seed 
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treatment fungicides, continuously challenges breeders to identify and introduce new resistance 

genes or gene clusters. Wild sunflower species have been a plentiful source of genes for downy 

mildew resistance. Downy mildew can be controlled by single, race-specific major dominant genes. 

Multirace resistant germplasms from wild sunflower species have been developed. The multitude of 

genes from the wild species for downy mildew resistance is supported by the number of germplasm 

releases that incorporate protection against ever-evolving pathotypes of downy mildew that infect 

cultivated sunflower. 

It is, however, not advisable to use only one resistance gene in developing new cultivars. Rather, 

several different resistance genes should be employed, either by growing different hybrids carrying 

the different resistance genes or by pyramiding such genes. This strategy may extend the life cycle 

of each gene by keeping the selection pressure less effective against all known races minimizing 

the development of a new race. For most of these resistance genes, sequence-specific markers have 

been developed, which facilitate their detection and make the selection process faster and more 

reliable. A considerable number of sunflower hybrids that are genetically resistant to downy mildew 

have been released for commercial cultivation from time to time (Shirshikar 2008). Some of these 

hybrids are Sungene-85, MSFH-47, Pro-009, Prosun-09, SH-416, DRSF-108, PCSH-243, PRO-011, 

SCH-35 or Maruti, NSH-23, Sunbred-2073, NSSH-303, K-678, and MISF-93. Most commercial 

hybrids marketed as downy mildew resistant become susceptible to the new races; a few hybrids, 

however, can be bred that show resistance to major prevailing races in a specified sunflower-growing 

region (Raranciuc and Pacureanu-Joita 2006, Seiler 2010). 

By combining the parial resistance provided by minor genes with specific resistance genes, 

durable resistance could be achieved (Labrouhe et al. 2008, Tourvieille de Labrouhe et al. 2008, 

Vear et al. 2008) or by introducing genes from different clusters with different origins in a single 

genotype (Jocić et al. 2010). Defeated hypostatic genes may be resistant to such new races. Hence, 

the combination of these defeated genes with novel genes, to which the pathogen has not been 

exposed, will extend the useful life of the defeated genes and will provide more durable resistance 

(Lawson et al. 1998). A great number of researchers have contributed to better understanding of 

the mechanisms involved in downy mildew resistance. The developments in biotechnology resulted 

in molecular markers for detecting PI genes and provided means for MAS. Candidate resistance 

genes have been proposed. For example, a marker derived from a bacterial artificial chromosome 

(BAC) clone has been found to be very tightly linked to the gene conferring resistance to race 300, 

and the corresponding BAC clone has been sequenced and annotated. It contains several putative 

genes including three toll-interleukin receptor–nucleotide-binding site–leucine-rich repeat (TIR– 

NBS–LRR) genes. However, only one TIR–NBS–LRR appeared to be expressed and thus consti

tutes a candidate gene for resistance to P. halstedii race 300 (Franchel et al. 2012). Resistance to 

P.  halstedii can be of two types: Type I resistance can restrict the growth of the pathogen as in the 

case of” PI ARG gene “controlled by TIR–NBS–LRR genes and Type II resistance cannot restrict 

the growth of the pathogen, allowing the pathogen to invade, and subsequently an HR occurs as in 

the case of the “PI 14” gene controlled by coiled-coil CC–NBS–LRR genes (Radwan et al. 2011). 

MAS could be used for detecting not only major but also minor genes and would bring researchers 

a step closer to achieving sustainable resistance to downy mildew (Jocić et al. 2012). 

Chemical Control 
A wide range of commercial fungicides are available in the market with different modes of action for 

the management of downy mildew (Gisi 2002, Gisi and Sierotzki 2008). Coating of seeds with meta

laxyl derivatives is most frequently used, as it provides protection at the time of primary infection, 

that is, at early stages of development of sunflower especially if a new pathogenic race occurs. Seed 

treatment with the aforementioned chemical at the rate of 3–6 g/kg seed is reported to give complete 

check of downy mildew of sunflower. In certain situations, the plants may remain completely pro

tected throughout the growing period by following the aforementioned treatment. Strobilurins (espe

cially trifloxystrobin) exhibit high activity against P. halstedii and is a promising group of fungicides 
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for controlling sunflower downy by seed treatment and foliar spray (Sudisha et al. 2010), though 

other fungicides are not considered effective for the control of the foliar portion of this  disease 

and are not generally recommended. Concerning issues related to the use of chemical management 

include emergence of pathogen races resistant to fungicides as reported from several countries, nota

bly from France, Germany, Turkey, and Hungary (Viranyi and Spring 2011); negative environmental 

effects of fungicides; and the economic feasibility of the disease management measures. 

Seed treatment, combined with the use of a downy mildew–resistant hybrid or cultivar, offers the 

best promise for the management of the disease. 

Induced Host Resistance 
Besides the traditional management strategies, alternative or supplementary methods are reported to 

be effective in providing protection against sunflower downy mildew. One such possible solution is 

the use of systemic acquired resistance (SAR), that is, activation of the defense system of the plants. 

Commercially available immunoactivator Bion 50 W (benzo(1,2,3)-thiadiazole-7-carbothioic acid 

S-methyl ester) at 320 mg/L has been found to reduce the infection of sunflower by P. halstedii (Tosi 

et al. 1999, Korosi et al. 2009, 2011). Seed treatment with beta-aminobutyric acid (BABA) at the 

concentration of 50 mM also induces resistance to P. halstedii in sunflower (Nandeshkumar et al. 
2009). Chitosan-induced resistance is also found to be effective against downy mildew in sunflower 

(Nandeshkumar et al. 2008). Induction of resistance by culture filtrate of Trichoderma harzianum 
against the disease is also reported (Nagaraju et al. 2012). This method of using specific chemical 

compounds for triggering plant defense mechanisms proves to be effective in diminishing the severity 

of infection of downy mildew in genotypes without genetic resistance (Gisi 2002, Ba’n et al. 2004). 

Cultural Control 
The emergence of pathogen strains resistant to chemicals and the occurrence of new races able to over

come specific resistances have led to include cultural practices for a more sustainable  management of 

downy mildew. The choice of planting sites and optimum sowing time should be such that seedlings 

emerge rapidly and such that it reduces chances of free soil water during the period of susceptibility. 

For example, sunflower hybrid planting seed is almost exclusively produced in California. Due to the 

lack of summer rains and furrow irrigation, California-produced seed is relatively disease free, and 

thus, it regularly meets phytosanitary restrictions imposed by many countries (Gulya et al. 2012). 

Fields should be selected such that these are at least 500 m away from a field on which sunflower 

had been grown the previous year (Jocic’ et al. 2012). Seed meant for sowing should be clean, and 

the seed should be obtained from a disease-free area; crop rotation is possible but not feasible, since 

the pathogen persists in soil and plant residues for 5 or more years, but proper crop rotation, that is, 

maintaining intervals of 4–5 years between two sunflower crops in the same field with other nonsus

ceptible crops, appears to be a quite desirable practice. The incidence of downy mildew increased 

from 42% in the second year to 100% in the fourth without crop rotation in Spain. While in plots 

where wheat and sunflower are grown alternately, the incidence has been reported to go only up to 

15%–16%. Since wild and volunteer sunflowers and weed are hosts for the pathogen, eliminating 

these plants will help reduce overall inoculum built-up in the fields. Sowing should be performed at 

optimum time with avoidance of late planting (Covarelli and Tosi 2006, Jocic’ et al. 2010). 

Biological Control Hypovirulence in P. halstedii 
Plasmopara halstedii virus (PhV) is an isometric virus found in the oomycete P. halstedii (Gulya 

et al. 1990a, 1992, Mayhew et al. 1992). The fully sequenced virus genome consists of two ss(+) 

RNA strands encoding for the virus polymerase and the coat protein (CP), respectively. Most of the 

field isolates of P. halstedii from different countries show morphologically and biochemically indis

tinguishable virions (Heller-Dohmen et al. 2008). The virions are isometric and measure 37 nm 

in diameter with one polypeptide of 36 kDa capsid protein and two segments of ssRNA (3.00 and 

1.6 kb) that have been found to harbor PhV. The complete nucleotide sequence of PhV has been 
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established and it shows similarities to the Sclerophthora macrospora virus (SmV) and viruses 

within the Tombusviridae family as well as Nodaviridae (Heller-Dohmen et al. 2011). The presence 

of PhV leads to hypovirulence effects by weakening the aggressiveness of P. halstedii (Grasse et al. 
2013). The PhV thus offers a great promise for obtaining a biological control of downy mildew dis

ease of sunflower though practical utility of such an effect is yet to be investigated. 

REGULATORY CONTROL 

P. halstedii is listed as a plant quarantine pathogen (Ioos et al. 2012). Plants grown from infected 

seed, although they show no visible systemic symptoms, have been reported to produce infected 

seed and disseminate the pathogen. In addition, as seen earlier, there exists a physiological special

ization within the P. halstedii, suggesting the importance of prevention of chance introduction of 

the more prevalent and widely virulent North American race of P. halstedii into areas where it does 

not occur. In Australia and perhaps in South Africa and in India, strict quarantine regulations have 

precluded its introduction. 

ALTERNARIASTER BLIGHT 

SYMPTOMS 

Symptoms of the disease are characterized by the development of dark brown to black, circular-to

oval spots, varying from 0.2 to 5.0 mm in diameter. The spots are surrounded by a necrotic chlorotic 

zone with a gray-white necrotic center marked with concentric rings (Figure 6.4). Initially the spots 

are small and they gradually increase in size, making their first appearance on the lower leaves. As 

the plant grows, the spots subsequently are developed on middle and upper leaves. At the later stages, 

elongated spots are formed on petioles, stem, and ray florets. Under high humidity conditions, the spots 

enlarge in size and coalesce resulting in blighting of leaves and sometimes rotting of flower heads. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Alternariaster blight (formerly termed as Alternaria blight) of sunflower was first described in 

Uganda in 1943 and has since been recognized as a potentially destructive disease in most of the 

FIGURE 6.4  Alternaria leaf spot of sunflower. (Courtesy of Dr. Tom Gulya, USDA-ARS, Northern Crops 

Research Lab, Fargo, ND.) 
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sunflower-growing areas of the world. It is reported from Argentina, Australia, Brazil, Bulgaria, 

India, Japan, Romania, Tanzania, Yugoslavia, South Africa, and the United States (Amabile et al. 
2002, Calvet et al. 2005, Berglund 2007, Singh and Ferrin 2012). 

In subtropical sunflower-growing areas, Alternariaster blight is considered as a major disease 

and can cause yield losses from 15% to 90% (Berglund 2007). The disease has been reported to 

reduce the seed and oil yields by 27%–80% and 17%–33%, respectively, in India. A negative cor

relation between increase in disease intensity (25%–96%) and yield components and oil content 

has been established (Kolte 1985, Chattopadhyay 1999). The most affected components due to the 

disease are the number of seeds per head, followed by the seed yield per plant. The disease also 

affects the quality of the sunflower seeds by adversely affecting the seed germination and vigor of 

the seedlings (Amaresh and Nargund 2004, Wagan et al. 2006). The loss in seed germination varies 

from 23% to 32% (Ahamad et al. 2000, Pandey and Saharan 2005). The nature of yield reduction 

is determined to some extent by the stage of plant growth when the disease epidemic develops. 

For example, the relationship between severity and yield in the R3 (second phase of inflorescence 

elongation) growth stage has proved that plants with disease severity higher than 10% show yield 

lower than 500 kg/ha regardless of the sowing dates. This value can therefore be used as a damage 

threshold for the disease (Leite et al. 2006). 

PATHOGEN: Alternariaster helianthi (HANSF.) SIMMONS  
(=  Alternaria helianthi (HANSF.) TUBAKI  AND NISHIHARA) 

Classification 
Kingdom: Fungi 

Division: Ascomycota 

Class: Dothideomycetes 

Order: Pleosporales 

Family: Leptosphaeriaceae 

Genus: Alternariaster 
Species: helianthi 

The pathogen has been first described as a member of the genus Alternariaster by Simmons 

(2007) and has been renamed Alternariaster helianthi (Hansford) Simmons (formerly Alternaria 
helianthi and Helminthosporium helianthi) as type and has hitherto been monotypic based on 

the absence of conspicuous internal pigmented, circumhilar ring found commonly in conidia and 

conidiophores of the Alternaria fungus. The phylogenetic analysis made by Alves et  al. (2013) 

confirms the segregation of Alternariaster from Alternaria by showing that Alternariaster is a 

well-delimited taxon belonging to the Leptosphaeriaceae instead of the Pleosporaceae to which 

Alternaria belongs (Schoch et al. 2009). The mycelium is a septate, rarely branched, brown, and 

2.5–5.0 μm in width. The conidiophores are hypophyllous, solitary or in small groups, straight 

to slightly sinuous, 100–225 × 7.5–10 μm, simple 3–6 septate, pale to chestnut brown, smooth, 

conidiogenous cells tretic, integrated, and terminal to intercalary and sympodial (Alves et al. 2013). 

The conidia are dry, solitary, and cylindrical to subcylindrical, occasionally with cells of different 

sizes, 60–115 × 11–29 μm, with rounded apex and base, transversally 5–9 septate (1–2 longitudinal 

or oblique septa), often deeply constricted at septa, eguttulate, subhyaline to pale brown, smooth, 

and thickened and darkened hilum (Figure 6.5). Germ tubes are oriented particularly to the main 

axis of the conidium and also polar (Alves et al. 2013). The conidia are not produced in chains, but 

2–3 conidia in short chains may be observed in the culture as well as on the diseased host bits, on 

incubation in moist chambers. Genetic variability in isolates of A. helianthi has been assessed by 

random amplified polymorphic DNA (RAPD) analyses, which reveal the presence of six genetically 

distinct groups in India. The isolates Ah-1, Ah-7, and Ah-14 are reported to be genetically distinct 

(Prasad et al. 2009). In general, potato-dextrose agar (PDA) has been used for isolation by several 

workers, and it appears that the fungus produces very scanty mycelial growth and moderate to 
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FIGURE 6.5  A. helianthi spores. (Courtesy of Dr. Tom Gulya, USDA-ARS, Northern Crops Research Lab,  

Fargo, ND.) 

abundant sporulation on PDA. Comparatively good mycelial growth could be obtained on sunflower 

leaf extract agar medium (SLEAM) and Richards agar medium. Autoclaved carrot discs have been 

proved excellent for sporulation and luxuriant growth of A. helianthi. SLEAM with 2% sucrose and 

sterilized carrot disc supports maximum sporulation (Sujatha et al. 1997). On potato–carrot agar, 

the colony is raised centrally, with aerial mycelium felted, while having a wide periphery of flat 

sparse olivaceous buff to greenish glaucous mycelium with irregular margins (Alves et al. 2013).  

The estimated minimum temperatures for mycelial growth rate and for conidium germination are 

5.5°C and 7.9°C, respectively, while the maximum temperatures are 32.9°C and 40.0°C, respec

tively (Leite and Amorim 2002). The optimum temperature for growth of the fungus in culture is 

26°C, and it sporulates at the temperature range of 5°C and 35°C–40°C, with an optimum sporula

tion temperature of 20°C. Sporulation and mycelial development of the fungus occur best at pH 

5.3–5.9 (Kolte 1985). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The pathogen is seed borne and can, therefore, be introduced into new areas from infected seed 

(Salustiano et al. 2006, Micheli et al. 2007). Udayashankar et al. (2012) have developed the species-

specific PCR-based diagnostic technique that provides a quick, simple, powerful, reliable alterna

tive to conventional method in the detection and identification of A. helianthi. Locally, however, 

infested stubbles and crop debris left on the top of the soil from one growing season to the next is 

the most important source of inoculum from which primary infections are established. On such 

plants, the fungus overwinters as mycelium. Since sunflower can be grown throughout the year 

in all crop seasons, volunteer plants of infected sunflower or overwintering sunflower may also be 

an important primary source of inoculum. The exact process of penetration and infection at the 

host tissue level is through the cuticle and cell wall, and junctions between epidermal cells are the 

most frequent sites of appressoria formation (Romero and Subero 2003). The pathogen produces a 

specific toxin in culture and produces typical symptoms of the disease when inoculated on leaves 

(Kalamesh et al. 2012). The toxin inhibits seed germination as well as root and shoot growth under 

in vitro conditions (Madhavi et al. 2005a). 

Relative lesion density and severity are influenced by temperature and leaf wetness duration. The 

disease appears to be more severe at a temperature of 25°C. The minimum temperature for disease 



 

 

    

 

 

 

 

 

 

 

   

 

 

 

 

   

  

  

 

                  

               

              

 

249 Sunflower Diseases 

development, estimated by generalized beta function, is 13.0°C, and the maximum is 35.8°C. 

Relative lesion density increases with increasing periods of leaf wetness, as described by a logistic 

model (Leite and Amorim 2002). Positive significant correlation with relative humidity and a nega

tive significant correlation with air temperatures and sunshine hours have been observed for disease 

development (Das et al. 1998, Amaresh and Nargund 2004). Thus, hot weather and frequent rain 

during milk and wax stages of sunflower plant development favor Alternariaster blight infection. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Attempts to identify the sources of resistance to the disease have been made by several  workers 

(Madhavi et  al. 2005b, Murthy et  al. 2005, Gopalkrishnan et  al. 2010). Wild species such as 

H. tuberosus, H. occidentalis, H. resinosus, and H. argophyllus are highly resistant to the disease 

and can be used in breeding for disease resistance (Madhavi et al. 2005b, Sujatha and Prabakaran, 

2006, Prasad et al. 2009). The pathogen has been found to be restricted to epidermal cells in resis

tant wild sunflower as well as increase accumulation of phenols (Madhavi et al. 2005a). Sources of 

resistance to the disease have also been located in several germplasm accessions and hybrids. These 

are HPM-15R, HPM-116, and HPM-140 (Amaresh and Nargund 2000); LC-985, Performer, Select, 

Lc1029, and LC1093 (Raranciuc and Pacureanu 2002); 135, 1171, P-1019, 347, 446, 1039, 1210, and 

1483 (Mesta et al. 2005); PEH-K04 hybrids 43, 50, 60, 77, 80, 81, 84, 92, and 98 (Nagaraju et al. 

2005); RHA 587 and ARG × RHA 587 (Reddy et al. 2006); EC 68414 (Dawar and Jain 2010); sun

flower hybrid parental lines CMS7-1A, DRS 9, DRS 63, and DRS 34; and four hybrids CMS7-1A × 

DRS 22, CMS7-1A × DRS 9, DCMS 15 × DRS 9, and DCMS 15 × DRS 63 (Sujatha et al. 2008). 

Higher peroxidase activities are recorded in sunflower genotypes with high threshold levels of 

resistance and lesser in susceptible genotype indicating strong evidence for the important role of 

peroxidase enzymes in the central defense system against necrotrophic pathogen A.  helianthi, 
which could be used as a reliable biomarker for assessing resistance (Anjana et al. 2007, 2008). 

A number of sunflower genotypes are reported to possess partial resistance to the disease. The 

gametophytic selection combined with the conventional sporophytic selection can be considered as 

an effective tool in population improvement program to achieve a high level of resistance in a rela

tively short time (Chikkodi and Ravikumar 2000, Shobana Rani and Ravikumar 2006). Selection 

for resistant pollen on the stigmatic surface results in a corresponding increase in progeny resis

tance and successive pollen selection to further improve disease resistance of progeny. Repeated 

cycles of selection are required to achieve a useful level of resistance in sunflower, since resis

tance to Alternariaster in sunflower is polygenetically controlled (Chikkodi and Ravikumar 2000). 

Resistance to Alternariaster blight can be inducted or improved in the progenies derived through 

mutagenic treatment when seeds of sunflower genotypes are treated with 20 and 30 Kr of gamma 

rays (Oliveria et al. 2004, Patil and Ravikumar 2010, Shobharani and Ravikumar 2010). SAR in 

sunflower against Alternariaster blight can be inducted due to foliar application of salicylic acid 

at the concentration of 20 mM and Bion (acibenzolar at 0.05–5.0 mM). A lag period of 3–7 days is 

required for the induction of SAR (Ratnam et al. 2004a,b). 

Chemical Control 
Chemical management with protective (nonsystemic) fungicides such as iprodione, chlorothalonil, 

and mancozeb each at 0.2% spray as well as with therapeutic (systemic) fungicides such as hexacon

azole, carbendazim, and propiconazole each at 0.1% spray has been found effective against the dis

ease. But systemic fungicides are more effective than the nonsystemic ones (Amaresh and Nargund 

2000, 2002, Amaresh et al. 2000, 2004, Singh 2000). Seed treatment with a mixture of carben

dazim + iprodione in a 1:1 ratio at 0.3% followed by foliar spray; systemic fungicide hexaconazole 

(0.1%) gives best management of the disease with high yield (Rao et al. 2007, 2009). Combination 

of carbendazim + mancozeb in the ratio of 1:1 at 0.2% spray can be used most effectively in the 
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management of the disease avoiding the possibility of fungicide-resistant strains of the pathogen 

(Singh 2002, Mathivanan and Prabavathy 2007). 

Cultural Control 
Sanitation measures like selecting pathogen-free healthy seed and destruction of crop residues from 

previously affected crop help to reduce the initial inoculum intensity that can delay the onset of the 

disease by 11 days (Leite et al. 2005, Jurkovic et al. 2008). Occurrence and severity of the disease 

depend on the season and planting dates. This can be selectively used in disease management. For 

example, late August to mid-September planting of sunflower in most sunflower-growing states in 

India remains free from most major diseases with only traces of Alternariaster infection (Singh 

2002, Amaresh et al. 2003, Mesta et al. 2009, Gadhave et al. 2011). Such a planting date is recom

mended for raising disease-free seed crop of sunflower. 

Biological Control 
Efficacy of Pseudomonas fluorescens as seed dresser can be enhanced by biopriming the sun

flower seed for the effective and eco-friendly management of Alternariaster blight of sunflower 

(Rao et al. 2009). Antagonistic fungi Gliocladium virens (Anitha and Murugesan 2001) and 

Trichoderma virens (Mathivanam et al. 2000) are reported to be effective in managing the infection 

of A.  helianthi in sunflower. Antibiosis is indicated as the mechanism of antagonistic effect of G. virens 
on the pathogen. Prior infection of sunflower plants with sunflower mosaic virus reduces the sever

ity of Alternariaster blight of sunflower (Bhardwaj and Mohan 2005). 

Sclerotinia WILT AND STEM ROT 

SYMPTOMS 

Symptoms of the disease appear in three different phases on the sunflower—(a) basal stalk rot and 

wilt, (b) midstalk rot, and (c) head rot—and they are rather considered as three distinct diseases 

caused by the same pathogen. 

Basal Stalk Rot and Wilt 
Basal stalk rot and wilt are triggered through root infection from the fungus present in the soil and 

can appear in sunflower seedlings, but usually they appear during anthesis and seed development 

stages when the plants attain a height of about 5–6 ft (Figure 6.6). At first, wilted plants are scattered 

in the field, but later they are commonly found in series within rows. This disease usually appears in 

patches within the field. The incipient Sclerotinia wilt in sunflower is characterized by rotting through 

the taproot or through the hypocotyl axis (Darvishzadeh et al. 2012). Water-soaked lesions occur on 

the taproot at the soil line and on some fibrous root. If moisture conditions remain conducive, lesions 

on the stem below the soil level get covered with dense white growth of the fungus, which can be seen 

with loosely attached black sclerotial bodies that are irregular in size and shape. Similar bodies are 

found in stem and root piths, the occurrence of which is a reliable diagnostic feature of the disease. 

Midstalk Rot 
Plants infected later in the season may not wilt, and the only exterior symptoms may be a small 

brown lesion at the stem base or at any part of the stem, often in the upper half, which often results 

in breakage of the stem at the point of infection. Stems of severely diseased plants shred into vas

cular strands, becoming straw colored as they dry (Figure 6.7). Such stems are weak, and the plants 

lodge easily. Symptoms of stem rot in the upper half of the stem are usually due to airborne asco

spores. Infection may start initially in leaf axils before progressing down the petiole to the stalk. 

The rotted part of the stem may or may not show the presence of sclerotia. 
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FIGURE 6.6  Basal stalk rot of sunflower caused by S. sclerotiorum. Note the fungal growth and sclerotia  

on the affected stem. (Courtesy of Dr. Tom Gulya, USDA-ARS, Northern Crops Research Lab, Fargo, ND.) 

FIGURE 6.7  Midstalk rot of sunflower caused by  S. sclerotiorum.  (Courtesy of Dr. Tom Gulya, USDA-ARS, 

Northern Crops Research Lab, Fargo, ND.) 



 

 

 

252 Diseases of Edible Oilseed Crops 

FIGURE 6.8  Head rot of sunflower caused by  S. sclerotiorum. (Courtesy of Dr. Tom Gulya, USDA-ARS, 

Northern Crops Research Lab, Fargo, ND.) 

Head Rot 
Sometimes, the plants may remain healthy until the flower heads are produced. The flower heads, 

once formed, during the long period of their formation from budding to seed maturity stage, may 

be attacked by the fungus. The symptoms may become visible in any part of the receptacle. The 

affected flower portions may show the presence of a conspicuous white mycelial growth of the fun

gus, making evident the spread of the rot throughout the flower head. The head may ultimately be 

shredded resembling a broom-like appearance, and most of the tissue of the flower head is  converted 

into a continuous mat of sclerotial tissue (Figure 6.8). Severely affected heads show incomplete 

filling of the head with seed. The head rot may be partial or complete. Seeds formed on partially 

affected heads may show the presence of sclerotia on their surfaces. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Sclerotinia disease (Basal stalk rot/wilt/head rot) is one of the most damaging diseases of oilseed 

sunflower distributed all over the world in temperate regions and under cool tropical conditions, 

often at intermediate altitude. It has become economically important in all sunflower-growing areas 

in North American countries (Canada, the United States, and Mexico), East Europe, and other 

countries like Argentina (Fusari et al. 2012), Croatia (Ćosić and Postic 2008), Serbia (Maširević 
and Jasnic 2006b), Turkey (Tozlu and Demirci 2011), Egypt (El-Deeb et al. 2000), Iran (Bolton 

et al. 2006, Davar et al. 2010), Tanzania and South Africa (Anonymous 2010), and South Asia and 

China (Pandey and Saharan 2005). Yield loss depends on the sunflower development stage in which 

the disease occurs. If infection occurs in the early sunflower development stage, the yield loss will 

be approximately equal to the disease occurrence percentage. Disease occurrence percentage and 

yield losses caused by Sclerotinia wilt can even reach 100% because it causes whole plant devasta

tion (Lamey et al. 2000, Saharan and Mehta 2008). Sunflower plants infected at the beginning of 

the flowering stage can lose up to 98% of their potential yield, while plants infected 8 weeks after 
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flowering can lose only 12% of their potential yield (Maširević and Gulya 1992). In the United 

States, annual losses on all crops caused by Sclerotinia sclerotiorum exceed $200 million, while in 

1999, Sclerotinia head rot epidemic on sunflower caused crop loss valued at $100 million (Bolton 

et al. 2006). In Serbia, Sclerotinia wilt is the most common form of Sclerotinia disease and appears 

in sunflower crop more frequently than the other two forms. Its average frequency in Serbia is about 

15%–20%, but in some years, the frequency can reach even around 50% (Tančić et al. 2011). Seed 

quality, as measured by test weight, oil, and protein content, is also adversely affected by the disease 

in partially infected plants at the near maturity stage of the crop with increase in shell percentage 

resulting in  reduction in economic value (Eva and Andrej 2000, Zandoki and Turoczi 2004). The 

presence of sclerotia in seed can reduce the grade and market value of the crop. No toxins are pro

duced by Sclerotinia in sunflower seed, but heavy contamination with sclerotia is considered unac

ceptable for human or animal consumption. 

PATHOGEN(S):  Sclerotinia sclerotiorum  (LIB.)  DE BARY, Sclerotinia 
trifoliorum FUCKEL, Sclerotinia minor JAGGER 

Classification 
Kingdom: Fungi 

Phylum: Ascomycotina 

Class: Leotiomycetes 

Subclass: Leotiomycetidae 

Order: Helotiales 

Family: Sclerotiniaceae 

Genus: Sclerotinia 
Species, S. minor Jagger, S. sclerotiorum (Lib.) de Bary 

S. sclerotiorum was first recognized as a sunflower pathogen in 1861 in the Unites States  

(Kolte 1985). S. minor is another species reported from South America, Australia, Canada, and 

California (United States) causing root rot and wilt on sunflower, but is much less commonly 

found than S. sclerotiorum. S. trifoliorum has also been reported to be associated with the disease 

in Chile and Russia (formerly Soviet Union). They produce a fluffy white mycelium on and in 

infected plant parts. This mycelium aggregates itself into sclerotia, which are the structures that 

allow Sclerotinia species to survive in soil in the absence of a plant host. S. minor has uniformly 

round  sclerotia measuring 0.5–2 mm, while those of S. sclerotiorum produce larger and irregular 

sclerotia, some measuring 1–5 cm. Sclerotia produced by S. sclerotiorum in heads are very similar 

in size and shape to sunflower seeds. Sclerotia exhibit either myceliogenic (eruptive) or carpogenic 

germination, the former giving rise to white vegetative hyphae that extend from sclerotia that 

have been stimulated to germinate by host plant exudates and the latter to apothecia as described 

in detail by several researchers (Bolton et al. 2006, Saharan and Mehta 2008). S. minor sclero

tia rarely form apothecia, germinating instead by the direct emergence of hyphae (myceliogenic 
germination); S. sclerotiorum usually germinates carpogenically; and only occasionally, it germi

nates myceliogenically. At soil depths of up to 2 cm, apothecia can extend from the sclerotia of 

S. sclerotiorum/S. trifoliorum to reach the soil surface. A single sclerotium can produce as many 

as eight apothecia. Apothecia are tan to light brown, flesh-colored discs averaged about 2–8 mm in 

diameter and may be difficult to see. The asci are cylindrical hyaline and are produced in tightly 

packed masses at the upper surface of the apothecium. The asci measure 66–136 μm in length and 

6–10 μm in width. The ascospores, only visible with a microscope, are monostichous, ellipsoid, 

one celled, thin walled, clear, or nonpigmented numbering eight per ascus and measuring 7.4–11 × 

3.7–4.6 μm in size. The paraphyses are filiform. The ascospore morphology may be somewhat dif

fering between S. sclerotiorum and S. trifoliorum. 
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VARIABILITY  IN  THE PATHOGEN 

Isolates of S. sclerotiorum differ significantly in aggressiveness (Ekins et al. 2005, 2007, Zandoki 

et al. 2006), variation in oxalic acid production (Durman et al. 2005), and mycelial compatibility 

groups (MCGs) (Durman et al. 2003, 2005, Zandoki et al. 2006). Aggressiveness is positively corre

lated to colony radial growth, percent large sclerotia, and dry weight per sclerotium (Durman et al. 
2003). However, there appears to be no correlation between genetic diversity among isolates and 

virulence differentiation (Li et al. 2005). The population structure of S. sclerotiorum on sunflower 

in Australia shows that the sclerotia, all eight ascospores within an ascus, are of only one genotype 

as revealed through multicopy restriction fragment length polymorphisms (RFLPs), MCGs, and 

RAPDs. Single and multicopy RFLP analyses have shown that majority of sunflower plants are 

infected by only one genotype (Ekins et al. 2011). Interestingly, isolates of S.  sclerotiorum from 

the United Kingdom are reported to form a population that is significantly different from other 

populations (Li et al. 2009). Two very distinct sclerotia-producing strains of S. sclerotiorum, one 

as a normal strain (normal black sclerotia with white medulla) and the other as an aberrant strain 

(tan sclerotia with brown medulla), are known to be prevalent in Russia (formerly the Soviet Union) 

and Canada (Huang and Yeung 2002). The tan sclerotia produced by the aberrant strain have been 

found to have no dormancy and more than 85% of the sclerotia germinate myceliogenically on moist 

sand at 16°C–20°C with or without chilling treatment. Serotonin (5- hydroxytryptamine) is present 

in large amount in normal black sclerotia but absent or present in small quantity in abnormal sclero

tia. Abnormal sclerotia instead contain a large amount of 5-hydroxyindole acetic acid (Kolte 1985, 

Huang and Yeung 2002). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The pathogen is a facultative parasite and attacks over 400 plant species of 75 botanical fami

lies ensuring all time possibility of alternative sources of primary infection (Lazar et  al. 2011). 

Sclerotia are the most important means of perennation. The survival time in soil is very variable, 

but 5–6 years is thought to be an upper limit. Survival of mycelium in seeds may also occur, but 

epidemiologically, it is of little consequence. Under most conditions, myceliogenic germination is of 

limited importance because only limited saprophytic spread occurs in natural nonsterile field soils. 

However, where sclerotia and susceptible plants are in close proximity, devastating stem base infec

tions or root rot may result. Most sclerotial germination occurs at optimum of 24% soil moisture 

when the sclerotia are embedded at lower depths of soil up to 5 cm where the average temperature of 

soil (5–10 cm in depth) during the growing season of sunflower in rain-fed condition remains to be 

30°C (Irany et al. 2001). A prerequisite for carpogenic germination is a period of chilling to break 

dormancy followed by rising temperatures and a high humidity. In temperate latitudes, apothecia 

typically mature during spring and early summer, although there are many reports relating to other 

seasons of the year. Conditions suitable for carpogenic germination of S. minor probably occur 

in southern regions in Australia, and carpogenic germination is probably a rare event in northern 

regions, and if it does occur, it probably does not coincide with first flower bud and anthesis stages 

in sunflower crops (Ekins et al. 2011). The apothecial stripes elongate in response to light and the 

ascospores are wind dispersed. Ascospores landing on potential hosts such as sunflower need water 

for germination, a requirement of 16–24 h being typical. Germination is possible throughout the 

range of 0°C–25°C, with an optimum at 15°C–20°C, and the pathogen is unable to cause infection 

at 30°C–35°C (Raj and Saharan 2001, Vuong et al. 2004). Continuous wetness on leaves within the 

canopy or on flowers on sunflower for a period of 42–72 h is needed for ascospore infection of the 

capitulum, and symptoms appear about 5 weeks later. This threshold can be used to define regions 

at risk. Head rot due to S. sclerotiorum, however, is best developed at 80% relative humidity for 

shorter periods of 16–24 h (Raj and Saharan 2000a). Disease appearance significantly vary depend

ing on the quantity of rainfall, high crop density, sowing dates, temperature over the vegetation, 
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and selection of sunflower hybrid for sowing (Alexandrov and Angelova 2004, Simic et al. 2008). 

Also, it seems that an exogenous nutrient base is required for infection. Wounded, dead, or senes

cent tissues are readily colonized and serve as a food base from which infection of healthy tissues 

can take place. Ascospores are thought to be discharged along with mucilage that can cement the 

spores to host tissue, more particularly the senescent petals and other flower parts that provide a 

major avenue of infection from the site where the flower parts lodge, the sunflowers being most sus

ceptible during the first flower bud stage coincidence of flowering, and ascospore release becomes a 

major factor of epidemiological significance in the occurrence of airborne infection causing stem or 

head rot (Raj and Saharan 2000b). Germinated ascospores produce appressoria that can vary from 

simple lobed forms to complex multibranched cushion-like structures. Entry is usually by direct 

penetration through the cuticle assisted by extensive endopolygalacturonase pectolytic and cellulo

lytic enzymes during the early phase of colonization causing dissolution of the host cell structure 

resulting in the development of stem or head rot symptoms (Cotton et al. 2002). S. sclerotiorum 
secretes several acid proteases, and one of the genes, acp1, encoding an acid protease, has been 

cloned and sequenced. The acp1 gene is expressed in plant infection, which is low at the beginning 

of infection but increases suddenly at the stage of necrosis spreading, suggesting thereby that glu

cose and nitrogen starvation together with acidification can be considered as key factors controlling 

S. sclerotiorum gene expression during pathogenesis (Poussereau et al. 2001a). Similarly, another 

gene asps encoding aspartyl protease is expressed in the beginning of infection of S. sclerotiorum 
in sunflower (Poussereau et al. 2001b). 

The toxic metabolite, oxalic acid, produced by the fungus also plays an important role in the 

development of wilt symptoms. A positive correlation has been found between oxalic acid and 

shikimate dehydrogenase activity during the infection process caused by S. sclerotiorum in 

sunflower (Enferadi et al. 2011). Oxalic acid has been shown to move systemically in the plant and 

accumulate to critical level, and this elicits the wilt syndrome. Metabolic profiles of sunflower geno

types with contrasting response to S. sclerotiorum infection have been studied (Peluffo et al. 2010). 

There is induction of glycerol synthesis in S. sclerotiorum that exerts a positive effect on osmotic 

protection of fungal cells that favors fungal growth in plant tissues (Jobic et al. 2007). Monoculture 

with high level of N fertilization and irrigation exacerbate the disease (Gergely et al. 2002). Sclerotia 

from such affected sunflower plants are returned to the soil as the host decomposes, or they may be 

distributed by cultural operations, harvesting, etc. In most regions, the absence of a conidial stage 

and the environmental requirements for apothecium formation restrict S. sclerotiorum to a single 

annual infection cycle, and the disease is referred to as a single-cycle disease. 

DISEASE MANAGEMENT 

Host Plant Resistance 
In Cultivated and Wild Helianthus Species Germplasm 
There have been great efforts in searching for tolerance to midstalk rot in both cultivated sunflower 

and wild sunflower species through artificial inoculation methods (Castano et al. 2001, Becelaere 

and van Miller 2004, Vasić et al. 2004, Giussani et al. 2008). Screening parental inbred lines for 

resistance to S. sclerotiorum is an important step in developing sunflower hybrids with improved 

resistance to the disease (Hahn 2002, Huang 2002). A number of sunflower lines and hybrids with 

various levels of tolerance have been reported (Ronicke et al. 2004, Binsfeld et al. 2005, Castaño 

and Giussani 2006, Reimonte and Castano 2008), but complete resistance has not yet been observed. 

The level of tolerance is not yet considered adequate for the control of the disease, which is polygenic 

and under additive control, so that breeding programs have to combine favorable genes from differ

ent sources (Castaño et al. 2001, Becelaere and van Miller 2004, Davar et al. 2010). This confirms 

the need to consider different isolates in the stem rot resistance breeding programs (Darvishzadeh 

2012), and selection for resistance to the disease could start at the inbred line development stage. 
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Sunflower is an unusual host in that it is prone to both head rot and stalk rot, and since resistance to 

each phase is independent, this doubles the breeding efforts (Vear et al. 2007). The most resistant 

breeding lines and commercial hybrids exhibit as low as 10%–15% head rot or stalk rot compared 

to 90%–100% on susceptible material. Near immunity to stalk rot is observed in most perennial 

Helianthus species and less so in annual species (Gulya 2007b, Silva et al. 2007). 

The genotypes that show broad partial resistance to the disease are restorer lines RHA 439 and 

RHA 440 and maintainer line HA 441 (Miller and Gulya 2006); inbred lines SWS-B-04 (Ronicke 

et al. 2005a,b), R-28 from H. argophyllus (Baldini et al. 2002, 2004, Verzea et al. 2004), HA 302 

(Rodriguez et al. 2004), 765, KS 7 (Wang et al. 2010), and 3146 (Wang et al. 2010); maintainer lines 

HA 451 and HA 452 (Miller et al. 2006); restorer lines RHA 453, RHA 4555 (Miller et al. 2006), 

and TUB-5-3234 (Micic et al. 2005a); inbred line NDBLOS sel (Micic et al. 2004, 2005b); and two 

hybrids Pioneer 6480 and Pioneer 6479 (Mosa et al. 2000). Four sunflower hybrids have been devel

oped possessing resistance to ascospore penetration and mycelia extension in the capitulum tissue 

and could, therefore, be recommended for cultivation in the province of Buenos Aires in Argentina 

without increasing the risk of S. sclerotiorum attack (Godoy et al. 2005). 

Molecular Breeding and Transgenic Sunflower for Resistance 
to Sclerotinia Diseases in Sunflower 
The SSR markers associated with partial resistance to different isolates could be used in pyramiding 

polygenes in sunflower disease breeding programs (Micic et  al. 2005a,b, Darvishzadeh 2012). 

Utilization of molecular markers to aid breeders in selecting genotypes with desirable traits through 

MAS has proved to be very effective. For example, in numerous studies, DNA markers associated 

with different traits have been reported. Baldini et al. (2002, 2004) used single-marker regression 

and identified several amplified fragment length polymorphism (AFLP) and SSR markers associ

ated with basal stem resistance to S. sclerotiorum in sunflower. Markers of introgressed zones of 

H. argophyllus, H. debilis, H. praecox, and H. petiolaris in the resistant lines are assumed to be 

good candidates to identify the segments carrying stalk rot–resistant quantitative trait loci (QTLs). 

The possibility of detecting H. petiolaris accessions with a high level of resistance to S. sclero
tiorum than others is indicated (Caceres et al. 2006). Independent QTLs, other than that for stalk 

rot resistance, have been identified for head rot resistance (Ronicke et al. 2005a, Yue et al. 2008). 

However, the prospects of MAS for resistance to S. sclerotiorum are limited due to the complex 

genetic architecture of the trait. The MAS can be superior to classical phenotypic selection only with 

low marker costs and fast selection cycles (Micic et al. 2004). Attempts have been made to estab

lish resistance against S. sclerotiorum by genetic engineering (Scleonge et al. 2000, Schnabl et al. 

2002, Hu et al. 2003, Lu et al. 2003, Sawahel and Hagran 2006). These studies are based on a gene 

controlling the production of an enzyme oxalate oxidase (OXOX). Oxalate is a phytotoxin secreted 

by S. sclerotiorum (Vasic et al. 2002). It weakens the plant tissue and crops with natural resistance 

to S. sclerotiorum such as wheat, barley, maize, or rice, producing OXOX, which breaks down and 

detoxifies the phytotoxin produced by S. sclerotiorum. Contrary to such crops, sunflower has a 

very low OXOX activity. An OXOX gene from wheat has been isolated and inserted into sunflower 

plants via Agrobacterium-mediated transformation. The Sclerotinia-induced lesions in transgenic 

sunflower are found to be significantly smaller than those in the control leaves (Hu et al. 2003). 

Compared with the original line, this gene increased resistance, but in general, the level of resis

tance is not better than in lines obtained by conventional breeding. Therefore, it should be possible 

to combine the transgenic lines with natural resistance to provide a level of resistance higher than 

in the available commercial hybrids (Bazzalo et  al. 2000). Transgenic sunflower plants constitu

ently expressing OXOX gene exhibit enhanced resistance against the oxalic acid (OA) generating 

fungus S. sclerotiorum (Hu et al. 2003). It is, however, apprehended that OXOX transgene will more 

likely diffuse naturally after its escape from the host plants (Burke and Rieseberg 2003). Since OA 

plays a vital role in the establishment of  pathogenicity, attempts made to degrade OA will enhance 

resistance against S. sclerotiorum by increasing the production of H2O2 mediated through oxidative 



 

 

 

 

 

 

 

 

 

 

 

 

 

257 Sunflower Diseases 

burst. Such genetically modified cultivars may become a major means of Sclerotinia stalk rot man

agement in the future (Link and Johnson 2012). Accumulation of phenolic compounds, their deposi

tion on cell walls and lignifications, is a well-characterized mechanism of disease resistance against 

S. sclerotiorum (Prats et al. 2003, Rodríguez et al. 2004). Conceivably, resistant plants also have 

higher associated levels of phenylalanine ammonia lyase (PAL), which facilitates the biosynthesis of 

important phenolic derivatives such as lignin, and shikimic acid and the related enzymatic activity 

of shikimic dehydrogenase (SKDH), which are useful in identifying a biochemical paradigm that 

provides a clear correlation to disease-resistant genotypes (Enferadi et al. 2011). Accumulation of 

scopoletin, one of the coumarins as phytoalexins, may well confer head rot resistance with minimal 

plant damage and might be one of the basis for resistance to S. sclerotiorum (Prats et al. 2006, 2007). 

Chemical Control 
Foliar infection from airborne ascospores and lack of genetic resistance to Sclerotinia head rot 

need to identify foliar fungicide applications to reduce the impact on sunflower yield and quality. 

Systemic (azoxystrobin, benomyl, topsin, boscalid, and penthiopyrad) and protectant (iprodione, 

procymidone, vinclozolin, and fluazinam) fungicides have been demonstrated to be successful and 

economical if properly timed to manage Sclerotinia diseases of sunflower particularly the head rot 

disease (Link and Johnson 2012). Results suggest that plant coverage rather than systemic  movement 

of the chemical is important for good management. Fungicides, applied as protectants before infec

tion, especially during the bloom period, are effective in inhibiting infection by ascospores in fields 

with a history of infestation with S. sclerotiorum (Rashid 2011). The number of fungicide applica

tions required for disease management depends on the length of the crop season duration of the 

cultivar or hybrid and the period of time that weak tissues (flower petals) are available for coloniza

tion by ascospores. If only one application is made, the early application is more effective than the 

late application. Better results are obtained from a two-application system, one at flowering and 

another 15 days later (Dietz 2011). In order to be effective, it is necessary that fungicides penetrate 

deep into the canopy to adequately cover the flowers and the places on the plant where the senescing 

petals might adhere or become lodged. Among the previously mentioned fungicides, penthiopyrad 

(a new Group 7 active ingredient) has preventive, residual, and postinfection activity. The strength 

of this group of fungicide is coupled with the activity that is both translaminar and locally systemic. 

Penthiopyrad goes through the plant tissue to attack fungal pathogen. It penetrates internally from 

the upper sprayed leaf surface to the lower unsprayed surface and provides an extended period of 

control of Sclerotinia infection. 

Cultural Control 
Well-drained sunny field sites away from the previous year’s infested plot should be preferred for 

sowing. Certified seeds should be used to ensure the purity of the seeds without any contamination 

of sclerotia. The type of tillage operations may affect disease incidence. There is evidence that min

imum or reduced tillage that maintains sclerotia on or near the soil surface may promote microbial 

degradation of sclerotia, whereas deep burial of sclerotia promotes their survival. The number of 

apothecia, however, may be reduced by tillage practices that bury the sclerotia deep in the soil, such 

as with a moldboard plow. If sclerotia are buried by deep tillage, use shallow tillage in subsequent 

years to avoid bringing the sclerotia back near the soil surface. Tillage operations also redistribute 

sclerotia throughout the soil and can actually increase disease incidence by creating a more uniform 

distribution of sclerotia within a field (Nelson and Lamey 2000). Crop rotation with nonhost crops 

such as wheat, barley, beets, and flax reduces the number of sclerotia in the soil by loss of viability 

over time. In addition, sclerotia may germinate in the absence of a host crop, but without subsequent 

host infection, new sclerotia are not returned to the soil and numbers are gradually reduced. Crop 

rotation is most effective when initiated before the fungus becomes a serious problem in a field. 

If numbers of sclerotia in a field are low, rotations of 3–5 years with a nonhost crop may be sufficient 

(Rashid 2003). Once the pathogen is well established in a field, and the soil is highly infested with 
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sclerotia, crop rotation may be of less value because of the long survival time of these propagules. 

When a crop is irrigated, the goal is to manage irrigation events to reduce the frequencies of 12–24 h 

periods of leaf wetness, especially during the bloom period, when flower petals can become colo

nized by the ascospores of S. sclerotiorum. To reduce disease due to S. minor, hyphal germination 

of sclerotia can be reduced by allowing the soil surface to dry thoroughly between irrigation events. 

Each irrigation event must therefore provide sufficient water to allow for a prolonged dry period. 

Cropping practices that reduce the intensity and duration of a disease-favorable  microclimate within 

the canopy can lessen the disease’s severity. Factors that may influence the microclimate include 

row spacing and orientation, nitrogen fertilizers, and cultivar selection. Studies on row spacing in 

sunflower crops consistently show that Sclerotinia wilt/basal rot incidence is lower in crops with 

wide row widths than those planted in narrow rows. Consequently, the management goal is to space 

rows at the distance that will maintain plant densities for maximum yield while providing for ade

quate room to facilitate air movement to reduce high-moisture microclimates within the canopy. 

Because infection by ascospores of S. sclerotiorum and S. trifoliorum requires an extended period 

of free moisture, orienting rows parallel to the direction of the prevailing winds also may be of some 

value in quickly drying the canopy after a rain or irrigation event. In addition, to avoid dense crop 

canopies, applied nitrogen should not exceed the optimal rate for a particular crop. Lastly, when 

choices are available, cultivars that mature early and have a more upright, as opposed to a vining 

(prostrate), growth habit can provide avoidance or escape resistance, generally resulting in less 

disease (Rashid 2003, Turkington et al. 2011, Link and Johnson 2012). Deep burial of sclerotia pre

vents them from producing apothecia. One must avoid bringing these buried sclerotia to the surface 

in following seasons. Once they return to the soil surface and are still viable, they can again cause 

disease. Selected nonhost crops in rotation with maize will reduce inoculum. 

Biological Control 
Sclerotia of S. sclerotiorum are subject to attack by soil microorganisms such as Coniothyrium 
minitans, Talaromyces flavus (teleomorph of Penicillium vermiculatum), Sporidesmium sclerotivo
rum, Trichoderma viride (Ashofteh et al. 2009, Link and Johnson 2012, Tozlu and Demirci 2011), 

T. harzianum (Singh et al. 2004), Bacillus sp. (Yu et  al. 2006), P. fluorescens (Behboudi et  al.  

2005), and certain isolates of Actinomycetes (Baniasadi et al. 2009). Among these antagonists, only 

Coniothyrium minitans and Trichoderma spp. have been practically used for biological control of 

the sunflower wilt caused by S. sclerotiorum. In the fields effectively, it appears that secretion of 

β-1, 3-glucanase from C. minitans degrades and lyses sclerotial tissues. C. minitans will produce 

hundreds of pycnidia on the surface of a colonized sclerotium giving it the aspect of a spiny, irregu

lar surface. Usually, few hyphal threads will grow out of an infected sclerotium. This mycoparasite 

will spread as conidia in the soil. C. minitans has a good saprophytic ability and can grow on plant 

residues or be easily cultured on artificial media. C. minitans has been released as a commercial 

product for suppression of the wilt phase of the disease. In practice, dried spores of this antagonist 

are sprayed either onto pathogen-infested crop debris at the end of a season or onto the soil sur

face before planting, and the disease control is economical. Use of micronutrient zinc solely or in 

combination with molybdenum improves the biocontrol activity of P. fluorescens strain UPPF 61 

(Ashofteh et al. 2009, Heidari-Tajabadi et al. 2011). Another biocontrol agent (Agate-25K) based on 

Pseudomonas chlororaphis is reported to be effective in the control of Sclerotinia disease of sun

flower in Russia (Vinokurova 2000). The head rot phase of the disease has been successfully con

trolled by field testing of honeybee (Apis mellifera)–dispersed Trichoderma formulation (a mixture 

of six isolates of Trichoderma including T. koningii, T. aureoviride, and T. longibrachiatum) con

taining Trichoderma conidia and viable hyphal fragments, industrial talc, and milled corn kernels in 

Argentina (Escande et al. 2002). An isolate of Epicoccum purpurascens (E. nigrum) well adapted to 

the fluctuating conditions typical of natural environments could contribute to achieving an accept

able level of control of head rot (Pieckenstain et  al. 2001). Interestingly under Argentina condi

tions, the microorganisms, particularly the fungal flora that colonize florets of Sclerotinia-tolerant 
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sunflower varieties, play a part in an indirect mechanism that protects flowers from ascospore ger

mination and pathogen growth (Rodriguez et  al. 2001). Spontaneously occurring hypovirulence  

in the tan sclerotial isolate S10 of S. sclerotiorum from sunflower in Manitoba, Canada, has been 

characterized, and the preliminary in vitro transmission test indicated that the hypovirulence in 

the hypovirulent isolate is transmissible, but double-stranded ribonucleic acids (dsRNAs) have not 

been detected in hypovirulent and virulent isolates derived from S10. The existence of dsRNA-free 

hypovirulence in S10 progenies suggests that another hypovirulence mechanism may exist in 

S. sclerotiorum (Li et al. 2003). There is, however, a great potential of making use of this typical 

phenomenon of hypovirulence in the biological control of Sclerotinia diseases of sunflower. 

Antifungal protein, trypsin inhibitor (serin proteinases), is a potent antifungal compound associ

ated with sunflower seeds, can completely inhibit the germination of S. sclerotiorum ascospores at 

a concentration of 14 μm/mL indicating the possibility of its use in disease management (Mendieta 

et al. 2004). 

CHARCOAL ROT 

SYMPTOMS 

The most obvious and common symptom of the disease, under field conditions, is the sudden wilting 

of plants, which usually appears after pollination, though such plants may have become infected 

very early in the season (Figure 6.9). Symptoms first observed in plants approaching physiological 

maturity consist of silvery gray lesions girdling the stem at the soil line, reduced head diameter, 

and premature plant death (Gulya et al. 2010, Mahmoud and Budak 2011). Pith in the lower stem is 

completely absent or compressed into horizontal layers. Black spherical microsclerotia are observed 

in the pith area of the lower stem, underneath the epidermis, and on the exterior of the taproot 

(Figure 6.10). The pathogen generally affects the fibrovascular system of the roots and basal inter

nodes and impedes the transport of nutrients and water to the upper parts of plants. Progressive wilt

ing, premature aging, loss of vigor, and reduced yield are characteristic features of M. phaseolina 
infection. The internal stem shows a shredded appearance. Later, the vascular bundles become 

covered with small black flecks or microsclerotia of the fungus. 

FIGURE 6.9  Charcoal rot–affected sunflower plants under field conditions. (Courtesy of Dr. Chander Rao 

and Dr. Varaprasad, DOR, Hyderabad, India.) 
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FIGURE 6.10  Charcoal rot–affected root of sunflower (left)  in comparison to healthy root (right). (Courtesy 

of Dr. Chander Rao and Dr. Varaprasad, DOR, Hyderabad, India.) 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The charcoal rot of sunflower is widely distributed throughout tropical, subtropical, and warm temper

ate regions. It is widespread throughout Latin America, Eastern and Southern Africa, Egypt, West Asia,  

Middle East including Iran and Turkey (Habib et al. 2007, Mahmoud and Budak 2011, Ijaj et al. 2012),  

and South Asia, more particularly in Pakistan (Khan 2007). With change in climate, the diseases are  

also reported to occur in the otherwise relatively cooler regions of the United States (Gulya et al. 2002,  

Ullah et al. 2011, Weems et al. 2011) and Europe (Sarova et al. 2003, Bokor 2007, Veverka et al. 2008,  

Csondes et al. 2012). Crop loss estimates are available to the extent of 64% in the Krasnodar region  

of Russia, 46% in India (Kolte 1985), and 90% in Pakistan (Khan 2007). Under favorable conditions,  

total failure of the crop in specific areas has been recorded (Khan 2007, Ijaz et al. 2013). The overall  

yield losses in all varieties at flowering, ripening, and sowing stages are reported to be in the range of  

7%–45%, 6%–41%, and 5%–37%, respectively, in Pakistan (Wagan et al. 2004). It is thus evident that 

continuous increasing trend of charcoal rot is alarming for farmers and authorities in sunflower busi

ness not only in Pakistan (Khan et al. 2003) but also in neighboring Iran (Rafiei et al. 2013). Significant 

decrease in yield is reported with increasing population density of the pathogen. Decrease in seed yield 

is reported to be 41%, 62%, and 79% at low, moderate, and high pathogen densities, respectively, in 

Pakistan (Khan et al. 2005a). M. phaseolina grows well on sunflower seeds and has been shown to 

increase the content of oil and free fatty acids in the seeds, as well as discoloration of the oil. 

PATHOGEN: Macrophomina phaseolina (TASSI) GOID 

Classification 
Kingdom: Fungi 

Phylum: Ascomycota 

Class, Dothideomycetes 

Subclass: Incertae sedis 

Order: Botryosphaeriales 
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Family: Botryosphaeriaceae 

Genus: Macrophomina 
Species: phaseolina (Tassi) Goid 

The details of morphology and culture characteristics of the pathogen are described in Chapter 2 

under peanut diseases. High levels of pathogenic variability and genetic diversity have been observed 

between M. phaseolina isolates from different geographical origins or even different hosts after charac

terization with different markers (RAPDs, RFLPs, and AFLPs) (Almeida et al. 2003, Tancic et al. 2012), 

although isolates from the same species and same location had related pathotypes. Chlorate-sensitive and 

chlorate-resistant types of isolates of M. phaseolina are known (Mohmmad et al. 2001, Aboshosha et al. 

2007), and variation among isolates in pathogenicity is evident (Khan et al. 2005b, Csondes et al. 2010). 

Genetic diversity of M. phaseolina from Hungary indicates the coexistence of different hap

lotypes in such country. There appears to be a geographical dominance of a given haplotype and 

closer genetic relationship might exist between spatially distinct haplotypes (Csondes et al. 2012). 

Significant pathogenic and genetic variability has been observed within the Iranian isolates obtained 

from sunflower (Rayatpanah et al. 2012a,b). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

In addition to its survival through sclerotia in soil or in the form of sclerotia carried in crop residues, 

it is also reported to be seed borne in sunflowers (Csondes 2011). However, the pathogen is less 

aggressive in the preemergence phase, but more serious in the postemergence phase and later stages 

of growth (Arafa et al. 2000). 

M. phaseolina forms appressoria on the epidermis of sunflower. They may aid in both mechani

cal and chemical penetration, which is direct. Penetration of the adult stem is by mass action of 

hyphae, which is intra- and intercellular. Initially, infection is restricted to the root epidermal cells 

and cortical cells, cell configuration including organelles become distorted, and intercellular spaces 

are occupied by the hyphae, which appear amorphous, with intracellular invasion occurring later 

(Naz and Ashraf 2006). The incubation period appears to be 6–10 days in plants inoculated with 

sclerotial suspension and 3–5 days with pycnidiospores. 

The role played by various pectolytic and some cellulolytic enzymes in the infection of sunflower 

plants by the fungus has been well studied. The possibility of production of a non-host-specific toxin 

by M. phaseolina is indicated. The development of necrotic spots on leaves due to M. phaseolina is 

attributed to this toxin. It is reported that the pathogen does not grow beyond the necrotic regions on 

the inoculated leaves, and the virulence of the different isolates has not been found to be correlated 

with toxin production in culture. Sunflower plants are most susceptible to charcoal rot at reproduc

tive stage (Suriachandraselvan and Seetharaman 2003). Infection of sunflower seed by M. phaseolina 
takes place when anthesis in the outer quarter of the inflorescence radius is complete. The infection 

progresses during the seed development stages before the seed reaches maturity. Maximum seed infec

tion occurs when the seed in the outer quarter remains soft. The incidence of the disease increases 

with increasing salinity level of irrigation water (Fayadh et al. 2011). Moisture stress and higher tem

perature and periods of drought also favor the development of the disease (Alexandrov and Koteva 

2001). At lower temperature (20°C–25°C), seedling mortality due to the disease varies in the range of 

8%–67%, whereas at 30°C–35°C, the mortality rate varies from 75% to 100% (Kolte 1985). Disease 

incidence increases with increase in plant density and sclerotial population in soil (Perez et al. 2002). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Little is known about the relative resistance of most sunflower varieties. It is demonstrated that sun

flower varieties respond differently to artificial as well as to natural infections in the field. This indicates 

the possibility of control of charcoal rot by breeding for resistance. A number of sunflower genotypes, 
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SF-87, PTH-1, and SMT (Hafeez and Ahmad 2001), A-43, G-100, G-133, G-17, G-33, G-29, G-10, and 

G-78 (Khan et al. 2010), CMS 19× R 43, B line 1052/1, and CMS 350/1× R 43 (Dalili et al. 2009), 

and Giza 102 (Aboshosha et al. 2008, El-Hai et al. 2009), have been found to be resistant in various 

degrees to charcoal disease, and sunflower genotypes RF81-74*AF80-460/2/1, RF81-1/2*AF81-112, 

RF81-1/2*AF80-452/2/2, RF81-06/1*AF80-448/1/2, HYSUN33, and AZARGOL show significantly 

low incidence of charcoal rot (0.33%) under sick soil conditions in Iran (Rafiei et al. 2013). Protein 

analysis, peroxidase activity, and peroxidase isozyme pattern derived from the sunflower cultivar 

Giza 102 can be used as genetic markers for host resistance studies in sunflower to M. phaseolina 
(Aboshosha et al. 2008). Sunflower plants regenerated from tolerant callus from hypocotyl explants 

from a tissue culture medium exhibit more resistance against M. phaseolina (Ramadan et al. 2011). 

Chemical Control 
Seed treatment with carbendazim, thophanate methyl, and thiabendazole each at 2.5 g/kg of seed 

has been reported to be effective to manage sunflower crops from the seed-borne infection and 

increasing seed germination (Bhutta et al. 2001). Similarly, fenpropimorph (Corbel) is effective in 

managing the M. phaseolina infection as seed treatment (Piven’ et al. 2002, 2004). Other measures 

of chemical control as used for charcoal rot of peanut may be useful for sunflower crop also, and 

phosphorus as calcium superphosphate has been reported to be effective in decreasing the incidence 

of the disease. Maximum control of M. phaseolina infection has been obtained when sunflower 

seeds are coated with Na alginate in combination with Ca carbonate and gum arabic followed by Na 

alginate in combination with Ca carbonate and carboxymethyl cellulose (Muhammad and Shanaz 

2012). Spermine (SP) as seed soaking and/or foliar application of K and/or Zn is helpful in reducing 

the harmful effects of charcoal of sunflower (El-Metwally and Sakr 2010). Seed soaking or foliar 

spray of antioxidants (citric acid and salicylic acid at 10 mM) and micronutrients (manganese and 

zinc at 2 g/L) significantly reduces the incidence of charcoal rot (El-Hai et al. 2009). 

Cultural Control 
The use of clean seed, the application of organic matter, balanced NPK fertilizer application, 

long rotations with nonhost crops, avoidance of excessively dense plant populations, and sanita

tion including the burial of debris by hand or by plough have been suggested as cultural practices 

against charcoal rot (Aleksandrov 2000, Bistrichanov et al. 2000, Alexandrov and Koteva 2001). 

Soil amended with nursery fertilizers (urea, diammonium phosphate (DAP), and frutan at 0.1%) 

in combination with seed treatment with gamma rays (60 cobalt) emitting gamma rays for 2 min 

results in reduced charcoal rot infection (Naheed et al. 2011). There is a possibility of exploiting the 

allelopathic effect of Chenopodium species (C. album, C. murale, C. ambro) against M. phaseolina 
infecting sunflower (Muhammad and Javaid 2007). 

Biological Control 
Seed coating with antagonist Trichoderma reesei and cotton cake or with T. harzianum and mustard 

cake has proved to be effective in protecting sunflower plants from charcoal rot (Muhammad et al. 

2010, Muhammad and Zaki 2010, Ullah et al. 2010). Application of T. viride (4 g/kg of seed), + 

10 kg/ha soil + FYM (12 tons/ha), and neem cake has also been found effective in reducing charcoal 

rot incidence (Mani and Hepziba 2003, Mani et al. 2005, Sudha and Prabhu 2008, Suthinraj et al. 2008). 

The highest disease suppression (61%) has been reported with rice straw composted with cow manure 

and inoculation with T.  harzianum. Amendment of compost with T. harzianum accelerates compost

ing and can improve disease suppression effect (Morsy and El-Korany 2007). A urea, Rhizobium, and 

T. harzianum combination gives better biocontrol effect against the pathogen (Siddiqui et al. 2000). 

Combined use of Pseudomonas aeruginosa with sea weeds significantly decreases the infection caused 

by M. phaseolina (Shahnaz et al. 2007). VAM fungus Scutellospora auriglobosa is consistently associ

ated with sunflower variety Helico 250 under Pakistan conditions, and this VAM fungus is found to 

increase the growth of sunflower with reduction in the incidence of charcoal rot (Jalaluddin et al. 2008). 
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Effect of Plant Extracts 
Efficacy of some plant extracts (Eucalyptus camaldulensis, Azadrichta indica, Allium sativum, 

and Datura alba) and plant products against M. phaseolina has been experimentally demonstrated 

(Arshad et al. 2008, Ullah et al. 2007). 

STEM NECROSIS DISEASE 

SYMPTOMS 

The disease is observed at all growth stages starting from seedlings to mature plant. The charac

teristic field symptoms of the disease include mosaic on leaves that leads to extensive necrosis of 

leaf lamina, petiole, stem, and floral calyx and complete death of seedlings eventually (Figure 6.11). 

Early infection either kills the plant or causes severe stunting with malformed head filled with 

chaffy seeds (Ravi et al. 2001). Necrosis at the bud formation stage makes the capitulum bend and 

twist resulting into complete failure of seed setting and maturation (Figure 6.12). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Sunflower necrosis disease (SND) is becoming a potential threat to sunflower cultivation in the 

Indian subcontinent. The disease was first recorded in parts of Karnataka state in 1997. Since then, 

the disease has become increasingly important in Andhra Pradesh, Karnataka, Maharashtra, and 

Tamil Nadu, the four major sunflower-growing states of India, and is a limiting factor in sunflower 

production; up to 80% of the plants of some open-pollinated varieties and hybrids were affected 

during the 1999 survey in sunflower-growing areas, and yield losses ranging from 30% to 100% 

have been reported (Shirshikar 2010). Early-infected plants remain stunted and develop malformed 

heads with poor or no seed setting, resulting in complete loss of the crop (Papaiah Sardaru et al. 

2013). There has been a continuous threat to sunflower production in India due to tobacco streak 

virus (TSV) epidemics and reduction of over 40% in the yield since 1997, amounting to annual 

loss of Rs. 76 crores (Jain et al. 2003). The disease is also reported to occur in Australia and the 

Netherlands (Sharman et al. 2008) and in Iran (Hosseini et al. 2010, 2012). 

FIGURE 6.11  Stem necrosis of sunflower caused by the sunflower stem necrosis virus. (Courtesy of Dr. R.K.  

Jain, IARI, New Delhi, India.) 



               

               

 

 

 

 

 

 

 

 

 

 

 

264 Diseases of Edible Oilseed Crops 

PATHOGEN 

The disease is caused by a strain related to TSV infecting sunflower: TSV-SF (genus, Ilarvirus; 

family, Bromoviridae). In electron microscopy, Ilarvirus-like particles can be detected in crude sap 

of SND-affected sunflower and Chenopodium quinoa plants inoculated with leaf extracts prepared 

from SND-affected sunflower plants. In addition to several other herbaceous virus indicator plants, 

groundnut, cowpea, and cotton, which are significant crops in India, become infected. Back trans

mission to healthy sunflower seedlings with leaf extracts of systemically infected indicator plants 

results in identical symptoms of SND, hence confirming the ilar-like virus as the causative agent 

of SND (Ravi et al. 2001, Prasada Rao et al. 2009). Thus, all the experimental data unequivocally 

prove that the virus causing SND in many sunflower varieties and in many different growing regions 

in India is a strain of TSV. The association of a tospovirus, antigenically related to groundnut bud 

necrosis (GBNV) and watermelon silver mottle (WSMV) viruses, with the disease has been reported 

earlier (Jain at al. 2000, Venkata Subbiah et al. 2000). TSV first described by Johnson (1936) is the 

type species of the genus Ilarvirus, of the family Bromoviridae that includes viruses having tripartite 

quasi isometric particles of size 27–35 nm. The virus has three nucleoprotein particles designated as 

RNA-l (3.4 kb), RNA-2 (3.1 kb), and RNA-3 (2.2 kb). RNAs 1–3 are genomic and encodes proteins 

la (119 kDa), 2a (91 kDa), and 3a (32 kDa), respectively, whereas RNA-4a (0.9 kb) and RNA-4 

(1.0 kb) are subgenomic expressed from RNA-2 and RNA-3. RNA 4a encodes 2b (22 kDa) and CPs 

(28 kDa), respectively. The TSV genome is infectious only in the presence of its CP or RNA-4. None 

of the SND causing TSV-SF full genomes could be sequenced, but many researchers have sequenced 

and reported full-length RNA3 that hosts the movement protein and CP gene (Bag et al. 2008). 

TRANSMISSION 

Mechanical/Sap Transmission 
The virus can be transmitted by mechanical or sap inoculation from sunflower to sunflower. 

Sap extracted in 0.05 M phosphate buffer with 0.075 thioglycerol as inhibitor is more efficient 

in transmitting the virus (Lokesh et  al. 2008b, Pankaja et  al. 2011). In general, Ilarvirus has a 

wide host range as they are efficiently sap transmissible to many of the host plants belonging to 

Amaranthaceae, Chenopodiaceae, and Fabaceae. A rapid and efficient sap inoculation method for 

tobacco streak virus (TSV-SF) has been developed for screening a large number of sunflower geno

types for resistance to the disease (Sundaresha et al. 2012). 

Vector Transmission 
The major mode of transmission of TSV-SF is by infected pollen, which can spread by wind or 

carried by thrips, which transport infected pollen on their bodies (Chander Rao and Shanta Laxmi 

Prasad 2009). The virus–vector specificity relationship is yet to be established for this virus. Pollen 

and thrips collected from TSV-infected Parthenium weed released together show 58.3% and 70% 

disease incidence at vegetative and flowering stages of the sunflower crop. Thrips palmi successfully 

transmits the virus to sunflower test plants on acquisition access period (AAP) of 2–3 days and inocu

lation access period (IAP) of 3–5 days (Lokesh et al. 2008b). A single thrip has been found enough 

to acquire and transmit the virus from an infected to healthy sunflower plant, and it is revealed that 

the vector T. palmi could acquire the virus with an AAP of 3 days from the cotyledonary leaves of an 

infected sunflower plant, with a resultant 16.67% transmission. Similarly, an IAP of 6 days is neces

sary for successful transmission of the virus with 13.33% transmission (Pankaja et al. 2010b, 2011). 

Seed Transmission 
Certain strains of TSV are known to be transmitted in the seed of a range of host species 

(Prasada Rao et al. 2009). However, transmission of the TSV isolate occurring in India is not 

spread through the seed (Papaiah Sardaru et al. 2013, Prasada Rao et al. 2009, Bhat et al., 2002a 



 

 

 

 

 

 

265 Sunflower Diseases 

Pankaja et al. 2010a). Even in the absence of seed transmission, primary inocula of the TSV are 

provided by secondary hosts and weed hosts prevalent in and around the sunflower fields by the 

thrip vector. 

DIAGNOSIS 

Polyclonal antiserum against TSV-SF has been developed for the rapid diagnosis of TSV using 

the direct antigen coating-enzyme linked immunosobent assay (DAC-ELISA) method (Ramiah 

et al. 2001a,b). The serological electroblot immunoassay  diagnosis method for CP of the sunflower 

necrosis virus (Bhat et al. 2002a) and an efficient reverse  transcription-polymerase chain reaction 

(Bhat et al. 2002b, Srinivasan and Mathivanan 2011a) have been developed. Recently, Sarovar et al. 

(2010a) have reported a high-efficiency immunocapture reverse transcription-polymerase chain 

reaction (IC-RT-PCR) for RNA3 of TSV-SF, and they have also developed a serological and probe-

based blotting technique for the detection of TSV-infected sunflower plants (Pankaja et al. 2010a, 

Sarovar et al. 2010b). The serological relationship has been confirmed by Western blot analysis 

and immunoelectron microscopy (IEM) decoration assays using sunflower necrosis virus (SNV) 

and TSV antisera in reciprocal tests. In RT-PCR, using oligonucleotide primers deduced from con

served sequences within TSV RNA 3 and flanking the entire CP region, an approximately 1000 bp 

dsDNA fragment could be amplified from SNV-infected sunflowers. A sequence analysis of cloned 

sunflower necrosis virus (SNV) PCR fragments revealed nucleotide identities of approximately 

90% with TSV RNA 3 and a CP amino acid homology between SNV and TSV of more than 90%. 

EPIDEMIOLOGY, HOST RANGE, AND DISEASE CYCLE 

The virus survives throughout the year on several weeds, namely, Parthenium  hysterophorus, Tridax 
procumbens, Phyllanthus sp., Euphorbia geniculata, and Digera arvensis. A total of 12 weeds, 

namely, D. arvensis, A. aspera, Lagasca mollis, P. hysterophorus, A. hispidum, A.  conyzoides, 

C. bengalensis, E. geniculata, Phyllanthus niruri, Malvastrum coromandelianum, Abutilon indi
cum, and Physalis minima, have been found to be infected with the natural infection of TSV. Of 

these, Parthenium is the most widely distributed and is a symptomless carrier of TSV and produces 

several flushes of flowers during its life cycle ensuring continuous supply of TSV-infected pollen. 

It hosts the virus as well as thrips and produces copious pollen throughout the season and acts as a 

primary source of inocula initiating and sustaining the TSV infection during a crop season. Besides, 

thrips colonizing flowers of these plants can become externally contaminated with pollen and move

ment of these thrips to new hosts results in introduction of the virus into fields. Windblown pollen 

of Parthenium contaminates the leaves and thrips arriving independently may well contribute to 

infection. Epidemiological studies on SND indicated the positive correlation between the thrips 

population and the weather parameters, namely, maximum and minimum temperature and sun

shine and dry spells, whereas negative correlation was observed with rainfall and relative humid

ity. Disease incidence is positively correlated with thrips population and minimum temperature, 

relative humidity, and rainfall. However, negative correlation with maximum temperature can be 

observed (Upendhar et al. 2006, 2009). The disease incidence is higher in kharif and summer sea

sons, whereas it is low in rabi season. The sunflower cultivars sown during July and August show 

high necrosis incidence compared to postrainy season, that is, September onward (Shishikar 2003). 

DISEASE MANAGEMENT 

Host Plant Resistance 
The most economical and convenient way to manage TSV is to grow resistant varieties. So far, 

complete resistant varieties/hybrids are not available in sunflower. The sap inoculation technique 

has been optimized for large-scale screening of sunflower genotypes against SND. 



 

     

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

266 Diseases of Edible Oilseed Crops 

Systematic studies have been undertaken for the identification of reliable sources of resistance 

to SND in wild sunflowers (Sujatha 2006). Babu et  al. (2007) screened 30 hybrids along with 

their parents against SND under natural conditions, using a 0–4 scale. Fourteen hybrids (CMS 

378A × RHA 265, CMS 378A × DSI 218, CMS 378A × RHA 344, CMS 234A × RHA 265, CMS 

234A × RHA 271, CMS 234A × RHA 344, CMS 234A × RHA 345, CMS 234A × RHA 346, CMS 

7-1A × RHA 345, DCMS 41 × RHA 274, DCMS 41 × SF 216, DCMS 42 × RHS 273, DCMS 42 × 

RHA 859, and DCMS 43 × DSI 218) and two parents (CMS 378 A and CMS 234A) recorded resis

tant reaction. In general, hybrids indicated better tolerance than the populations and inbreds. Among 

the 96 genotypes screened, only 8 (RHA 284, RHA 5D-1, RHA 265, RHA 859, RHA 297, RHA 

365, CR-1, and R-214-NBR) have not been found to be infected by the disease (Ajith Prasad 2004). 

Transgenic Approach 
Pradeep et  al. (2012) amplified, cloned, and sequenced the CP gene of TSV from sunflower 

(H.  annuus L.). In their study, a 421 bp fragment of the TSV CP gene could be amplified and 

gene constructs encoding the hairpin RNA (hpRNA) of the TSV CP sequence has been subcloned 

into the binary vector pART27. This gene construct was then mobilized into the Agrobacterium 
 tumefaciens strain LBA4404 via triparental mating using pRK2013 as a helper. Sunflower (cv. Co 4) 

and tobacco (cv. Petit Havana) plants were transformed with A. tumefaciens strain LBA4404 har

boring the hpRNA cassette, and in vitro selection was performed with kanamycin. The integration 

of the transgene into the genome of the transgenic lines was confirmed by PCR analysis. Infectivity 

assays with TSV by mechanical sap inoculation demonstrated that both the sunflower and tobacco 

transgenic lines exhibited resistance to TSV infection and accumulated lower levels of TSV com

pared with nontransformed controls (Papaiah Sardaru et al. 2013). 

Cultural Control 
Removal of virus sources especially weeds that germinated with early rains, in fallow lands, on road 

sides, and on field bunds helps in reducing secondary inoculum thereby reducing the TSV incidence. 

Moreover, sunflower and groundnut should not be grown side by side or at least synchronization of the 

flowering period of sunflower with groundnut crop should be avoided as sunflower crop provides infec

tive pollen inoculum with TSV. Similarly, removal of early-infected sunflower will not reduce disease 

incidence as early-infected sunflower does not produce flowers. TSV-susceptible crops like marigold 

and chrysanthemum should not be grown adjacent to sunflower fields. Natural barriers such as tall 

grasses in the field protected the adjacent crops from the disease. The tall grasses might obstruct not 

only wind-borne-infected pollen from outside weeds but also wind-borne thrips. Sowing 7–11 rows of 

fast-growing cereals (pearl millet, sorghum, or maize) as border crop around fields that obstruct the 

movement of thrips from landing on crop plants were found to reduce disease incidence in sunflower 

(Chander Rao et al. 2002, Basappa et al. 2005, Lokesh et al. 2008c). Mesta et al. (2004) reported that 

the use of border crop-like sorghum reduced the incidence of SND from 18% to 37%. Bare patches in 

the field attract thrips landing. Optimum plant population discourages thrips landing on the sunflower 

crop indicating that maintenance of optimum plant population is one of the options for the manage

ment of TSV infection (Papaiah Sardaru et al. 2013). The date of sowing of crops mainly depends on 

rainfall pattern and distribution (Lokesh et al. 2008d). Shirshikar (2003) opined that the incidence of 

SND could be minimized if sunflower is sown in the postrainy season, that is, from September onward 

(Shirshikar 2003, Upendhar et al. 2006, 2009). Intercropping with red gram or castor is helpful in 

reducing disease intensity compared to monocropping of sunflower (Sreekanth et al. 2004). 

Chemical Control 
Seed treatment with imidacloprid at 5 g/kg seed and imidacloprid (0.5%) spray reduces disease 

incidence with higher yield compared with other treatments (Lokesh et al. 2008c). Management 

trial for SND at All India Coordinated Research Project (AICRP) on oilseeds revealed that 

seed treatment with either imidacloprid at 5 g/kg seed or thiomethoxam at 4 g/kg seed followed 



 

 

  

 

 

267 Sunflower Diseases 

FIGURE 6.12  Stem  necrosis of sunflower: Necrotic streaks on stem. (Courtesy of Dr. Varaprasad and 

Chander Rao, DOR, Hyderabad, India.) 

by two sprays at 30 and 45  days found to reduce necrosis disease and increase seed yield sig

nificantly over untreated control (Shirshikar et al. 2009, Shirshikar 2010). 

Antiviral Compounds 
The use of various antiviral materials such as Prosopis, goat milk, and Bougainvillea in combina

tions has been used to induce resistance in sunflower against TSV-SF (Lavanya et al. 2009). Among 

them,  Bougainvillea spectabilis with goat milk, Prosopis chilensis with goat milk, B.spectabilis  
alone, and  P. chilensis  alone are found highly effective in inducing resistance in sunflower against 

SND. The combinations of treatments that involve plant products with goat milk are reported to be 

more effective than the individual ones. Significantly enhanced PR proteins like β-1,3-glucanase 

and oxidative enzymes like peroxidase, polyphenol oxidase, and PAL have been observed in sun

flower using previously mentioned antiviral materials. 

Biological Control 
Plant growth–promoting microbial consortia (PGPMC)–mediated biological management of SND 

under field conditions has been experimented (Srinivasan et al. 2009, Srinivasan and Mathivanan 

2011b). Powder and liquid formulations of two PGPMCs (PGPMC-1, consisting of Bacillus licheni
formis strain ML2501 + Bacillus sp. strain MML2551 + Pseudomonas aeruginosa strain MML2212 

+ Streptomyces fradiae strain MML1042; PGPMC-2, consisting of B. licheniformis MML2501 + 

Bacillus sp. MML2551 + P. aeruginosa MML2212) when evaluated along with farmers’ practice 

(imidacloprid + mancozeb) in farmers’ fields, significant disease reduction, increase of seed ger

mination, plant height, and yield parameters have been recorded with an additional seed yield of 

840 kg/ha, an additional income of Rs. 10,920/ha with a benefit–cost ratio of 6:1. 

OTHER SUNFLOWER DISEASES 

Some other diseases of potential importance are briefly given in Table 6.1. 
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Section V
 

Sesame 
Sesame (Sesamum indicum L.; syn. S. orientale L.) variously named as gingelly or til belongs to 

the family Pedaliaceae. It is an annual, 1.0–1.5 m tall, herbaceous plant, maturing in 70–140 days. 

The basic chromosome number is 13 pairs (2n = 26). Molecular marker techniques such as ampli

fied fragment length polymorphism, random amplified polymorphic DNA (RAPD), inter-simple 

sequence repeats (ISSR), and simple sequence repeats have been widely used in genetic  diversity 

studies in sesame (Yadava et al. 2012, Pathak et al. 2014). The genome size of S. indicum is estimated 

to be about approximately in the range of 354–369 Mb (Ashi 2006, Wei et al. 2011). 

The flowers are solitary, axillary, short-pediceled, and zygomorphic and are borne on the upper 

stem or branches. Self-pollination is the rule, but natural cross-pollination due to visiting bees 

may usually be seen to the extent of 5%. The fruit is a capsule and contains numerous small ovate 

seeds. Sesame seed contains high oil content 45%–52% (Hegde 2009) with 83%–90% unsaturated 

fatty acids, 20% proteins, and various minor nutrients such as vitamins and minerals and a large 

amount of characteristic lignans (methylenedioxyphenyl compounds) such as sesamin, sesamol, 

sesamolin, and tocopherols. Therefore, sesame seeds with high amounts of nutritional components 

are consumed as a traditional health food for its specific antihypertensive effect and anticarci

nogenic, anti-inflammatory, and antioxidative activities. Sesame is thought to have originated in 

India, though its origin is sometimes traced to southern and southwestern Africa and also to the 

East Indies. The crop is mainly grown in the tropics and subtropics. Sesame grows on a variety 

of soils, but good yield is obtained on light, sandy loam, well-drained soils of moderate fertility. 

Principal sesame-producing countries are India, China, Korea, Iran, Turkey, Burma, and Pakistan 

in Asia; Egypt and Sudan in Africa; Greece in Europe; Venezuela, Argentina, and Colombia in 

South America; Nicaragua and El Salvador in Central America; and Mexico and the United States 

in North America. The largest producer and exporter of sesame seed in 2011 was Myanmar, sec

ondly India, followed by China, Ethiopia, Nigeria, and Uganda. China is the world’s largest con

sumer, and 70% of the world’s sesame crop is grown in Asia, followed by Africa having a gross 

share of 26% in the world (FAOSTAT 2011). 
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About 65% of the annual sesame crop is processed into oil, and 35% is used in food. The food 

segment includes about 42% roasted sesame, 36% washed sesame, 12% ground sesame, and 10% 

roasted sesame seed. Because protein content and oil content are inversely proportional, seeds 

with an increased oil content have a decreased protein content. The oil quickly permeates and 

penetrates the skin, entering the blood stream through the capillaries. While in the blood stream, 

molecules of sesame seed oil maintain good cholesterol (HDL) and assist the body in removing 

bad cholesterol (LDL). 

Different diseases of major economic importance affecting the crop are described in the follow

ing chapter. 



 

 

  

 

7 Sesame Diseases 

Phytophthora BLIGHT 

SYMPTOMS 

The disease can attack plants of all ages after they attain 10 days of age. Symptoms appear on all 

aerial parts of the affected plants. The first symptom is the appearance of water-soaked brown spots 

on leaves and stems (Figure 7.1). The spots gradually extend in size. Under favorable weather condi

tions, the brownish discolored spots spread rapidly both upward and downward and also around the 

stem. The brownish area later turns deep brown and becomes black with the spread of the infection. 

The capsules are also affected. In humid weather, the white woolly growth of the fungus can be seen 

on the surface of affected capsules. Capsules on affected branches are poorly formed. The seeds 

remain shriveled in the case of severe attack. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Phytophthora blight of sesame was first reported from India by Butler (1918). Widespread occur

rence of the disease has now been reported from Argentina, Dominican Republic, Egypt, India, 

Iran, Sri Lanka, and Venezuela (Verma et al. 2005). The disease has been reported to be of eco

nomic importance in the states of Assam, Gujarat, Madhya Pradesh, and Rajasthan in India and in 

Sri Lanka (Kolte 1985, Pathirana 1992, Kalita et al. 2000, 2002). Since the disease generally kills 

the affected plants, it can be observed that the net loss is directly proportional to the incidence of the 

disease. The mortality of the plants due to the disease may be as high as 72%–79%. The disease is 

becoming increasingly more important in Assam in recent years where the losses in yield in sesame 

crop range between 51% and 53% (Kalita et al. 2002). 

Besides causing blight, the pathogen is found to be associated with vivipary in immature seeds 

of sesame contained in greed pods of plants raised from naturally infected seeds. It is an unusual 

phenomenon that besides increasing the seed infection also renders poor-quality seeds. The host– 

pathogen interaction results in abnormal seedling emergence, which lacks vigor and further  survival 

(Dubey et al. 2011). 

PATHOGEN 

The pathogen is Phytophthora parasitica (Dastur) var. sesami Prasad (P. nicotianae B. de Haan var. 

parasitica [Dastur] Waterh). 

Mycelium of the fungus in young culture is coenocytic and profusely branched, but septa can be 

observed in 2-month-old cultures. The hyphae are hyaline and are 2–8 μ thick. 

The fungus does not form sporangia on culture media, but abundant sporangia can be observed 

in nature on woolly mycelium growing on infected capsules. The sporangiophores are branched 

sympodially and bear ovate-to-spherical sporangia terminally. They have a prominent apical papilla 

and measure 25–50 × 20–35 μ in size. 

The mycelium, when floated in tap water, forms zoosporangia readily in 48 h. The zoospores 

are formed inside, and they clearly get separated within the sporangium. The zoospores are liber

ated in water if the mycelium is flooded with water. The antheridium can be observed at the base, 

and attachment is typically amphigynous. The oospores are spherical, smooth, double walled, and 

hyaline. 
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FIGURE 7.1  Phytophthora blight of sesame. The first symptom is the appearance of water-soaked brown 

spots on leaves. (Courtesy of Dr. Anil Kotasthane, IGKV, Raipur, India.) 

The fungus grows well on oatmeal/agar at an optimum temperature of 30°C. Culture of the 

 fungus may show tendency to lose virulence if it is maintained on artificial medium for a long  

period. The fungus is reported to be thiamine deficient. Its growth becomes good when thiamine is 

incorporated (200 μg/L) in the medium. The fungus grows best at pH 6.5. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The pathogen can survive in mycelial form up to 50°C temperature, and culture having chlamydo

spores may survive up to 52°C. Viability of the culture can be kept in a refrigerator for 1 year at 

5°C. These studies suggest that the fungus can survive in soil during the summer and winter where 

temperature never rises beyond 50°C or drops below 5°C. The fungus survives in soil during the 

unfavorable period in the form of dormant mycelium and/or in the form of chlamydospores. In addi

tion to soil, seed also appears to play an important role in the recurrence and spread of the disease. 

In seed, the mycelium has been located in the embryo. However, there are reports that the fungus 

reduces seed viability but it is not seed borne (Maiti et al. 1988). The mycelium in the host tissue 

is inter- or intracellular, but it does not form haustoria. The sporangiophores emerge in groups by 

rupturing the epidermis, but sometimes they emerge through stomata (Verma et  al. 2005). The 

zoosporangia are formed abundantly if humid weather prevails for 2–3 days but soon stop forma

tion if a dry spell appears. The secondary infection occurs through zoospores. P. parasitica var. 

sesami is restricted in its pathogenicity to sesame plants only. Sehgal and Prasad (1966) have shown 

variation in virulence among various isolates of P. parasitica var. sesami. Single-zoospore isolates 

show great variations, under similar conditions of infection, in virulence, which may range from 

nonpathogenic to highly pathogenic. A few isolates of P. parasitica var. sesami can lose virulence, 

but the loss in virulence is not permanent, since a few cultures can regain the loss of virulence after 

passage through the host. On repeated host passages, the culture can even become more virulent 

than the original ones (Sehgal and Prasad 1971). 

Heavy rains for at least 2 weeks and high humidity (above 90%) for 3 weeks or more favor the 

development of the disease. When such favorable conditions persist for a longer time, the infection 
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appears quite fast. It is observed that the initial development of the disease is much earlier when 

the soil temperature is 28°C, while the initial appearance of the disease is delayed with an increase 

in the soil temperature up to 37°C. The pathogen is favored by 30°C, can tolerate 35°C, but fails to 

grow at 37°C. Hence, soil temperature of 28°C–30°C is necessary for disease development (Prasad 

et  al. 1970). It is further reported that incidence of the Phytophthora blight of sesame shows a 

close parallelism to the growth of the fungus. Bright sunshine hours for 2–3 days are not favorable 

for disease development since zoospore formation is stopped under such conditions. The disease 

appears to become more severe in heavy soils (Verma 2002). The moderate nitrogenous fertilizer 

application leads to more incidence of Phytophthora blight of sesamum (Verma and Bajpai 2001). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Out of several strains and varieties of sesame (Sesamum orientate L.) and five other species, namely, 

S. occidentalis Heer and Regal, S. indicum L., S. laciniatum Willd., S. prostratum Retz., and 

S.  radiatum Schum. and Thonn., tested for resistance to the disease, none is identified to be resis

tant to the disease (Kolte 1985, Choi et al. 1987). However, under All India Coordinated Research 

Project on Oilseeds, a number of sesame lines over several years of crop season testing have been 

found to be tolerant to Phytophthora blight. These lines are TC-25, JLSC-8, TKG-21, AT-60, 

AT-64, B-14, Chopra-1, Durga (TKG-6), JLT-3, JLT-7, Lakhora-1, Phule till-1, RT-46, T-12, and 

T-13. These lines/strains that have shown tolerance over longer duration can be grown to manage 

the adverse effect of the disease on yield (Verma et al. 2005). In Venezuela, three lines, 71-184-1, 

79-129-2, and 71-145-3 (selected from B4 of Ajinio Atar 55), are reported to be disease resistant. The 

National Institute of Crop Science in Korea has developed a new black-seeded variety Kangheuk, 

which is a high-yielding, high-lodging, and Phytophthora blight–resistant variety (Shim et al. 2012). 

Epiphytotic conditions and nonavailability of resistant germplasm had prompted the use of gamma 

ray–induced (450–600 Gy) mutation breeding for the development of Phytophthora blight–resistant 

sesame variety ANK-S 2 in Sri Lanka (Pathirana 1992). 

Chemical Control 
Seed-borne infection can be controlled by treating the seed with thiram (0.3%). Secondary infec

tion and further spread of the disease can be brought under control by three sprayings of Bordeaux 

mixture (3:3:50), each at an interval of 1 week after the appearance of the disease (Verma et al. 
2005). Spray application of dithiocarbamate fungicides such as mancozeb (0.3%) or zineb (0.3%) 

and Fytolan (copper oxychloride) (0.3%) is reported to be effective in the control of the disease 

(Kalita et al. 2000, 2002). 

Cultural Control 
Sanitation and clean cultivation should be followed as additional measures to control the disease. 

Use of sowing date depending upon the prevailing local conditions and crop fields with light soil 

with proper drainage should be preferred to avoid heavy losses due to disease. The intercropping 

of sesame with soybean, castor, maize, sorghum, or pearl millet in the ratio of 1:3 or 3:1 shows a 

low incidence of the disease with higher yield. Application of farm yard manure (FYM) or neem 

cake with inorganic fertilizers N60, P40, and K20 reduces the disease incidence (Verma et al. 2005). 

Planting of sesame in 0.2 mm wide ridge in plots mulched with vinyl reduces the spread of the 

disease by at least 30% and increases the yield by 22% (Choi et al. 1984). 

Biological Control 
Species of Pseudomonas, Bacillus, and Streptomyces, which are most active at 25°C–27°C at 

field capacity moisture level, can be suppressive to Phytophthora species in soil (Erwin 1983). 

Antagonistic Trichoderma species, namely, T. viride, T. harzianum, and Pseudomonas fluorescence, 
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when used as seed treatment, not only reduce the disease significantly but substantially increase 

the sesame yield (Verma 2002). Application of phosphorus-solubilizing bacteria (PSB) along with 

neem cake or 50% NPK + FYM or 100% NPK + PSB reduces the disease (Verma and Bajpai 2001). 

CHARCOAL ROT 

SYMPTOMS 

Sesame plants may be attacked immediately after sowing. The germinating seeds may become 

brown and rot. In the seedling stage, the roots may become brown and rot, resulting in the death of 

the plants. If the plants survive, the older plants are affected at the base of the stem indicating the 

formation of lesion that later spreads to the middle portion of the stem and becomes ashy, causing 

drooping of leaves and top of the plants (Figure 7.2). Such plants make poor growth and remain 

stunted. The mycelium of the fungus progresses upward in the stem, and as the stem dries, pycnidia 

are formed as minute black dots. The stem may break off, and the blackening may extend upward 

on the stem. The capsules are also affected. Such capsules open prematurely, exposing shriveled and 

discolored seeds (Figure 7.3). Seeds may show the presence of sclerotia on the surface. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Reports of occurrence of charcoal rot of sesame have been made from all over the sesame- 

growing areas in the world (Kolte 1985, Verma et al. 2005). The disease is particularly reported 

to be quite serious, limiting the production of the crop in Ismailia Governorate Region in Upper 

Egypt (Abdou et al. 2001, El-Bramawy and Wahid 2007); Southeastern Anatolia Region in Turkey 

(Sağır et al. 2009); in the Portuguesa state in Venezuela (Cardona and Rodriguez 2006, Martinez-

Hilders et  al. 2013); in the Chandrapur district of Vidarbha region of Maharashtra, the Gwalior 

Division of Madhya Pradesh, and in the states of Haryana and Chhattisgarh in India (Kolte 1985, 

FIGURE 7.2  Severely affected sesame plant showing charcoal symptoms. (Courtesy of Dr. Anil Kotasthane, 

IGKV, Raipur, India.) 



    

 

 

   

 

 

  

 

 

297 Sesame Diseases 

FIGURE 7.3  Charcoal rot–affected sesame plants. Note the ashy color of the stem with infected discolored  

capsules. (Courtesy of Dr. Anil Kotasthane, IGKV, Raipur, India.) 

Deepthi et al. 2014); and in Pakistan (Akhtar et al. 2011). Seedling mortality due to seed-borne 

infection aggravates the disease problem by reducing the plant stand per unit area, resulting in 

low yield. About 5%–100% yield loss due to the disease is reported. An estimated yield loss of 

57% at about 40% disease incidence is reported (Maiti et al. 1988). In Venezuela, losses in sesame 

due to charcoal rot have been evaluated resulting up to 65% of seed weight reduction for affected 

plants (Martinez-Hilders et al. 2013). The importance of the charcoal rot lies not only in affecting 

the yield and causing quantitative and qualitative losses (Sağır et  al. 2009) but also in increasing  

soil infestation with the causal fungus. For example, sclerotia of Macrophomina phaseolina in  

Venezuelan soils of sesame production areas have been estimated to be up to 200 per gram of soil 

(Martinez-Hilders et al. 2013). If the disease appears simultaneously with Phytophthora blight or 

with Fusarium wilt, the losses in yield usually are very high. 

PATHOGEN 

The pathogen is M. phaseolina (Tassi) Goid. The morphological and physiological  characteristics 

of the pathogen have been described under chapters on peanut and sunflower diseases. Molecular 

methods used for determining the level of genetic diversity and polymorphism among M.  phaseolina 
populations affecting sesame include random amplified polymorphic DNA (RAPD),  amplified 

fragment length polymorphism, and inter-simple sequence repeats (ISSR). It is revealed that 

M.  phaseolina populations in all the major sesame production regions in China (Wang et al. 2011), 

Iran (Bakhshi et  al. 2010, Mahdizadeh et  al. 2012), Mexico (Munoz-Cabanas et  al. 2005), and  

Venezuela (Martinez-Hilders and Laurentin 2012, Martinez-Hilders et al. 2013) are highly geneti

cally diverse based on genomic data. High level of genotypic variability is likely due in part to the 

exposure of the pathogen to diverse environment and a wide host range within these countries. 

However, no clear association between geographical origin and host of each isolate has been found, 

though isolates from the same location show a tendency to belong to their respective closer groups 

indicating closer genetic relatedness (Bakshi et al. 2010). 
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Leaf, stem, and root extracts of urd and mung beans have been reported to show an inhibitory 

effect on sclerotial formation of the sesame isolate in vitro (Kolte and Shinde 1973). Ammonium 

chloride also has an inhibitory effect on sclerotial formation of the fungus (Kolte 1985). The sesame 

isolates are chlorate sensitive and grow normally with numerous dark microsclerotia production on 

the potassium chlorate–containing medium (Rayatpanah et al. 2012). Interestingly, the soybean and 

sunflower isolates are chlorate sensitive and divided into two classes. Class 1 includes the isolates 

that grow sparsely with a feathery-like pattern, and Class 2 includes the isolates that grow well 

with a nonfeathery pattern. Isolates with feathery-like pattern are more virulent on soybean and 

sunflower (Rayatpanah et al. 2012). Two distinct strains, namely, pycnidia-forming and sclerotia

forming strains, have been reported from Bangladesh. The pycnidial strain is reported to be more 

pathogenic on sesame than the sclerotial strain (Kolte 1985, Verma et al. 2005). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The fungus survives as free sclerotia in soil or as mycelium and sclerotia carried in crop debris. 

It spreads by the movement of soil and crop debris (Al-Ahmad and Saidawai 1988) and through 

the sesame seeds. The sesame seed has been found to carry the fungus on and inside the testa as 

sclerotia or as stromatic mycelium. The standard blotter method, use of a selective medium and 

scanning electron microscopy, facilitates the detection of seed-borne infection in sesame (Verma 

et al. 2005, El-Wakil et al. 2011). There is a positive correlation between microsclerotia on sesame 

seed with percent plant infection (Gupta and Cheema 1990). It is reported that the germinating 

seed and seedlings stimulate normal sclerotial germination and attract developing mycelium to 

the host roots. Entry may occur directly through the cuticle and epidermis, infection cushions and 

appressoria are also reported to be formed on sesame plants prior to infection, and the pathogen 

produces cell-wall-degrading pectolytic and cellulolytic enzymes. The most aggressive isolate pro

duces more cell-wall-degrading enzymes than the less aggressive isolates (Gabr et al. 1998). 

A high soil temperature (35°C) and low osmotic potential reduce plant vigor and favor growth 

of the fungus and initiation of infection. Maximum temperature of 31.6°C, minimum temperature 

of 24°C, and relative humidity of 88% favor severe charcoal rot disease development (Deepthi 

et  al. 2014). The response of the sesame crop to stress conditions has been found to be of sig

nificant importance in epidemiology, and irrigation reduces infection by reducing drought stress. 

Periods of drought between heavy rains favor the development of the disease in Africa. Strains of 

M. phaseolina are known for their wide host range and infect a large number of weeds and rotation 

crops, which function as a source of inoculum and survival of the pathogen (Simosa and Delgado 

1991, Kolte 1997). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Differences in host resistance to charcoal rot through screening of genotypes and molecular marker 

techniques in sesame have been noted in trials in several Asian and South American countries 

(Chattopadhyay and Sastry 2000, Melean 2003, El-Fiki et  al. 2004b, El-Bramawy and Shaban 

2007, El-Bramawy et al. 2009, Gao et al. 2011, Zhang et al. 2012). The results reveal that there is 

high heritability for host resistance indicating additive gene nature of the resistance characters and 

consequently a high gain from selection. High resistance gives the lowest seed yield, and great care 

is taken during selection and pedigree selection for resistance breeding program to M.  phaseolina 
(Mahdy et al. 2005b, El-Bramawy and Wahid 2006, 2007, El-Shakhees and Khalifa 2007). In Egypt, 

sesame line P5 (NM 59) and the F6-derived lines C6.3, C1.10, and C3.8 are the most valuable sources 

of resistance to charcoal rot disease. The P5 line is resistant to both charcoal rot and Fusarium wilt, 

whereas the F6-derived line C6.3 is the most resistant and top-yielding one against combined infec

tion of charcoal rot and Fusarium wilt diseases (Shabana et al. 2014). 



 

 

 

 

 

 

 

   

  

 

   
 

  

 

  

 

 

 

 

   

    

 

 

 

 

 

 

  

 

 

299 Sesame Diseases 

Different sesame germplasm lines and cultivars that have been found tolerant or less sus

ceptible to charcoal rot are ORM 7, ORM 14, and ORM 17 (Dinakaran and Mohammed 2001, 

Subrahmaniyan et al. 2001, Thiyagu et al. 2007); TLC-246, TL6-279, and TLCCCCC-281 (John 

et  al. 2005); ZZM0565, ZZM0570, Xiangcheng dazibai, Xincai Xuankang, Shangshui farm  

species, and KKU 3 (Zhao et al. 2012); mutants NS 13 P1, NS 163-1, NS 270 P1, and NS 26004 

(Akhtar et al. 2011); UBQ5, UF 4A, and alpha-tubulin (Liu et al. 2012); UCLA-1, EXP-1, and 

DV-9 (Melean 2003); and Aceteru-M, Adnan (5/91), Taka 2, B 35, and mutation 48 (El-Fiki 

et al. 2004b). 

The sources of resistance appear to differ in the mechanism of resistance. Factors such as 

morphological traits like single stem (Li et al. 1991); medium branch numbers (El-Bramawy 2008, 

El-Bramawy et al. 2009); creamy or white seed color (El-Bramawy et al. 2009); antifungal nutri

tional components such as phytin, trypsin inhibitor, and tannins (El-Bramawy and Embaby 2011); 

certain biochemical factors as faster rate of activity of polyphenol oxidase enzymes in Chinese 

sesame cultivar Yuzhi 11 (Liu et  al. 2012); and different isoenzyme band patterns (Zhang et  al. 

2001) have been linked with resistance to charcoal rot in sesame. The mature plant reaction, through 

hybridization studies, indicated that susceptibility in the mature plant is dominant over tolerance, 

and it is controlled by 1, 2, or 3 pairs of genes (Kolte 1985). 

Chemical Control 
Seed treatment with carbendazim (0.1%–0.3%) gives complete control of seed-borne infection of 

M. phaseolina in sesame when used as seed treatment fungicide (Choudhary et al. 2004, Rajpurohit 

2004b, Shah et al. 2005, John et al. 2010). Other seed treatment fungicides are thiophanate methyl 

(John et al. 2010), Benlate or Rizolex T at 3 g/kg seed (El-Deeb et al. 1985, El-Fiki et al. 2004a), 

mancozeb (Mudingotto et al. 2002), thiram, captan, and carboxin (Verma et al. 2005). Soil treat

ment with fungicides is effective but impracticable. The integration of fungicide carbendazim seed 

treatment (0.1%) with carbendazim-tolerant strain of T. viride (Tv-Mut) as induced by mutating the 

native strain of the fungus by UV irradiation and soil supplemented with 20 kg P and 15 kg K/ha 

show the highest reduction (91.7%) in sesame stem–root rot incidence caused by M. phaseolina 
(Chattopadhyay and Sastry 2002). Aminobutylic acid and potassium salicylate can effectively con

trol charcoal rot in sesame by induction of host resistance against M. phaseolina and increasing 

plant height, indole acetic acid (IAA) content, and peroxidase (PO) activity (Shalaby et al. 2001). 

Soaking sesame seeds in indole butyric acid at 100 ppm or salicylic acid at 4 mM produce healthy 

stand of plants. 

Cultural Control 
The average charcoal rot incidence can be lowered down by choice of sowing date and levels 

and time of irrigation depending on the local conditions in a particular geographical area. 

Early sowing by June 10 in Egypt and following hills-over-furrows method of sowing and giv

ing only one irrigation during the whole growing season to a crop fertilized with N at 65 kg, 

P at 200  kg, and K at 50 kg/feddan (0.42 ha) result in significant reduction in charcoal rot 

incidence (Shalaby and Bakeer 2000). Similar results are evident under early sowing and fre

quency of irrigation in Turkey (Sağır et al. 2010). Lowering concentration of Ca, Na, Mg, and 

Fe and increasing concentration of K, Cu, and Zn in the soil by applying chemical fertilizers 

and organic manure may reduce very much the charcoal root rot incidence (Narayanaswamy 

and Gokulakumar 2010). Sesame crop grown as mixed or intercropped with green gram in 1:1 

is useful in the management of the charcoal rot and results in higher sesame yield in the arid 

region (Rajpurohit 2002, Ahuja et al. 2009). It is noteworthy to note that green gram (mung) 

and black gram plant extracts are inhibitory to the growth of M. phaseolina (Kolte and Shinde 

1973). Six weeks of soil solarization of infested crop field sites in the summer months result 

in good sesame seed germination and better disease management under Indian conditions 

(Chattopadhyay and Sastry 2001). 
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Biological Control 
Effect of antagonistic fungi and bacteria isolated from the rhizosphere of sesame is reported 

to be efficiently more effective in controlling the root rot and stem rot of sesame caused by M.
 phaseolina (El-Bramawy and El-Sarag 2012). Sesame seed treatment with (a) T. viride at 4 g/kg of 

seed (Rajpurohit 2004a, Hafedh et al. 2005, Rani et al. 2009, Zeidan et al. 2011), (b) T. harzianum 
(Pineda 2001, Cardona and Rodriguez 2002, 2006, El-Fiki et al. 2004b, Nair et al. 2006, Sattar et al. 

2006, Moi and Bhattachrya 2008), (c) P. fluorescens (Jayshree et al. 2000, Moi and Bhattachrya 

2008), and (d) Bacillus subtilis (Nair et al. 2006, Elewa et al. 2011) has been found effective in the 

control of charcoal rot disease. Green manure of Crotolaria amended with Trichoderma constitutes 

a viable alternative for the control of charcoal rot of sesame (Cardona 2008). 

A combination of seed treatment and soil application of the antagonists through the applica

tion of clay granules impregnated with T. harzianum or P. fluorescens at sowing time appears to 

be much more effective in the control of the charcoal rot (Pineda 2001, Cardona and Rodriguez 

2002). Application of vesicular–arbuscular mycorrhizae (VAM), namely, Glomus spp., together 

with biocontrol agents T. viride or B. subtilis significantly helps in efficient control of root rot 

(M. phaseolina) and Fusarium wilt diseases of sesame than individual application of either VAM 

or antagonists (Elewa et al. 2011, Zeidan et al. 2011). Soil solarization in combination with fungal 

antagonists T. pseudokoningii and Emericella nidulans singly or in mixed inocula reduces char

coal rot incidence in sesame significantly (Ibrahim and Abdel-Azeem 2007). Seed treatment with 

Azotobacter chrococum and seed + soil treatment with Azospirillum also reduce the disease by 

about 30% (Verma et al. 2005, Maheshwari et al. 2012). 

EFFECT  OF PLANT EXTRACTS 

Extracts of Thevetia neriifolia (Bayounis and Al-Sunaidi 2008a), Azadirachta indica, Datura 
stramonium, Nerium oleander, Eucalyptus camaldulensis (Bayounis and Al-Sunaidi 2008b), and 

Helichrysum flower (Shalaby et al. 2001) show inhibitory effect on the growth of M. phaseolina, 

indicating their potential use in the control of the disease. The extracts of Eucalyptus (Eucalyptus 
rostrata, E. camaldulensis), peppermint (Mentha piperita), and thyme (Thymus serpyllum), 

when used in sand culture or under in vitro conditions in growth media and inoculated with 

M.  phaseolina, have been found to show increase in sesame seed germination despite the pres

ence of M. phaseolina in the culture, indicating potential usefulness of these extracts (Sidawi 

et al. 2010). 

Fusarium WILT 

SYMPTOMS 

Plants get infected at any stage of the crop development including the damping-off phase in the 

seedling stage (Fallahpori et  al. 2010, 2013). During later stages of the plant, yellowing of the 

leaves is the first noticeable symptom of the wilt in the field. Leaves become yellowish, droop, and 

dessicate. Sometimes such leaves show inward rolling of the edges and eventually dry up. The ter

minal portion dries up and becomes shrunken and bent over. In a severe infection, the entire plant 

becomes defoliated and dry. In a less severe infection or when mature plants are infected, only one 

side of the plant may develop symptoms, resulting in partial wilting, and a half stem rot symptom 

has been reported (Cho and Choi 1987). A blackish discoloration in the form of streaks appears on 

infected plants. Discoloration of the vascular system is conspicuous in the roots. Roots in the later 

stages show rotting, wholly or partially corresponding with that side of the plant showing disease 

symptoms. Numerous pink pinhead-sized sporodochia (containing macroconidia of the fungus) 

may be seen scattered over the entire dried stem. The capsules of wilted plants also show numerous 

sporodochia. 
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GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Fusarium wilt of sesame was reported for the first time from North America in 1950 (Armstrong 

and Armstrong 1950). Since then, the disease is reported to occur in Egypt, Colombia, Greece, India, 

Iran, Israel, Japan, Korea, Malawi (formerly Nyasaland), former Soviet Union, the United States, and 

Venezuela. Similar disease has been reported from Pakistan, Peru, Puerto Rico, and Turkey (Kolte 1985, 

Verma et al. 2005). The disease can be devastating on susceptible varieties of sesame, but many local 

varieties have been found to have some degree of resistance to local races of the fungus. Epiphytotic 

occurrence of the disease was reported in 1961 and 1964 in the United States and in 1959 in Venezuela. 

PATHOGEN 

The pathogen is Fusarium oxysporum (Schelt.) f. sesami Jacz. Isolation of the causal fungus could 

be obtained more easily from the infected dry sample (dry sample isolation) compared to conven

tional direct isolation technique from freshly infected sesame plants (Su et al. 2012). 

The fungus produces profuse mycelial growth on potato dextrose agar. The mycelium is arid, 

hyaline, septate, and richly branched, turning light pink when old. The microconidia are formed 

abundantly. They are hyaline, ovoid to ellipsoid, unicellular, and measure 8.5 × 3.25 μ in size. In the 

old culture, the macroconidia are formed sparsely. They are 3–5, septate, and measure in the range 

of 35–49 × 4–5 μ in size. 

The macroconidia are produced abundantly in sporodochia as they develop on affected plants. 

The chlamydospores are globose to subglobose, smooth, or wrinkled and measure 7–16 μ in diam

eter. Physiological studies on the pathogen have been made. The fungus grows best on Richard’s 

medium. It grows at the temperature range of 10°C–30°C with an optimum temperature of 25°C. 

Nitrate nitrogen and pH 5.6–8 support the maximum growth of the fungus. Illumination inhibits 

spore germination (Liu et al. 2010). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The fungus is restricted in its host range to sesame. Morphological differences and similarities have 

been reported in different isolates of F. oxysporum f. sesami. Three strains have been reported in 

Venezuela on the basis of morphological differences, but these strains are reported to show a similar 

degree of pathogenicity. It is revealed that there is a relationship between vegetative compatibility 

groups of the pathogen and geographic origin of the isolates collected from the different sesame-

growing regions (Basirnia and Banihashemi 2005). The pathogenic variation and molecular char

acterization of Fusarium species isolated from wilted sesame have been studied (Li et al. 2012). 

The pathogen is reported to be seed and soil borne, and it may persist for many years in the soil. 

The amount of seed transmission of the pathogen varies in the range of 1%–14% depending on the 

severity of systemically infected sesame plants (Basirnia and Banihashemi 2006). It appears that 

the fungus penetrates the host through root hairs and causes trichomycosis. The most virulent iso

lates produce more cell-wall-degrading enzymes than the less virulent ones (Gabr et al. 1998). The 

culture filtrate of F. oxysporum f. sesami has been reported to have an inhibitory effect on sesame. 

Shoot and root growth is also inhibited by culture filtrate of the fungus indicating the production 

of toxic substances by the pathogen. Some elements like vanadium, zinc, boron, molybdenum, and 

manganese are highly inhibitory to F. oxysporum f. sesami (Gabr et al. 1998). 

High soil temperature to a depth of 5–10 cm and 17%–27% water-holding capacity during dry periods 

is favorable for the development of the disease. Drought stress in the sesame plants predisposes the plants 

to infection and development of wilt and influences the host genotype reaction to the disease (El-Shemey 

et al. 2005, Kavak and Boydak 2011). The Fusarium wilt of sesame is reported to be associated with 

nematode attack in South America and with M. phaseolina in Egypt, India, and Uganda (Kolte 1985, 

1997). The density of the fungus becomes higher in soil under continuous cropping (Paik et al. 1988). 
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DISEASE MANAGEMENT 

Host Plant Resistance 
Sesame Fusarium wilt–resistant accessions/genotypes have been identified from different sesame-

growing countries. These are NSKMS 260, 261, and 267 and TMV 3 (Badri et al. 2011, Jyothi et al. 
2011); S-5, S-4, H-9 (El-Bramawy and Wahid 2007); S2, H4, mutant 8, UNA 130, H1, S1 (El-Bramawy 

and Wahid 2009); somaclonal strain GZO 25 (Abd-El Moneem et  al. 1996); Camdibi, WS-143, 

WS-313, Birkan (Silme and Cagrgan 2010); and Sanliurfa-63189 (Kavak and Boydak 2006). A con

siderable degree of variability in differences in resistance to Fusarium wilt among sesame genotypes 

has been reported, and the breeding methodology in sesame improvement (i.e., the selection, pedigree 

method, and hybridization) depends upon the nature and magnitude of the gene action in control

ling the genetic behavior of the disease resistance trait (El-Bramawy et al. 2001, Zhang et al. 2001, 

El-Bramawy 2003, Ammar et al. 2004, Mahdy et al. 2005b, Kavak and Boydak 2006, El-Shakhess 

and Khalifa 2007, El-Hamid and El-Bramawy 2010). Parental line P5 and F6-derived lines C1.6, 

C1.10, C3.8, C6.3, C6.5, and C9.15 are reported to be the most resistant sesame lines to the Fusarium 
wilt disease (Shabana et al. 2014). Higher resistance of a germplasm line, in general, is reported to be 

lower yielder (El-Hamid and El-Bramawy 2010). However, high-yielding multiple disease-resistant 

sesame cultivar Yuzhi 11 has been developed in China through breeding (Wei et al. 1999). 

Satisfactory sources of Fusarium wilt resistance in sesame have been developed by mutagenesis 

and mutation breeding techniques (Uzun and Cagrgan 2001, Soner Slme and Cagrgan 2010). For 

example, Birkan is a high-yielding sesame mutant cultivar derived from 400 Gy gamma radiation 

in Egypt (Silme and Cagrgan 2010). 

Sesame accessions with medium branch number and creamy or white seed color are the only 

covariate that significantly correlates with the infection caused by F. oxysporum f. sp. sesami, 
and these traits can be directly used for direct selection of sesame accessions that are resistant to 

Fusarium wilt and charcoal rot diseases (El-Bramawy et al. 2009). Depending on the genotypes, 

gene action for resistance to Fusarium wilt has been found to be additive with high heritability 

(El-Bramawy 2006, Bayoumi and El-Bramawy 2007, El-Bramawy and Wahid 2007), nonadditive 

(El-Bramawy and Shaban 2007, 2008, El-Shakhess and Khalifa 2007), and with epistatic effects 

(Bakheit et al. 2000). 

Besides the genetic factors, some wilt-resistant genotypes possess the high value of the patho

gen antinutritional factors such as phytic acid, trypsin inhibitor, and tannins (El-Bramawy and 

Embaby 2011). Many other Fusarium wilt–resistant sesame genotypes show significant differences 

in yield and yield components, total phenol contents, polyphenol oxidase, and PO enzyme activity 

indicating the importance of biochemical constituents in the expression of mechanism of resistance/ 

tolerance to Fusarium wilt in sesame (Ghallab and Bakeer 2001). 

Chemical Control 
Seed treatment with benomyl or carboxin at 0.2% or with carbendazim (0.25%) or thiram (0.3%) 

results in significant control of the disease up to about 45 days after seed germination (Ahmed et al. 

1989, Shalaby 1997). Sesame seeds soaked in ascorbic acid and salicylic acid (5 mM) for 24 h and 

sown and then treated with ascorbic acid and salicylic acid 15 days after sowing give best control of 

the disease through induced host resistance (Abdou et al. 2001). 

Cultural Control 
Balanced fertilization and insect pest control ensure good growth of the crop and help in the reduc

tion of the disease. Trace elements such as copper, manganese, and zinc decrease the incidence 

of wilt of sesame (Abd-El-Moneem 1996). In heavily infested soil, at least 5 years should elapse 

between two sesame crops. Cultivation of sesame in rotation with onion or wheat is helpful in the 

reduction of the Fusarium wilt in sesame (El-Kasim et al. 1991). Sanitation and clean cultivation and 

choice of sowing dates depending on the known prevailing local conditions are taken into practical 
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use in disease management (Verma et al. 2005). For example, sowing the sesame crop around June 

10 through hills-over-furrow and fertilizing the crop with NPK (65, 200, and 50 kg/feddan, respec

tively, in 0.42 ha) and giving one irrigation during the growing season in Egypt are a very useful 

cultural practice package for the management of the disease in sesame (Shalaby and Bakeer 2000). 

Biological Control 
Several microbial antagonists such as T. viride, Gliocladim virens (Kang and Kim 1989, Wuike 

et  al. 1998, Sangle and Bambawale 2004, El-Bramawy and El-Sarag 2012), Bacillus polymyxa 
(Hyun et al. 1999), B. subtilis (El-Sayeed et al. 2011),  Enterobacter cloacae (Abdel-Salam et al. 

2007), Pseudomonas aeruginosa (Abdel-Salam et al. 2007), P. putida and P. fluorescens (Farhan 

et al. 2010), Streptomyces bikiniensis, and S. echinoruber (Chung and Hong 1991, Chung and Ser 

1992) are inhibitory to the growth of F. oxysporum f. sp. sesami and show high potential for their 

use in the management of Fusarium wilt of sesame. Trichoderma species grown on cow dung 

slurry and cow dung are the most effective in the control of the wilt disease of sesame (Sangle and 

Bambawale 2004). 

Fusarium wilt of sesame can be controlled with application of plant-growth-promoting rhizobac

teria, and this practice offers a potential nonchemical means for disease management. A combination 

of Azospirillum brasilense–based Cerialin and Bacillus megaterium–based Phosphoren  biofertilizers 

plus Topsin (100 ppm) has been found to give significant reduction of Fusarium wilt incidence, with 

increased morphological characteristics and plant yield (Ziedan et al. 2012). Similarly, a mixture of 

P. putida 2 plus P. fluorescens 3 treatment together (Fusant) as  biocide and biofertilizer gives better 

control of the wilt disease with higher sesame crop yield (Farhan et al. 2010). Fertilizer-adaptive vari

ant tetracycline-resistant strain TRA2 of Azotobacter chroococcum, an isolate of wheat rhizosphere, 

has been found to show plant-growth-promoting attributes and strong antagonistic effect against 

sesame wilt and charcoal rot pathogens. Seed bacterization with the strain TRA2 results in signifi

cant decrease in Fusarium wilt disease incidence and increase in vegetative growth of sesame plants 

(Maheshwari et al. 2012). 

Glomus spp. (VAM) protect the sesame plants by colonizing the root system and consequently 

reduce colonization of fungal pathogens in sesame rhizosphere by stimulation of bacteria belonging 

to the Bacillus group. These bacteria show high antagonistic potential, and this significantly reduces 

Fusarium wilt incidence in sesame (El-Sayeed Ziedan et al. 2011). 

EFFECT OF PLANT EXTRACTS 

Extracts of leaves of thyme, eucalyptus, and garlic reduce the incidence of Fusarium wilt disease 

of sesame. Extract of peppermint (M. piperita) leaves not only reduces the wilt incidence but also 

increases the yield of sesame plant (Sidawi et al. 2010). 

Alternaria LEAF SPOT 

SYMPTOMS 

Symptoms of the disease appear mainly on leaf blades as small, brown, round-to-irregular spots, 

varying from 1 to 8 mm in diameter. The spots later become larger and darker with concentric 

zonations demarcated with brown lines inside the spots on the upper surface (Figure 7.4). On the 

lower surface, the spots are lighter brown in color. Such spots often coalesce and may involve large 

portions of the blade, which become dry and are shed. Dark brown, spreading, water-soaked lesions 

can be seen on the entire length of the stem. The lesions also occur on the midrib and even on veins 

of leaves. In very severe attacks, plants may be killed within a very short period after symptoms 

are first noted, while milder attacks cause defoliation. Occasionally, seedlings and young plants are 

killed exhibiting pre- and postemergence damping-off. 
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FIGURE 7.4  Alternaria leaf spot of sesame. (Courtesy of Dr. B.A. Tunwari, Federal University, Wukari, 

Nigeria, and H. Nahunnaro, Modibbo Adama University of Technology, Yola, Nigeria.) 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Alternaria leaf spot of sesame was first described by Kvashnina (1928) from the North Caucasus  

region in the former Soviet Union. Kawamura in Japan studied a similar leaf spot pathogen on sesame  

and named it as Macrosporium sesami Kawamura. Mohanty and Behera (1958) from India reported  

Alternaria blight of sesame and found the causal organism to be closely resembling  M. sesami. 
However, it differed from M. sesami in that some of the spores were catenulate. On the basis of the  

catenulation, the fungus was placed in Alternaria and renamed as  A. sesami (Kawamura) Mohanty and  

Behera. In India and in the United States, it was earlier referred only by the name Alternaria sp. The  
 first identification of A. sesami in the United States was probably made by Leppik and Sowell in 1958. 

The Alternaria leaf spot is now reported to occur in most of the tropical and subtropical areas 

of the world. Epiphytotic occurrence of the disease has been reported from the Stoneville area in 

Mississippi in 1962, the Tallahassee area in Florida in 1958, and the coastal area of Orissa in 1957 and 

Maharashtra in India in 1975 (Kolte 1985). It is now reported to be of more economic significance in 

Egypt (El-Bramawy and Shaban 2007, 2008), India (Naik et al. 2007), Kenya (Ojiambo et al. 2000a,b), 

Nigeria (Enikuomehin et al. 2011), Pakistan (Marri et al. 2012), and Uganda (Mudingotto et al. 2002). 

The amount of damage to the sesame plant is dependent on the stage of growth and  environmental 

conditions. Disease severity is negatively correlated with the seed yield, 1000-seed weight, and 

seeds/capsule (Ojiambo et al. 2000b). The disease causes 20%–40% loss in sesame crop in the state 

of Uttar Pradesh in India (Kumar and Mishra 1992). It is, however, reported that about 0.1–5.7 g 

seeds/100 fruits are lost due to the disease under Karnataka conditions in India (Kolte 1985). 

PATHOGEN 

The pathogen is Alternaria sesami (Kawamura) Mohanty and Behera. The conidiophores of the 

fungus are pale brown, cylindrical, simple, erect, 0–3 septate, and not rigid, arise singly and mea

sure 30–54 × 4–7 μ, and produce conidia at the apex. The conidia are produced singly or in chains 

of two. They are straight or slightly curved, obclavate, and yellowish brown to dark or olivaceous 

brown in color and measure 30–120 × 9–30 μ (excluding the beak). The conidia have 4–12 transverse 



 

 

 

 

 

 

  
 

 

   

  

 

 

   

 

305 Sesame Diseases 

septa and 0–6 longitudinal septa at which they are slightly constricted and terminate in a long hya

line beak measuring 24–210 × 2–4 μ. The beak may be simple or branched. 

The optimal temperature for the growth of the fungus is in the range of 20°C–30°C, and the 

optimum pH for growth is 4.5. Maximum growth of the fungus is reported on mannitol followed 

by lactose as carbon sources, and the ammonium form of nitrogen is superior to the nitrate form. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

A. sesami mainly survives through seed up to 11 months, and it can also perpetuate in infected debris 

for nearly 11 months under field conditions (Agarwal et al. 2006, Naik et al. 2007). From infected 

capsules, A. sesami can penetrate into the seed coat, where it remains viable until germination of 

seed. The spores of the fungus attached to the seeds or capsule may serve to carry and disseminate 

the pathogen. The disease becomes most severe on plants established from seeds with 8% infection, 

and the disease severity increases with increased seed infection level (Ojiambo et al. 2000a, 2003, 

2008). Though the infection process appears to be similar to other Alternaria species, culture filtrate 

from A. sesami reveals the presence of toxin, the tenuazonic acid (Rao and Vijayalakshmi 2000). 

Seed infection is observed to be highest in plants inoculated between 8 and 10 weeks of age and 

least at 1, 6, and 12 weeks of age (Ojiambo et al. 2008). Excessive rainfall favors the development of 

the disease. The fungus is restricted to sesame in its pathogenicity. Distinct physiological races have 

not been identified, although differential virulence among isolates of A. sesami has been described 

from India and the United States. 

DISEASE MANAGEMENT 

Host Plant Resistance 
Development and use of resistant sesame varieties is the best option. Hairy plants on the whole are 

reported to be free from attack due to A. sesami. The disease-resistant genotypes are S. occidentalis 
cvs. Heer, Regel; S. radiatum cvs Schum. and Thonn. and S. malabaricum (Shekharappa and Patil 

2001b); and S-122 (Marri et al. 2012) and RT 273 (Eswarappa et al. 2011). Single dominant allele 

and 10  kb RAPD marker have been identified for resistance to Alternaria leaf spot of sesame 

(Eswarappa et al. 2011). 

The old sesame lines SI 948 (Kulithalai), SI-1561, 1683, 1737, 2177, and 2381, and Rio are 

reported to be resistant to the disease. Sesame varieties Sirogoma and Venezuela 51, NO 4, E-8, 

JT-7, JT-63-117, A-6-5, JT-66-276, Anand-9, JT-62-10, VT-43, and Anand-74 are also reported to 

be moderately resistant to the disease (Kolte 1985). Some other sesame genotypes that are moder

ately resistant to the Alternaria leaf spot are Navile-1, 351888, 899, 908, TC28, Madhavi, Co-1-12, 

Co-1-16, TC-25, and Tarikere (Basavaraj et al. 2007) and MT-15, DORS-102, DS-14, and DS-10, 

which show multiple-disease resistance including to Alternaria leaf spot disease (Jahagirdar et al. 
2003). Biparental mating or diallel selective mating and heterosis breeding have been suggested for 

the development of Alternaria-resistant cultivars (El-Bramawy and Shaban 2007, 2008). 

Induced Host Resistance 
Resistance-inducing chemicals like salicylic acid at 1% conc. and boiagents T. viride and 

P.  fluorescens induce systemic resistance in sesame against A. sesami and result in higher plant 

vigor index (Savitha et al. 2011, 2012). Aqueous leaf extract of neem (A. indica) provides the control 

of the Alternaria leaf spot disease without adversely affecting spore germination of A. sesami, and 

protection of sesame plants against A. sesami by neem extract is due to the stimulation of plant 

natural defense response as the treated sesame plants exhibit significantly higher level of enzymes 

like phenylalanine ammonia lyase, PO, and contents of phenolic compounds (Guleria and Kumar 

2006). Similarly, it is noteworthy to observe that extract of another plant, Mikania scandens, when 

treated on inoculated sesame plants induces host resistance to the delay of the development of the 

Alternaria leaf spot (Lubaina and Murugan 2013a,b). 
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Chemical Control 
Two sprays of mancozeb at 0.25% (Mudingotto et al. 2002, Rajpurohit 2003) or a combination of 

mancozeb at 0.25% plus methyldemeton at 1 mL/L (Rajpurohit 2004b) or mancozeb at 0.25% plus 

streptocycline at 0.025% (Shekharappa and Patil 2001a) have been found to be effective in the man

agement of Alternaria leaf spot of sesame with increase in yield of sesame crop. 

Cultural Control 
Salt density at 2%–5% concentration can be used to sort out the infected seed from the seed lots to 

maintain healthy nucleus seed after further washing and drying the seed (Enikuomehin 2010). Seeds 

floated at 2% and 5% salt conc. are characteristically discolored, malformed, infected, and lightweight. 

Experimental evidence has been presented in Nigeria that intercropping sesame with maize in a 

single alternate row (1:1) arrangement can be useful in reducing the severity of Alternaria leaf blight 

of sesame (Enikuomehin et al. 2010, 2011). 

WHITE LEAF SPOT OR Cercospora LEAF SPOT 

SYMPTOMS 

Small circular spots are scattered on both leaf surfaces. At first, they are minute, and later they 

increase in size to become 5 mm in diameter with whitish center (white spot) surrounded by a 

blackish purple margin (Figure 7.5). The spots may enlarge rapidly, coalesce into irregular blotches 

that often become about 4 cm in diameter, and are concentrically zoned. Under humid conditions, 

the disease becomes severe involving premature defoliation. The disease causes defoliation particu

larly in early maturing varieties. On petioles, the spots are elongated. Capsules show more or less 

circular, brown-to-black lesions (1–7 mm). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The white spot of sesame is reported from Australia, Brazil, China, Colombia, the Dominican 

Republic, India, Nicaragua, Sri Lanka, Suriname, the United States, and Venezuela (Kolte 1985, 

Shivas et al. 1996, Verma et al. 2005). 

FIGURE 7.5  Cercospora leaf spot of sesame. (Courtesy of Dr. Anil Kotasthane, IGKV, Raipur, India.) 



   

 

 
 

 

 

 

 

 

  

 

 

 

 

  

  

 

 

  

 

 

307 Sesame Diseases 

The disease is endemic in most of the sesame-growing areas of Takum, Donga, Wuakeri, Bali, 

Kurmi, and Karim-Lamido in Taraba state and major sesame-growing regions of Nigeria, which 

has assumed more serious occurrence in the forest/Savannah transition zone of southwest Nigeria 

to which the crop has been recently introduced. It is widely prevalent in other countries of Africa 

(Uwala 1998, Einkuomehin 2005). The losses due to the disease in Nigeria range from 22% to 

53% (Einkuomehin et al. 2002). It is reported that the disease severity in India can be as high as 

53%–96% resulting in an average yield loss of 20% (Mohanty 1958, Patil et al. 2001). 

Pathogen 
The pathogen is Cercospora sesami Zimmerman (Mycosphaerella sesamicola). Stromata are 

slight to none. Conidiophores are olivaceous, septate, usually single or in fascicles of up to 10, 

epiphyllous, nodulose, and thickened toward the tip and measure 40–60 × 4 μ. Conidia are hyaline, 

cylindric, toothed upward, and commonly 7–10 septate and measure 90–135 × 3–4 μ. The pathogen 

is reported to sporulate well on carrot leaf decoction agar medium. C. sesami perpetuates through 

infected seed and also through plant residues in soil. 

Disease Management 
Some of the sesame genotypes, namely, IS 4, 15, 21, 29, 41, 41A, 41B, 128, and 128B, FS 150 (H 60-18) 

from Morocco, ES 234 from Mexico, and ES 242 (Precoz) from Venezuela (Kolte 1985); 65b-58, 

60/2/3-1-8B, 69B-392,73a-96B from Nigeria (Poswal and Misari 1994, Nyanapah et al. 1995); and 

BIC-7-2, Sidhi 54, Rewa 114, and Seoni Malwa from India (Tripathi et al. 1996), have been reported 

to be resistant to the disease. Two sesame cultivars, E 8 and NCRTBEN-01 from Nigeria, show better 

stand establishment with certain degree of tolerance to the disease (Nahunnaro and Tunwari 2012a). 

Many synthetic fungicides had shown promise in the management of sesame diseases (Shokalu 

et al. 2002). However, the high cost of such chemicals forbids their use by ordinary farmers. Seed 

treatment with systemic fungicides like carbendazim (0.15%) or Bayleton (0.15%) is reported to be 

effective in the control of the seed-borne inoculum. Sesame crop sprayed with carbendazim at 0.1% or 

Quintal at 0.2 gives best degree of disease management with increase in seed yield by 31.28% (Hoque 

et al. 2009, Palakshappa et al. 2012). Two sprays of a mixture of mancozeb at 0.2% plus endosulfan 

35 EC at 1 mL/L, first spray being given at flower initiation stage and the second at pod formation 

stage, result in good control of insect pests and Cercospora leaf spot disease (Ali and Singh 2003). 

Hot-water treatment of seeds at a temperature of 53°C for 30  min gives good control of the 

disease. Aqueous leaf extract of plants Aspilia africana, Chromolaena odorata, A. indica, and 

Allium sativum, when sprayed once every week, gives significant reduction in disease severity 

(Enikuomehin 2005, Nahunnaro and Tunwari 2012b). The plant extracts of garlic, Ocimum, and 

Chromolaena are comparable to synthetic fungicide (benlate) in reducing the amount of Cercospora 
leaf spot on sesame (Enikuomehin and Peters 2002, Tunwari and Nahunnaro 2014). 

Plant debris should be burned after threshing and before plowing. Early-sown crop in the middle of 

June to first week of July is less affected due to Cercospora leaf spot, and these sowing dates are pre

ferred for sowing sesame in wider row spacing of 20–30 cm in India and Nigeria (Tripathi et al. 1998a, 

Enikuomehin et al. 2002, Verma et al. 2005). Intercropping-induced  microclimatic effects influence 

foliar disease severity including that of Cercospora leaf spot of sesame. Grain yield, weight of 1000 

seeds, number of capsules/plant, and weight of seed/plant have been observed to be significantly 

higher in the 1:1 row arrangement than the sole crop or other row arrangements. The study made by 

Enikuomehin et al. (2008) demonstrates that intercropping sesame with maize in a single alternate 

row (1:1) arrangement can be used to reduce white leaf spot severity of sesame. 

PHYLLODY DISEASE 

SYMPTOMS 

Affected sesame plants express symptoms, depending on the stage of crop growth and time of infec

tion. A plant infected in its early growth remains stunted to about two-thirds of a normal plant, and 

the entire plant may be affected. The entire inflorescence is replaced by a growth consisting of short, 
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FIGURE 7.6  Phyllody of sesame. Note the transformation of flower parts into green leaflike structures. 

(Courtesy of Dr. Anil Kotasthane, IGKV, Raipur, India.) 

twisted leaves closely arranged on a stem with very short internodes. However, when infection takes 

place at later stages, normal capsules are formed on the lower portion of the plants, and phylloid 

flowers are present on the tops of the main branches and on the new shoots that are produced from 

the lower portions. 

The most characteristic symptom of the disease is transformation of flower parts into green 

leaflike structures followed by abundant vein clearing in different flower parts (Figure 7.6). The 

calyx becomes polysepalous and shows multicostate venation compared to its gamosepalous nature 

in healthy flowers. The sepals become leaf like but remain smaller in size. The phylloid flow

ers become actinomorphic in symmetry, and the corolla becomes polypetalous. The corolla may 

become deep green, depending upon the stage of infection. The veins of the flowers become thick 

and quite conspicuous. The stamens retain their normal shape, but they may become green in color. 

Sometimes, the filaments may, however, become flattened, showing its tendency to become leaf 

like. The anthers become green and contain abnormal pollen grains. In a normal flower, there are 

only four stamens, but a phylloid flower bears five stamens. The carpels are transformed into a leaf 

outgrowth, which forms a pseudosyncarpous ovary by their fusion at the margins. This false ovary 

becomes very enlarged and crop. In Sudan, red varieties of sesame have been found to be affected 

to the extent of 100%. 

Inside the ovary, instead of ovules, there are small petiole-like outgrowths, which later grow and 

burst through the wall of the false ovary producing small shoots. These shoots continue to grow and 

produce more leaves and phylloid flowers. The stalk of the phylloid flowers is generally elongated, 

whereas the normal flowers have very short pedicels. Increased IAA content appears to be responsi

ble for proliferation of ovules and shoots. Sometimes, these symptoms are found to be accompanied 

with yellowing, cracking of seed capsule, germination of seeds in capsules, and formation of dark 

exudates on the foliage (Akhtar et al. 2009, Pathak et al. 2012). 

Normal-shaped flowers may be produced on the symptomless areas of the plants, but such 

flowers are usually dropped before capsule formation, or the capsules are dropped later leaving the 

stalk completely bared. 
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GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Prevalence of the sesamum phyllody erroneously named leaf curl is traced since 1908 in Mirpur 

Khas area of India (now in Pakistan), as cited by Vasudeva and Sahambi (1955), and a detailed his

torical account of the occurrence and causal agent of the disease has been reviewed earlier by Kolte 

(1985). It has been reported from India, Iran, Iraq, Israel, Myanmar, Sudan, Nigeria, Tanzania, 

Pakistan, Ethiopia, Thailand, Turkey, Uganda, Upper Volta, Venezuela, and Mexico (Kolte 1985, 

Salehi and Izadpanah 1992, Esmailzadeh-Hosseini et al. 2007, Akhtar et al. 2009). The first evi

dence of association of mycoplasma-like organism (now known as phytoplasma) with the disease 

was obtained in Upper Volta by Cousin et al. (1971). 

Affected plants remain partially or completely sterile, resulting in total loss in yield. As much 

as 10%–100% incidence of the disease has been recorded in the sesame crop in India. The yield 

loss due to phyllody in India is estimated to about 39%–74%. The losses in plant yield,  germination, 

and oil content of sesame seeds may be as high as 93.66%, 37.77%, and 25.92%, respectively. It is 

estimated that a 1% increase in phyllody incidence decreases the sesame yield by 8.4 kg under 

Coimbatore conditions in India. Robertson (1928) from Burma reported up to 90% incidence of the 

disease in the Sagaing and Lower Chin districts. A survey conducted in Thailand during 1969 and 

1970 indicated that the phyllody was so severe in northeastern Thailand that farmers decreased the 

acreage for the sesame. Phyllody is a very serious disease, which can inflict up to 80% yield loss 

with a disease intensity of 1%–80% (Kumar and Mishra 1992, Salehi and Izadpanah 1992). The 

average phyllody incidence is reported to be about 20% with yield losses in sesame seed yield due 

to phyllody ranges to be 7%–28% in Pakistan (Sarwar and Haq 2006, Sarwar and Akhtar 2009). 

PATHOGEN: CERTAIN STRAINS  OF 16 Sr TAXONOMIC GROUP  OF PHYTOPLASMA 

The pathogen is now investigated to be phytoplasma (formerly referred to as mycoplasma-like 

organism—wall-less bacteria belonging to the class Mollicutes). Light microscopy of hand-cut sections 

treated with Dienes stain shows blue areas in the phloem region of phyllody-infected sesame plants 

(Al-Rawi et al. 2001, Akhtar et al. 2009). The phytoplasma pleomorphic bodies are reported to be 

present in phloem sieve tubes of affected sesame plants. Electron microscopy has revealed that the big 

pleomorphic bodies, ranging from 100 nm diameter to 625 nm diameter, are present in the sieve tubes. 

Generally, the phytoplasmas are round, but some may be 1500 nm long and 200 nm wide. Bodies 

with beaded structures can also be noticed. The phytoplasmas are bounded by a single unit mem

brane as is typical for the Mollicutes and show ribosome-like structure and DNA-like strands within. 

Phytoplasma cells contain one circular double-stranded DNA chromosome with a low G + C contents 

(up to only 23%), which is thought to be the threshold for a viable genome (Bertaccini and Duduk 

2009, Weintraub and Jones 2010). They also contain extrachromosomal DNA such as plasmids. Since 

phytoplasmas cannot be grown in axenic culture, advances in their study are mainly achieved by  

molecular techniques. Molecular data on sesame phytoplasmas have provided considerable insight 

into their molecular diversity and genetic interrelationships, which has in turn served as a basis for 

sesame phytoplasma phylogeny and taxonomy. Classification of phyllody phytoplasma associated with 

sesame has been attributed to at least three distinct strains worldwide including aster  yellows, peanut 

witches’ broom, and clover proliferation group (Al-Sakeiti et al. 2005, Khan et al. 2007). 

Based on restriction fragment length polymorphism (RFLP) analysis of polymerase chain 

reaction–amplified 16S rDNA, sesame phyllody phytoplasma infecting sesame in Myanmar (termed 

as SP-MYAN) belongs to the group 16SrI and subgroup 16SrI-B. Sequence analysis has confirmed 

that SP-MYAN is a member of Candidatus Phytoplasma asteris and it is closely related to that of 

sesame phyllody phytoplasma from India (DQ 431843) with 99.6% similarity (Khan et al. 2007, 

Win et al. 2010). RFLP profiling and sequencing reveal that phytoplasma associated with sesame 

phyllody in Pakistan has the greatest homology to 16SrII-D group phytoplasmas (Akhtar et  al. 

2009), whereas in a separate study from the same country (i.e., in Pakistan), molecular evidence 
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of the cause of the sesame phyllody has been found to be phytoplasma belonging to subgroup 

16SrII and its sequence is essentially reported to be identical to that of the phytoplasma causing 

sesame phyllody in Oman (Akhtar et al. 2008). Similarly, phytoplasma causing sesame phyllody 

in Yazd Province of Iran belongs to the 16SrII group, which is peanut witches’ broom phytoplasma 

(Esmailzadeh-Hosseini et al. 2007). Interestingly, in the neighboring Turkey, phytoplasma associ

ated with sesame phyllody belongs to 16S rDNA group closely related to clover proliferation group 

16SrVI-A (Sertkaya et al. 2007). 

Witches’ broom symptom in sesame resembling sesame phyllody in Oman is caused by the 

phytoplasma strains (SIL, SIF) clustered with Omani Lucerne witches’ broom forming a distinct 

lineage separate from groundnut witches’ broom and sesame phyllody (Thailand) phytoplasma 

strains (Nakashima et al. 1995, 1999, Al-Sakeiti et al. 2005, Khan et al. 2007). 

TRANSMISSION 

The pathogen is transmitted by the leafhopper vectors (order: Homoptera). In India, Thailand, and Upper 

Volta, sesame phyllody is transmitted by Orosius orientalis (Matsumura) (O. albicinctus), whereas in 

Turkey and Iran, sesame phyllody is transmitted by Circulifer haematoceps (Mulsant and Rey) (Dehghani 

et al. 2009). However, Esmailzadeh-Hosseini et al. (2007) first reported transmission of a phytoplasma 

associated with sesame phyllody in Iran by O. albicinctus. The pathogen has also been experimentally 

transmitted to the cotton plant by the vector O. cellulosus (Lindberg). Attempts to transmit the pathogen 

through sap in Iran and through seed in Thailand have given negative results (Tan 2010). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The pathogen has a wide host range and survives on alternate hosts like Brassica campestris var. 

toria, B. rapa, and Cicer arietinum, which serve as source of inoculum. The pathogen is transmitted 

by the leafhopper, O. albicinctus, in most sesame-growing areas in the world as discussed earlier. 

Most optimum acquisition period of vector is 3–4 days, and inoculation feeding period is 30 min. 

The incubation period of the pathogen in leafhoppers may be 15–63 days and 13–61 days in sesame. 

Nymphs are incapable of transmitting the phytoplasma. Vector population is more during summer 

and less during cooler months. 

There is a significant positive correlation between phyllody incidence with maximum and 

minimum temperature and negative correlation with maximum relative humidity and rainy days, 

which could be then consequently related to increase or decrease in vector population in the respec

tive environmental conditions (Choudhary and Prasad 2007). 

The incubation period is considerably increased during winter months (October–January) due 

to low temperature. Among the weather factors, the night temperature (minimum temperature) 

prevailing from the 30th to the 60th day after sowing is found to have a greater increase of dis

ease incidence. The minimum acquisition feeding period has been observed to be 8 h, while the 

minimum infection feeding period is 30 min during May and June. Both male and female insects are 

equally efficient in transmitting the pathogen. The nymphs of the insect are capable of  acquiring the 

pathogen, but they are unable to transmit it, as by the time the incubation period is completed, 

they reach the adult stage. Once the leafhoppers have picked up the pathogen and become infective, 

the adult leafhoppers remain so throughout the remainder of their lives without replenishment of the 

pathogen from infected plants. 

Even a single leafhopper may be able to cause infection. It is interesting that leafhoppers show a 

marked preference for the diseased plants over healthy ones. The diseased plants have been reported 

to harbor an insect population about two to six times the population on healthy plants—due to higher 

moisture, higher nitrogen, and lower calcium and potassium contents of the diseased plants. Lower 

content of calcium and potassium in the diseased plants is suspected to be the factor vulnerable for 

easy stylet and ovipositor penetration. Higher incidence of phyllody occurs when sesame crop is  



 

 

 

 

 

 

              

 

                

 

 

               

               

 

 

311 Sesame Diseases 

fertilized with phosphorus without nitrogen (Borkar and Krishna 2000); there also exists a positive 

correlation between days to maturity of sesame crop and phyllody incidence (Gopal et al. 2005). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Selections of disease-resistant sesame lines, which would flower within 40–50 days after sowing, 

appear to be desirable and important from the yield viewpoint under Indian conditions (Kolte 1985, 

Selvanarayanan and Selvamuthukumaran 2000). From India, a considerable number of genotypes 

such as RJS 78, RJS 147, KMR 14, KMR 29, Pragati, IC 43063 and IC 43236 (Singh et al. 2007), 

SVPR-1 (Saravanan and Nadarajan 2005), AVTS-2001-26 (Anandh and Sevanarayanan 2005), 

Swetta-3, RT-127, No. 171 (Dandnaik et al. 2002), TH-6 (Anwar et al. 2013), and three wild species, 

that is, S. alatum, S. malabaricum, and S. yanaimalaiensis, are resistant to phyllody with mean 

incidence below 5%, which can be utilized as donor parents in resistance breeding to phyllody dis

ease (Saravanan and Nadarajan 2005, Singh et al. 2007). A single recessive gene governs resistance 

in cultivated varieties (KMR 14 and Pragati), whereas wild species possess a single dominant gene 

conferring resistance to phyllody (Singh et al. 2007). Phyllody resistance in a land race of sesame 

is reported to be under the control of two dominant genes with complementary (9:7) gene action 

(Shindhe et al. 2011). Some genotypes in India have not been observed to show phyllody symptoms. 

Such genotypes are Ny-9, Sirur, Local, NKD-1037, K-50, TC-25, RT-15H, OCP-1827, No. 5, No. 16, 

No. 17, No. 18, No. 21, No. 23, and No. 24 (Dandnaik et al. 2002). Interspecific hybrids between 

S. alatum and S. indicum are, however, moderately resistant to phyllody (Rajeshwari et al. 2010). 

Advanced phyllody disease–resistant sesame mutant lines with earliness, more capsules, and high 

harvest index have been developed in Pakistan under the series NS11-2, NS11 P2, NS100 P2, NS 

103-1, and NS240 P1 and phyllody disease–resistant sesame. These mutant lines can be of great 

potential use in breeding for disease resistance (Sarwar and Akhtar 2009). 

Some other sesame lines as JT-7, JT-276, and N-32, though not resistant to the disease, have been 

found useful to escape the disease (Kolte 1985). 

Chemical Control 
Insect vector management is the method of choice for limiting the outbreaks of phytoplasmas in 

sesame. At the time of sowing, soil may be treated with Thimet® 10 G at the rate of 10 kg/ha or with 

Phorate 10 G at the rate of 11 kg/ha or with Temik® 10 G at the rate of 25 kg/ha to get the manage

ment of the disease through vector control (Nagaraju and Muniyappa 2005). An effective degree of 

management is obtained if the aforementioned treatment is combined with spraying of the crop with 

Metasystox® (0.1%) or with any other effective chemical (Misra 2003, Rajpurohit 2004b). 

Tetracycline sprays at 500 ppm concentration at the flower initiation stage have proved to be 

effective against phyllody, but recovery is temporary. 

A possibility of biochemical control by spraying manganese chloride has been indicated. 

It appears that manganese chloride oxidizes the phenol and protects or inhibits the enzymes,  brining 

the auxin level to normal. Once hyperauxin is oxidized, the plant can gain its normal conditions 

(Purohit and Arya 1980). 

Cultural Control 
An appropriate sowing date may be useful in avoiding severe occurrence of the disease. The incidence 

of the disease is reported to be reduced considerably by sowing the crop in early August under Indian 

conditions. The reduced population of the vector in the growth period of sesame plants is perhaps impor

tant in keeping the disease under check (Mathur and Verma 1972, Nagaraju and Muniyappa 2005). 

OTHER SESAME DISEASES 

Other diseases of sesame are given in Table 7.1. 
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Section VI
 

Safflower 
Safflower (Carthamus tinctorius L.) is a highly branched, herbaceous, self-compatible,  thistlelike 

annual plant. It varies greatly in height ranging from 0.3 to 1.5 m. It belongs to the family Compositae 

with 12 pairs (2n = 24) of basic chromosome number. Its haploid genome is approximately 1.4 Gb 

(Garnatje et al. 2006). Li et al. (2011) found that there are at least 236 known micro-RNAs (mRNAs) 

expressed in the safflower, 100 of which are conserved across the plants. The safflower genome 

is large and complex and it has not been fully sequenced, and relatively little is known about its 

encoded genes. As of October 2011, only 567 nucleotide sequences, 41,588 expressed sequences 

tags (ESTs), 162 proteins, and 0 genes from C. tinctorius have been deposited in the National Center 

for Biotechnology Information (NCBI)’s GenBank database. Interestingly, abundant genomic data 

for C. tinctorius and  comprehensive sequence resources for studying the safflower transcriptome 

datasets have been generated that will serve as an important platform to accelerate studies of the 

safflower genome (Huang et al. 2012). The plant has many branches each terminating in a flower. 

The inflorescence is a dense  capitulum of numerous regular flowers. The flowers are self-pollinated, 

but cross-pollination to the extent of 16% may occur under natural conditions. Each branch usually 

has 1–5 flower heads containing 15–20 seeds per head. The seed is ovate, having a flat top with 

longitudinal ribs, and represents the Cypsela type of fruit. The cultivated forms of safflower are 

supposed to have originated either from Carthamus lanatus Linn or from C. oxyacantha Bieb, evi

dently in two primary centers of origin—the mountainous regions of Afghanistan and of Ethiopia. 

Safflower cultivation has now extended over many parts of the world, both in the tropics and in the 

subtropics in more than 60 countries worldwide commercially producing about 600,000 tons seed 

yield annually. India (producing over half of the world produce), the United States, and Mexico are 

the three leading producers, with Ethiopia, Kazakhstan, China, the Arab world, Argentina, and 

Australia accounting for most of the remainder (Yadava et al. 2012). Safflowers have long taproots 

that facilitate water uptake in even the driest environments enabling these crops to be grown on 

marginal lands where moisture would otherwise be limited. Thus, safflower is a drought- and salt-

tolerant crop. It can be grown in a range of soil types, but well-drained medium to heavy textured 

soils are best suited for its growth. Earlier, this crop had been grown for its flowers that can be used 

for dyes as well as in teas and as food additive. Extracts from the florets have been used to reduce 
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hypertension and blood cholesterol levels. Currently, safflower is preferred for its high-quality 

seed oil that is rich in polyunsaturated fatty acids. Prof. Paulden Knowles, the father of California 
safflower, has accumulated and documented a large collection of safflower germplasm that is cur

rently being maintained by the United States Department of Agriculture (USDA) for further use 

in research towards improvement of safflower crop. Such a collection is also being maintained at 

National Bureau of Plant Genetic Resources (NBPGR), New Delhi, and Indian Institute of Oilseeds 

(ICAR), Hyderabad, India. Safflower diseases are described in this chapter. 



 

 

  
 

 

 

  

 

 

  

 

8 Safflower Diseases 

Alternaria BLIGHT 

SYMPTOMS 

Seedlings from severely affected plants show lesions on the hypocotyls and/or cotyledons. Dark 

necrotic lesions measuring up to 5 mm in diameter may be formed on hypocotyls. Both hypocotyl 

and cotyledonary symptoms are commonly observed in the same plants. In some instances, the 

hypocotyl infection results in damping-off of the seedlings. In mature plants, small brown to dark-

brown concentric spots of 1–2 cm diameter appear on leaves. The center of the mature spots is 

usually lighter in color. The spots frequently coalesce into large irregular lesions bearing the spores 

of the fungus. The fully mature spots tend to develop shot holes, and in severe infections, irregular 

cracking of the leaf blade occurs. The stems and petioles suffer less severe damage with elongated 

spots. On flower heads, the fungus first attacks the base of the calyx and later spreads to other parts 

of the flower. Infected flower buds shrivel without opening, and seeds obtained from a severely 

infected crop may show a dark sunken lesion on the testa. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Alternaria leaf blight of safflower was first reported from India by Chowdhury (1944). The dis

ease is now reported from all over the world from safflower-growing countries such as Argentina, 

Australia, Ethiopia, Israel, Italy, Kenya, Pakistan, Portugal, Russia, Spain Tanzania, the United 

States, and Zambia. The effect of the disease is reported to be quite serious in the northern Great 

Plains area of the United States (Bergman and Jacobsen 2005) and in the states of Biharand Madhya 

Pradesh of India. Reports of severe damage of experimental safflower crops due to the disease have 

been made from Kenya and Tanzania in East Africa. Yields of safflower infected by the disease 

may be reduced in highly susceptible varieties by 50%–90% when a week of humid weather occurs 

following flowering but before maturity. A significant negative correlation has been established 

between disease severity and yield (Chattopadhyay 2001). Seeds of affected plants become dis

colored, showing reduced oil content with significant increase in the level of free fatty acids in the 

seeds that adversely affect the seed germination. 

PATHOGEN 

The pathogen is Alternaria carthami Chowdhury. 

The mycelium is septate inter- and intracellularly with slight constrictions at the septa. It is 

subhyaline when young but becomes dark colored on maturity. The conidiophores are stout; erect; 

rigid; unbranched; septate; straight or flexuous, sometimes geniculate; and brown or olivaceous brown, 

paler near the apex, and arise singly or in clusters through the epidermis or stomata. The conidio

phores are sometimes swollen at the base and measure 15–85 μm in length and 6–10 μm in width. 

The conidia are borne on conidiophores and are solitary or in very short chains. They are smooth, 

straight or curved, obclavate, and light brown and translucent in shade and possess a long beak. The 

conidia sometimes show constrictions at the septa. They measure 36–171 μm (with beak) and 36–99 μm 
(without beak) in length and 12–28 μm in width. The spores have 3–11 transverse septa and up to 

7 longitudinal or oblique septa. The beak of the spores is 25–160 μm long and 4–6 μm thick at the 

base—tapering to 2–3 μm with up to 5 transverse septa. The beak is almost hyaline at the apex 
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and light brown near the base. Some spores may be seen without beaks. Conidial beaks may form 

chlamydospores in culture. The optimum temperature at which the fungus grows is in the range of 

25°C–30°C. It also tolerates a wide pH range, though maximum growth occurs at pH 6.0. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The pathogen survives through seed as well as viable conidia of A. carthami on debris of nat

urally infected susceptible safflower varieties (Prasad et  al. 2009, Gayathri and Madhuri 2014). 

A.  carthami is readily isolated from seeds using relatively simple techniques. Isolation methods 

used in conjunction with the planting of seed to assess seedling health would appear to offer the 

most reliable means of detecting the presence of A. carthami in seed (Awadhiya 2000). The pri

mary infection develops from infested seeds obtained from affected plants. Spines present on the 

leaf margin are the site of infection by the pathogen (Borkar 1997). An opening diameter of 120 μm 
at the apex of individual spines is a prerequisite for infection through spines. Spine apex openings 

vary with the location of the spine on the leaf margin and the relationship between the position of 

the spines on the leaf margin, and infection is governed by the diameter of the openings at the spine 

apex. Spores produced on lesions developing in plants grown from infected seeds become second

ary sources of inoculum, and the pathogen occurs on the crop throughout the growing season. The 

macrolide antibiotics brefeldin A (BFA) and 7-dehydrobrefeldin A (7-oxo-BFA) have been charac

terized as phytotoxins and pathogenicity factors from A. carthami; the toxins are known to inhibit 

the endoplasmic reticulum–Golgi flux and processing (Kneusel 1994, Driouich et al. 1997). Rains 

coupled with high relative humidity above 80% and temperature in the range of 21°C–32°C under 

irrigated conditions accompanied by heavy dew or frequent showers, cyclonic storms especially at 

seedling, and grain formation stages favor the disease (Sastry and Chattopadhyay 2005, Gud et al. 

2008, Murumkar et al. 2008a). 

DISEASE MANAGEMENT 

Host Plant Resistance 
There is a considerable variation in response to A. carthami infection by a range of safflower variet

ies (Muñoz-Valenzuela et al. 2007, Thomas et al. 2008). Some genotypes such as EC 32012, NS 

133, CTS-7218, HUS 524, and CTV 251 (Desai 1998); GMV 1175, GMV-1199, and GMV-1585 

(Indi et al. 2004); GMV-5097, GMV-5133, and GMV-7017 (Murumkar et al. 2009a); and Ellite Line 

21–33 (Pawar et al. 2013) show high degree of tolerance to A. carthami under high disease pressure 

and are identified as the most promising genotypes to be used in breeding program for incorpora

tion of resistance to the disease. Semispiny to nonspiny genotypes of safflower are known to show 

a variable degree of tolerance to A. carthami infection. It is possible to combine high yield with 

high degree of tolerance to the disease (Mundel and Chang 2003, Harish Babu et al. 2005). Four 

wild Carthamus species, namely, C. palaestinus, C. lanatus, C. creticus, and C. turkestanicus, are 

reported to be immune to Alternaria leaf spot in laboratory as well as under field screening. Twenty-

four F1s derived from crosses between C. tinctorius × C. creticus, C. tinctorius × C. oxyacantha, 

C. tinctorius × C. turkestanicus, C. tinctorius × C. lanatus × C. palaestinus, and C. oxyacantha × 

C.  tinctorius have been screened to show no infection (immunity) by A. carthami. These resis

tant lines would serve as base material in disease resistance breeding to tag the resistant genes at 

molecular level for marker-assisted selections in the field for Alternaria blight resistance (Prasad 

and Anjani 2008a). 

Seedling resistance of safflower genotypes to A. carthami is reported to be monogenic recessive, 

whereas adult plant resistance is under the control of two duplicate loci where at least one locus at 

homozygous recessive conditions confers the adult plant resistance (Gadekar and Jambhale 2002a). 

Production of plants resistant to A. carthami via organogenesis and somatic embryogenesis 

(Kumar et al. 2008) and molecular breeding has paved the way for possible transgenic safflower 
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plants that can be used to breed for Alternaria blight resistance in safflower. The cloned esterase 

gene degrading the BFA (phytotoxin and pathogenic factor) provides the basis for generation of 

transgenic safflower plants (Kneusel et al. 1994). 

Chemical Control 
Seed treatment with mefenoxam + thiram or with difenoconazole + mefenoxam is effective in 

reducing the primary infection (Jacobsen et al. 2008). Secondary infection can be controlled by 

spraying the crop with any of the foliar fungicides such as mancozeb at 0.25%, difenoconazole at 

0.5%, AAF (carbendazim 12% + mancozeb 63%) at 0.2% (Sumitha and Nimbkar 2009), and fosetyl 

at 0.1% (Bramhankar et al. 2001). For effective and economic management of the disease, the first 

spray of carbendazim at 0.1% should be given immediately after disease appearance (generally at 

rosette stage, i.e., 25 days after sowing) followed by need-based second and third spray at 15 days 

after the first spray and during flowering and seed setting stage, respectively (Murumkar et  al. 
2008a, 2009a). Fungicide application results in lower pathogen transmission from plants to seeds 

and from seeds to plants (Bramhankar et al. 2002). Two newer fungicides azoxystrobin (Quadris) 

and pyraclostrobin (Headline) have been registered as foliar fungicides for the control of Alternaria 
blight of safflower crop in Australia as reported by Bergman and Jacobsen (2005). These fungicides 

are also reported to be effective for the control of the Alternaria blight of safflower in the United 

States (Wunsch et al. 2013). 

Cultural Control 
The occurrence of the disease may be prevented by using disease-free seeds for sowing. Such seeds 

can be obtained from early-sown dry land crops rather than from irrigated areas. Alternatively, the 

infested seeds may be treated with fungicides as discussed earlier. Crop rotation and strict sanitation 

of crop debris effectively manage the disease. Basal soil application of KCl at 67 kg/ha significantly 

reduces the disease severity and increases the safflower seed yield (Chattopadhyay 2001). This 

practice can be integrated with spray application of effective fungicides and suitable sowing dates 

for better disease management. 

Effect of Plant Extracts 
Antifungal activities of extracts of various plants such as Nerium, Datura, garlic bulb, Lantana, 

Eucalyptus, neem, onion bulb, and Ocimum species have been demonstrated against A. carthami, 
which can be exploited further for practical disease management (Shinde et al. 2008, Ranaware 

et al. 2010, Taware et al. 2014). 

Fusarium WILT 

SYMPTOMS 

Symptoms of the disease are manifested at all stages of growth. In the seedling stage, cotyledonary 

leaves show small brown spots either scattered or arranged in a ring on the inner surface, and they 

may become shriveled and brittle and sometimes tend to become rolled and curved. The seedlings 

that survive the fungal attack regain vitality at the early stage of blossoming and again show symp

toms of the disease at the time of seed setting. The symptoms become quite distinct when the plants 

are in the 6th to 10th leaf stage and about 15 cm in height. Four important characteristics of the 

symptoms may be helpful to identify the disease at this stage. These are (1) unilateral infection on 

branches and leaves, (2) golden-yellow discoloration of the leaf followed by wilting, (3) epinasty, 

and (4) vascular browning appearing only on one side of the root and stems of plants with unilateral 

top symptoms. The symptoms develop in acropetalous succession. The reddish-brown vascular dis

coloration of the root, stem, and petiole tissue of infected plants will vary considerably in intensity, 

depending on varietal reaction, severity of infection, and environmental conditions. On older plants, 
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the lateral branches on one side may be killed, while the remainder of the plant apparently remains 

free from the disease. Such plants may show partial recovery between bud formation and early 

blossoming, but the symptoms may reappear later. The severely infected plants produce small-sized 

flower heads that are partially blossomed. A large number of ovaries fail to develop seeds, or they 

may form blackish, small, distorted, chaffy, and abortive seed. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Fusarium wilt of safflower was first observed in the Sacramento Valley of California, USA, in 

1962 (Klisiewiez and Houston 1962) and in India in 1975 (Singh et al. 1975). The disease is also 

reported from Egypt (Zayed et al. 1980). Now, it is identified to be the most serious disease in all 

safflower-growing areas in India (Murumkar and Deshpande 2009). Plants grown from infected 

seed seldom survive beyond the seedling stage, thereby indicating that losses in stand of the crop 

may occur when infected seed is sown. The disease incidence in the United States is reported 

to be 10%–20% in most fields and as high as 50% in some fields. Yield losses may reach to 

100% if susceptible varieties are grown in fields with a history of severe Fusarium wilt (Sastry 

and Chattopadhyay 2005). In India, it has appeared as a serious threat to safflower cultivation, 

destroying up to 25% of plants, amounting to considerable yield loss in the Gangetic valley. 

Fusarial mycotoxins, namely, diacetoxyscirpenol, T-2 toxin, and 12,13-epoxytrichothecene, have 

been reported to be produced in sufficient quantities on infested seeds of safflower in storage to 

be capable of causing mycotoxicosis. 

PATHOGEN 

The pathogen is Fusarium oxysporum Schlecht. f. sp. carthami Klisiewicz and Houston. 

The fungus is readily isolated from diseased plant parts on potato dextrose agar (PDA). The myce

lium is delicate pink en masse or white usually with a purple tinge, sparse to abundant, branched, 

and septate. Microconidia are borne on simple phialids arising laterally on the hypha or on short 

sparsely branched conidiophores, abundant, oval to elliptical, one celled, and slightly curved and 

measure 5–16 × 2.2–3.5 μm. The macroconidia are hyaline, may be up to 5 septate but are mostly 

3 septate, are constricted at septa, are borne in sporodochia, are straight or curved, are often pointed 

at the tip with rounded base, and measure 10–36 × 3–6 μm mostly 28 × 4–5 μm. Chlamydospores 

are one celled, smooth, and faintly colored and measure 5–13 × 10 μm in size. They are formed 

abundantly and are both terminal and intercalary, usually solitary but occasionally could be formed 

in chains (Sastry and Chattopadhyay 2005). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The fungus perpetuates through seed as well as through soil. Mycelium and spores contaminate the 

seed surface, but hyphae are also reported to be present in the parenchymatous cells of the seed coat 

of infected seed. The survival of the fungus through soil is mainly through chlamydospores in plant 

debris. Penetration by the pathogen, which makes its entry into host cells by mechanical means, is 

easier when the plants are in the seedling stage and tissues are soft. Shriveling of cortical cells is 

noted in the case of infected plants. It appears that the infection is facilitated by production of poly

galacturonase, pectin methyl esterase, cellulase, and protease enzymes. Mycotoxins—diacetoxy

scirpenol and T-2—have been detected in diseased safflower plants. The pathogen is also reported to 

secrete diacetoxyscirpenol, T-2 toxin, fusaric acid, and lycomarasmin in culture filtrate. But the exact 

role of either enzymes or toxins, as earlier, is little worked out or not known. It is, however, reported 

that the virulence of F. oxysporum f. sp. carthami is directly correlated with the amount of fusaric 

acid it produces. It is also reported that the virulence is lost if fusaric acid production is prevented. 

The amount of seed infection per head may be limited by the extent of fungus spread in vascular 
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tissue in the stem or lateral branch and seed head. The fungus apparently invades the seed through 

the vascular strands that extend into the seed through the pericarp– receptacle junction. Fungus 

spread in the tissue of pericarp and seed coat is intra- and intercellular. Isolates of F. oxysporum 
f. sp. carthami collected from different geographical areas have been found to show variation in 

morphology, culture characteristics, and pathogenicity (Sastry and Chattopadhyay 2003, Prameela 

et al. 2005, Murumkar and Deshpande 2009, Raghuwanshi and Dake 2009, Somwanshi et al. 2009). 

The fungus is specific in its pathogenicity on safflower and six other species of Carthamus. Four 

physiological races have had been distinctly identified by differential reactions of safflower varieties 

(Gila, Nebraska 6, UC-31 and US Biggs) in the United States to 14 isolates of F. oxysporum f. sp. 

carthami (Kilsiewicz 1975). In India, also four distinct races have been identified based on differ
ential reactions of 54 pathogen isolates of the pathogen using four (96-508-2-90, A1, DSF-4, and 
DSF-6) differential safflower lines. Molecular analysis of genetic variability using random ampli
fied polymorphic DNA (RAPD), microsatellite, and ITS-RLFP markers has revealed three distinct 
groups among 54 isolates of F. oxysporum f. sp. carthami (Prasad et al. 2004, 2007). Thus a variety 
that exhibits resistance in one area may show susceptibility in another area. The disease has been 

found associated with soils having a pH 4.3–5.0. In India, the disease is more prevalent along the 

Ganges River in acidic soils. The disease is also favored by high nitrogen and warm, moist weather. 

The wilt is reported to be more severe in fallow land and less severe where paddy or millets are 

cultivated before safflower. In uplands where the soil is neutral to alkaline and clay in texture, the 

disease incidence is reported to be low (Kolte 1985). Disease severity is favored by high tempera

ture stress, poor drainage, and soil compaction. Any factor that contributes to reduced rate of root 

growth increases the plant’s susceptibility to Fusarium wilt. High plant population also increases 

plant stress and favors infection. The effect of F.  oxysporum f. sp. carthami is most apparent dur

ing flowering when plants and its productivity are more sensitive to stress. The disease severity 

decreases with lowering of temperature (from 21°C to 15°C) during the end of December to the first 

week of February, but it can increase as the temperature increases (23.6°C) under Indian conditions. 

Seedlings show less susceptibility to the disease with increase in age, and it differs with respect to 

different varieties and inoculum density (Sastry and Chattopadhyay 1999a). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Water culture technique using pathogen culture filtrate at 3.5% is proved to be very useful in screen

ing for resistance of large number of genotypes of safflower (Shinde and Hallale 2009, Waghmare and 

Datar 2010). Thus, sources of resistance to Fusarium wilt disease in wild and cultivated Carthamus 
species have been identified. Wild safflower species like C. oxyacantha,  C.  lanatus, C. glaucus, 
C. creticus, and C. turkestanicus are immune to wilt. Resistant plants have been obtained by 

selection and reselection from advanced breeding lines derived from crosses of C. oxyacantha × 

C. tinctorius and C. tinctorius × C. turkestanicus. Some of the most promising safflower genotypes 

that are highly resistant to wilt are GMU-1553 (Gadekar and Jambhale 2002b); 86-93-36A, 237550, 

VI-92-4-2, and II-13-2A (Sastry and Chattopadhyay 2003); GMU-1702, GMU-1706, and GMU

1818 (Chavan et al. 2004); 96-508-2-90 (Anjani et al. 2005); HUS 305 (Sastry and Chattopadhyay 

2003, Raghuwanshi et al. 2008, Singh et al. 2008b); WR-11-4-6, WR-8-24-12, WR8-19-10, WR-4

6-5, WR-5-20-10, and WR-8-17-9 (Singh et al. 2008b); released hybrids DSH-129, NARI-NH-1, and 

NARI-H-15; and released cultivars A-1, PBNS-40, and NARI-6 (Murumkar et al. 2008b, 2009b, 

Prasad and Suresh 2012). Information has been generated on the use of molecular markers for 

genotyping safflower cultivars (Sehgal and Raina 2005) as well as for characterization of safflower 

germplasm (Johnson et al. 2007). 

C. lanatus (2n = 22) and the alloploid, produced after colchicine treatment of seedlings 

from a cross C. lanatus × C. tinctorius (2n = 24), are highly resistant to the disease. The dis

ease resistance in the alloploid appears to be governed by dominant genes contributed by the 
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C. lanatus genome. Accumulation of antifungal compound, carthamidin (4. 5, 7. 8-tetrahydoxy 

flavone), in infected plants has been found responsible for resistance of the plants to infection. 

Resistance to F.  oxysporum f. sp. carthami in some genotypes is governed by two dominant  

genes with complementary type of gene action, whereas in others, it is governed by inhibitory  

type of gene action (Shivani et al. 2011) and in still others seedling resistance is reported to be 

simple monogenic dominant, whereas adult plant resistance is found to be under the control of 

epistatic nonallelic interactions (Gadekar and Jambhale 2002b). The development of long-term 

wilt-resistant varieties may, however, be impeded, if additional races evolve in the natural popula

tion of F. oxysporum f. sp. carthami (Kolte 1985). 

Chemical Control 
Seed treatment with fungicides such as captan; carboxin, thiram, or a mixture of carboxin +  thiram; 

benomyl; and carbendazim + mancozeb at 0.1% or 0.2% can reduce surface contamination by 

F. oxysporum f. sp. carthami and becomes effective in eliminating the pathogen from the seed, but 

all these are more effective when combined with wilt-tolerant varieties or cultural practices (Sastry 

and Jayashree 1993, Govindappa et al. 2011b). 

Cultural Control 
Nonhost crops such as chickpea, lentil, pea, and wheat, usually grown with safflower as a mixed 

crop or crop succession of safflower with these crops in India, have been found to increase safflower 

yield with a decrease in the wilt incidence by the secretion of compounds inhibitory to the growth 

of the pathogen (Kolte 1985, Sastry and Chattopadhyay 1999a, Sastry et al. 1993). Additionally, 

chickpea and wheat in its rhizosphere increase the population of antagonistic microflora that sub

sequently check the growth of the pathogen significantly. Exudates and extractives of the roots of 

Ruellia tuberosa L. show significant protective and curative action against the safflower wilt. The 

root extractive shows the potentiality of a foliar fungicide. The inhibitory effect of R. tuberosa on 

F. oxysporum f. sp. carthami is attributed to the 2,6-dimethoxy quinone, acacetin, and C16-quinone 

contents of root exudates and extractives. It is reported that wilt of safflower can be controlled 

by planting R. tuberosa (a local weed found in India) in the safflower field (Kolte 1985). Another 

method to control the disease is topping of the plants at the seedling stage to encourage vegetative 

growth: safflower produces a chemical imparting resistance to the plant at the flowering stage that 

increases when there is more vegetative growth. Soil solarization involving the method of covering 

the deep ploughed and irrigated fields with transparent polyethylene sheets for 6 weeks during the 

peak summer month is useful in causing the temperature in the soil beneath to rise to 40°C–53°C 

that sufficiently kills F. oxysporum f. sp. carthami. Soil solarization also stimulates the population of 

antagonistic microflora against the pathogen and reduces inoculum density of the pathogen (Sastry 

and Chattopadhyay 1999b, 2001). 

BIOLOGICAL CONTROL 

Trichoderma harzianum, Bacillus subtilis, and Pseudomonas fluorescens (Gaikwad and 

Behere 2011b, Govindappa et  al. 2011b), Trichoderma viride (Patibanda and Prasad 2004, 

Singh Saroj et  al. 2006), and Aspergillus fumigatus (Gaikwad and Behere 2001) have been 

found to be antagonistic to the growth of F. oxysporum f. sp. carthami indicating their poten

tial usefulness for the control of the disease. Local isolates of Trichoderma species show more 

promising results (Waghmare and Kurundkar 2011). Integrated disease management using dif

ferent methods of disease control has been always useful (Sastry et  al. 2002). For example, 

integrating the seed treatment with T.  harzianum or T. viride at 4–10 g/kg seed with moder

ately susceptible safflower variety A-1 (Prasad and Anjani 2008b) or with the spray application 

of NSKE at 5% results in significant control of the disease with an increase in safflower yield 

(Singh Saroj et al. 2006). 
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EFFECT  OF PLANT EXTRACTS 

Leaf extracts of Parthenium hysterophorus, Leucaena leucocephala, Vinca rosea, Gliricidia macu
lata, Ocimum basilicum, Eucalyptus globulus, Azardica indica, Datura metel, and Bougainvillea 
spectabilis have been found to inhibit the mycelial growth of F. oxysporum f. sp. carthami and also 

to reduce the percent wilt incidence. All the leaf extracts tested, however, are inferior to Thiram in 

reducing the percent wilt incidence of safflower (Kolase et al. 2000). 

Phytophthora ROOT ROT 

SYMPTOMS 

Phytophthora root rot can occur from preemergence to near-maturity stages of the safflower crop. 

On succulent plants of 2–3 weeks of age, the first visible symptom is water  soaking and collapse 

of cortical tissue of the lower stems. The softening of the stem weakens the young plants that they 

fall over, shrivel, and die. On older plants near the bloom stage, black necrotic lesions encompass 

the roots and sometimes extend 2–5 cm above the ground on the lower part of the stems. There is 

a high negative correlation between lesion length on roots and percentage of live seedlings (Nasehi 

et al. 2013). The cortex of the affected roots ranges in color from dark brown to greenish black. In 

advanced stages, the vascular tissue and pith also become necrotic and dark colored. Leaves of such 

plants sometimes turn yellow and the entire plant then wilts. The wilting is the common symptom of 

Phytophthora root rot, and most of the infected plants do not recover from wilting. The taproot and 

lateral roots of affected plants totally rot. 

Dead plants can occur individually or in patches. Irrigated plants killed by Phytophthora 
are most evident 4–5 days after watering and can easily be identified by a bleached-green color. 

Symptoms develop similarly in susceptible plants regardless of the varieties. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Phytophthora root rot of safflower was first observed in 1947 in Nebraska, USA (Classen et  al. 

1949). It is also reported to occur in Afghanistan, Argentina, Australia, Dominican Republic, India, 

Iran, Mexico, and Venezuela (Kolte 1985, Nasehi et al. 2013). 

Most of the irrigated safflower crops in the western parts of the northern Great Plains in California, 

USA, were reported to have been damaged due to Phytophthora root rot in 1950–1951. This subse

quently resulted in forceful limitation of the safflower crop in the Imperial Valley of California, and 

it was limited to dry land and subirrigated land. Average losses in yield due to Phytophthora root 

rot in the United States have been reported to be about 3%. In the Isfahan Province of Iran, the inci

dence of the disease has been observed to be about 30% during 2005–2007 crop seasons (Nasehi 

et al. 2013). In a few instances in certain years, 80% of the plants in a crop have been reported to 

be killed. 

Phytophthora root rot has also limited the development of safflower as a major commercial crop 

in the New South Wales area in Australia. Although the disease occurs in many other countries in 

which safflower is indigenous, its economic importance has not been realized, probably because of 

resistance of local varieties to the local races of the pathogen and also because of the fact that in 

most of those countries, the crop is grown usually on dry land or on the border of irrigated fields. 

The disease has not attained serious proportions during the recent past since late 1990s in India 

(Prasad and Suresh 2012). 

PATHOGEN 

Multiple species of Phytophthora are known to cause infection in safflower including Phytophthora 
drechsleri Tucker (P. cryptogea Pethyb. and Laff.). Early literature established that P. drechsleri 
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has the potential to be devastating in safflower production (Banithashemi 2004, Banithashemi 

and Mirtalebi 2008). The main pathogen is, therefore, P. drechsleri Tucker (P. cryptogea Pethyb. 

and Laff.). 

The mycelium is hyaline, nonseptate, and branched, having uniform width of 4.5 μm. The 

sporangiophores are narrower than the hyphae, and the sporangia are hyaline to faint color, thin 

walled, nonpapillate, and pyriform to ovate and measure 24–38 × 15–24 μm. The zoospores mea

sure 10–20 μm in diameter. Approximately 75% germination of washed zoospores occurs during a 

period of 3 h in water. 

The fungus does not form chlamydospores. The oospores develop singly in the oogonia, and 

fully formed oospores are spherical, smooth, thick walled, yellow to bright brown, and granular 

and measure 16–45 μm in diameter. Compatible mating strains of P. drechsleri produce oospores 

abundantly in paired cultures on seed extract media and on safflower plant material. 

The oospores germinate at temperatures between 15°C and 30°C, the optimum germination 

being at 24°C. The germ tube of the germinating oospore usually penetrates an oogonial wall or 

may pass through the oogonial stalk, terminating the formation of a sporangium and release of a 

variable number of motile zoospores. The germination percentage is increased with the advancing 

age of oospores (Kolte 1985, Sastry and Chattopadhyay 2005). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Assuming that compatible fungal strains are present enabling the pathogen to form oospores, it is 

possible that the fungus survives through the oospores. Chlamydospores are not formed by the 

fungus in culture, but the presence of the chlamydospores of P. drechsleri in roots of artificially 

inoculated plants of common weed species has been reported. But the exact role of the chlamydo

spore is not known. Saffron thistle (C. lanatus) is an important alternative host of P. drechsleri. 
Other weed species may also act as alternative hosts and produce further means for the survival of 

the pathogen in soil. 

Safflower plants exude substances into the soil that stimulate the growth of germinating zoo

spores that probably influence root infection. Zoospores of P. drechsleri encyst and begin to germi

nate within 1 h, and germination reaches to 100% within 3 h on hypocotyls of susceptible host. The 

germ tube may show a positive growth response toward the wound in contrast to random growth 

on uninjured epidermis. The infection hyphae penetrate directly. Intercellular penetration is accom

plished at junctions of epidermal cell walls at the onset of spore germination or after further growth 

of the germ tubes. Penetration is sometimes preceded by a spindle-shaped enlargement of hyphal 

tips. Intracellular invasion occurs after initial penetration at cell wall junctions is accomplished. 

Infection sites become visible in stained epidermal cell layers as small pores between cell walls 

or by deposits are found on the inside of cell walls in direct contact with the invading hyphae. 

The presence of the deposits at infection sites is evident only in resistant Biggs safflower. Massive 

intercellular and intracellular spread of the hyphae occurs in tissues of the cortex and vascular 

regions of susceptible hypocotyls within 48 h and causes cell collapse and disruption of cell wall. 

The possibility of production of pectolytic enzymes by the pathogen has been speculated in the 

infection process. 

It has been found that resistant varieties in one locality may be susceptible in another indicating 

prevalence of physiological races of the pathogen. Such pathogenic races have been reported to exist 

in the United States. Isolates of P. drechsleri designated as isolate nos. 201, 5811, and 45116 have 

been reported as distinct races. Of these races, two are capable of rapid growth on agar media at a 

temperature of 35°C, and the other shows little, if any, growth at 35°C. P. drechsleri isolates show 

variation in virulence, and certain isolates appear to be more virulent on stem than on roots. 
Induction of water stress predisposes safflower plants to infection by P. drechsleri (Duniway 

1977). The effect of such water stress conditions can actually be seen under natural conditions when 

drought condition prevails before irrigating the crop, followed by the severe development of the 



 

  

 

 

 

 

 

 

 

 

              

 

                

                  

              

               

                  

 

337 Safflower Diseases 

disease after irrigation (Sastry and Chattopadhyay 2005). Wet soil conditions and flooding of the 

fields are expected to be important factors when production, release, and movement of zoospores 

are the factors limiting the disease development. Increased flooding time after infection of intact 

plants results in a greater percentage of affected plants. 

Soil temperature is an important factor influencing the pathogenicity of P. drechsleri to 

safflower. The optimum temperature for disease development is 25°C–30°C, correlated closely 

with the most favorable temperature (30°C) for radial growth of the pathogen in culture. Soil 

temperature of 17°C is unfavorable for the development of root rot. At least a portion of the 

temperature effect is directly on the host. The pathogen is favored in vitro by high tempera

ture (27°C–30°C), and it is also pathogenic under higher temperature. Pronounced increase in 

plant death occurs when the plants are exposed to temperature of 27°C and low light intensity. 

Reductions in the resistance of safflower by these factors, however, do not appear to be as great 

or as likely to occur in the field as does the predisposing influence of water stress. Safflower 

plants show reduced susceptibility to P. cryptogea after prior adaptation of roots to hypoxic (low 

oxygen) condition due to the formation of root aerenchyma and phytoalexin synthesis (Atwell 

and Heritage 1994). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Safflower varieties “Gila” and “US 10” (both developed by crossing “Nebraska 10” with “WO 

14”), “Frio,” “Vte,” and “VFR-1” are reported to be moderately resistant against only one patho

genic race, and the resistance in these varieties is governed by a single dominant gene (Sastry and 

Chattopadhyay 2005). These varieties are suitable to irrigated culture, provided they are subirri

gated or grown on beds with furrow-irrigated systems for recommended durations. The VFR-1 

possesses more resistance than either Gila or US 10. The resistant reaction of VFR-1 cotyledons to 

P. drechsleri appears to be indicative of its root resistance, which also is conditioned by a single 

dominant gene. The “VFR-1” hypocotyl is, however, susceptible to P. drechsleri indicating that 

the cotyledonary reaction is not indicative of hypocotyl reaction. The cotyledonary reactions of 

Gila and “US 10” are not indicative of their root resistance, which appears to be conditioned by a 

dominant gene. 

The moderately resistant varieties, as previous, fail to show resistance to Phytophthora root 

rot under heavy flood–irrigated or water-logged conditions of soils. The highest level of resis

tance (lower-stem and root rot resistance) is reported in a safflower introduction selected at Biggs, 

California. This selection was then named Biggs safflower, possessing resistance to all races of 

P. drechsleri. The hypocotyl resistance of Biggs safflower is conditioned by a single recessive 

factor. The Big safflower is also reported to be resistant under heavy flood–irrigated conditions. 

Commercial varieties with this level of resistance are not available. The Biggs safflower is not suit

able for commercial production because of late maturity and low oil content. However, it can be a 

very useful source of resistance in a breeding program. Several safflower germplasm lines from all 

over the world have been screened, and genotypes in UC 150 and UC 164 series have been reported 

to be resistant (Kolte 1985). The most resistant genotypes under Iran conditions are KW 9, KW 12, 

and KW 15 (Nasehi et al. 2013). It may further be added that breeding safflower for resistance to 

P. drechsleri is complicated by the existence of different factors conditioning resistance in either 

the root, hypocotyl, or cotyledons. 

It has been made clear that the host-resistant mechanism in this host–pathogen combination is 

activated upon penetration of the epidermis. Safynol (trans-trans-3, 1 l-tridecadiene-5-7. 9-triyne-l, 

2-diol) and dehydro safynol (trans-1 l-tridecene-3, 5. 7. 9-tetrayne-1, 2 diol) antifungal polyacety

lene compounds have been indicated as disease-resistant factors in stem rot of safflower incited by 

P. drechsleri (Johnson 1970, Allen and Thomas 1971). 
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Chemical Control 
Seed treatment with captan and soil drenching at 0.2% is useful in reducing the preemergence mor

tality due to seedling blight (Prasad and Suresh 2012). 

CULTURAL CONTROL 

Recommendations to commercial growers that can assist in reducing damage from this disease 

include growing safflower in beds, not permitting water to stand in the field after irrigating and not 

growing the crop successively on the same land. Rotation with nonsusceptible crops may also be 

desirable (Kolte 1985, Prasad and Suresh 2012). 

RUST 

SYMPTOMS 

Safflower rust has two pathological phases that become visible as (1) root and foot disease in 

the seedling phase expressing the rust symptoms on cotyledons, hypocotyls, etc., and (2) foliage 

phase disease, at later stages of plant growth, expressing the rust symptoms on leaves, flowers, 

fruits, etc. 

The rust in the seedling phase mainly develops because of the infection of emerging seed

lings due to basidiospores resulting from germination of seed- or soilborne teliospores. Initially, 

orange-yellow spots representing pycnia appear on cotyledons; this may be accompanied by 

drooping and wilting of the seedlings. The color of such spots later changes due to the develop

ment of uredinoid aecidia called primary uredia. Many such uredia develop as pustules, and 

adjacent pustules coalesce to form large rust pustules. The presence of the rust pustules has 

also been reported on the underground part, for example, taproot and lateral roots. According 

to Schuster and Christiansen (1952), longitudinal cracking of epidermal and cortical tissue of 

the infected area is seen frequently. Some of the cracking is mainly due to the adventitious roots 

that are sent out at the points of  infection. These roots may provide means of survival for wilted 

plants. The stem of 8–10-week-old  seedlings can be infected, and formation of orange-yellow 

pycnia can also be noticed on them. On relatively older plants, girdling of the invaded area due 

to collapse of the tissue is a very characteristic symptom. Such plants remain erect due to the 

stiff stem, but the leaves of such plants are generally in a wilted condition. Due to windstorm 

or rains, these plants often break at the girdled area. The foliar phase of the disease is charac

terized by the appearance of uredial pustules on leaves, flowers, and fruits. The uredia remain 

scattered, crumpent on leaves, and these have a chestnut-brown color. The teleutospores are 

formed in the uredopustules when the safflower plant matures, giving a dark-brownish color to 

the rust-affected plant parts. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The most important disease of safflower is the rust caused by Puccinia carthami Cda. It was 

first described by Corda attacking C. tinctorius L. in Bohemia in 1840 (Arthur and Mains 1922). 

Occurrence of this disease is reported in all areas of commercial production of safflower and 

is endemic over wide areas of safflower’s natural range (Kolte 1985). It has been more recently 

reported to occur in Oman (Deadman et al. 2005), on snow lotus (Saussurea involucrata (Kar. 

& Kir.) in China (Zhao et  al. 2007), and in Romania–Bulgaria cross-border regional areas 

(Anonymous 2014). The disease is more serious in countries where the crop is grown year after 

year. This precludes the monoculture of the safflower. Severe epiphytotics of this rust were 

reported in Nebraska in 1949 and 1950, after the introduction of safflower crop there (Schuster 

and Christiansen 1952). Currently, it is rarely a problem in the Great Plains of the United States 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

339 Safflower Diseases 

because it occurs late enough in the season that yields are not affected (Lyon et al. 2007). Under 

Indian conditions, though the disease appears to have caused severe yield losses before 1990, 

now the disease has not been recorded to be a  significant factor in limiting safflower produc

tion for the last 10–15 years (Prasad et al. 2006, Singh and Prasad 2007). However, the seed 

and seedling infection is further considered to be of economic importance as it provides the  

source of inoculum for initiating foliage infection. Additionally, severely contaminated seeds 

will not germinate well if saved for future plantings (Lyon et al. 2007). For foliage rust to cause 

significant reduction in yield, heavier infection must occur on the upper and lower leaves before 

the full-bloom period. When near-isogenic varieties, one resistant to rust (WO-14) and the other 

susceptible (N-8), are grown under conditions of a rust epidemic, the yield of the susceptible 

variety is reported to be 65% of the resistant, whereas under rust-free conditions, the relation

ship is found to be 95%. The average annual loss due to safflower rust in the United States has 

been estimated to be about 5%, costing about one million dollars (Kolte 1985). The major loss 

from safflower rust is the reduction in stand from planting untreated teliospore-infested seed or 

in planting where viable soilborne teliospores exist. Using artificially infested seed, the stand 

loss is recorded to be 98%, but only about 20% stand loss has been reported from the use of 

naturally rust-infested seed. Field trials with rust-resistant and rust-susceptible safflower variet

ies have shown that rust-infected but rust-resistant varieties exhibit stand loss of 26%. But the 

surviving plants of such resistant varieties have growth compensation ability, and loss in yield 

remains nonsignificant as compared to the stand loss of 55%–97% in susceptible varieties with 

a significantly reduced yield. 

PATHOGEN 

The pathogen is P. carthami (Hutz.) Corda. P. carthami is an obligate pathogen with an autoe

cious life cycle on Carthamus spp. It is a macrocyclic rust, and since true aeciospores are 

naturally omitted from the life cycle, the rust is reported to be of the brachy-form type. The 

uredosori are found scattered on both sides of the leaves usually near the pycnia. In some cases, 

uredia are formed in between two very closely situated pycnia. Uredosori contain numerous 

globoid or broadly  ellipsoid uredospores measuring 21–27 × 21–24 μm in size. The wall of 

the spore is 1.5–2.0 μm thick. The  uredospores have 3–4 equatorial germ pores, and they are 

light chestnut brown and echinulate. Teleutosori are formed in uredosori. The teliospores are 

bicelled, ellipsoid, 36–44 × 24–30 μm, slightly or not constricted at septa, chestnut-brown, 

rounded or somewhat obtuse at both ends, finely verrucose, 2.5–3.5 μm thick at the side with 

the spores usually depressed from the apical position. The teliospores are hyaline, fragile, and 

mostly deciduous with 10 lx-long pedicel. Pycnia, usually formed in groups, are subepidermal 

and flask shaped or spherical and measure 80–100 μm in diameter. A large number of flexuous 

hyphae are found protruding, and numerous pycniospores are seen oozing out through the osti

ole. Normally, as described earlier, the true aeciospores are not formed in P. carthami. But in 

some of the cases, where single sporidial infections are kept undisturbed for 20–30 days after 

the formation of pycnia, aeciospore-like spores are produced. Such spores are termed primary 

uredospores or uredinoid aeciospore because of their position in the life cycle of the rust and 

morphological resemblance to aeciospores. The uredinoid aecia are amphigenous and chestnut 

brown and measure up to 0.4 μm in diameter, associated with pycnia in clusters. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

P. carthami is mainly perpetuated through teleutospores that remain dormant on the seed or 

on the buried debris of the previous crop throughout the uncropped season. Two types of telio

spores have been reported. One of the two types is known to have the ability to germinate 

shortly after their formation, whereas the other type shows a dormancy period of 5–6 weeks. 



   

 

 

 

   

 

 

     

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

340 Diseases of Edible Oilseed Crops 

Under field conditions, teliospores (showing dormancy) survive for 12 months, but not for 

21 months. Affected safflower straw stored at 5°C has been reported to contain viable telio

spores even after 45 months of storage at such conditions. Under natural conditions, the uredo

spores do not survive. However, they have been reported to remain viable for over a year under 

dry storage conditions at 8°C–10°C. At room temperature, the uredospores lose their viability 

within 3 weeks. On infected plants, the uredospores remain viable for 3 weeks at 30°C–31°C 

and for 3 days at 52°C–55°C. It is interesting that above 40°C, the rust tends to form teliospores 

directly (Kolte 1985). Some of the wild Carthamus species act as collateral hosts in the sur

vival of P. carthami (Sastry and Chattopadhyay 2005). In India, this rust is commonly seen 

on wild safflower C. oxyacantha, and it appears that this host gets infected a month earlier 

than the cultivated safflower. Besides, viable teliospores have been observed on this wild saf

flower during the off-season, suggesting a potential source of survival of the pathogen. Other 

Carthamus species, for example, C. glaucus M B, C. lanatus L., C. syriacus (Boiss) Dinsm., 

and C. tenuis (Boiss) Bornm., also appear to act as collateral hosts to P. carthami. Out of the 

two types of teliospores as reported by Prasada and Chothia (1950), it is the resting teliospore 

that oversummers and remains viable to bring about the fresh primary infection in the fol

lowing season. However, the primary infection in the safflower crop may also be initiated by 

teliospores formed on wild safflower species, especially by those teliospores that do not require 

a dormant period after their formation. These may infect the safflower crop directly or may 

attack the wild species first, and the uredospores then formed on wild species may be blown 

to initiate infection in the cultivated safflower. It is reported that the volatile substances, espe

cially the polyacetylenes, from safflower crop debris stimulate the germination of teliospores. 

The optimum temperature for the germination of teliospore is 12°C–18°C. The teliospores 

germinate normally by producing four-celled promycelium with a cell bearing short sterigma 

and a kidney-shaped sporidium. Such a gametophytic generation, as it becomes visible through 

formation of sporidia, causes root and foot infection by direct penetration of epidermis or cor

tex of seedlings while it is underground during the seed germination process and before plant 

emergence. A higher percentage of seedlings showing the root and foot phase of the disease is 

favored by a lower temperature range of 5°C–15°C, whereas such an infection is hindered by 

a temperature of 30°C and 35°C. Soil moisture variation in the range of 35%–80% of water-

holding capacity has not been found to influence the seedling infection due to rust. One of the 

important characteristics of seedling infection due to P. carthami is the elongation and hyper

trophy of the affected seedlings. A week after primary infection by sporidia, orange spots con

sisting of spermogonia appear on cotyledons, and after 2 or 3 days, primary uredosori develop 

around them. These infect the first leaves, thus setting up the first foci of infection. Late in the 

crop season, secondary uredospores, the sporophytic generation of the fungus, cause foliage 

infection. The uredospores germinate by giving rise to a germ tube over a temperature range of 

8°C–35°C, but the optimum temperature is between 18°C and 20°C. The germ tube forms the 

appressorium in the substomatal vesicle, facilitating the penetration of leaf tissues through sto

mata. Cool temperature and high relative humidity favor the infection. The incubation period 

is reported to be 10–14 days depending on the temperature. At optimum 18°C–20°C tempera

ture, the incubation period is 10 days, whereas at 35°C, the rust uredospores germinate only in 

traces, and the infection may not occur. Further, at 40°C, the uredospores do not germinate at 

all. Artificial inoculation of leaves with uredospores has been found to give only uredo- and 

teliospores of P. carthami, and uredospore inoculation on seed does not cause seedling infec

tion. Since P. carthami is an autoecious macrocyclic rust that rapidly completes the sexual 

cycle, maximum opportunity exists for the recombination. Different races of the rust have been 

identified in the United States. Different rust differential hosts to identify the races have been 

established in the United States (Kolte 1985). 
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DISEASE MANAGEMENT 

Host Plant Resistance 
Reaction of infected hypocotyls to rust has been used as a measure of resistance of safflower to 

P. carthami. The highly susceptible seedlings show abundant sporulation on the hypocotyl, and 

they do not survive, but the resistant seedlings do not show hypocotyl elongation; sporulation 

occurs only on cotyledons and the seedlings are not killed. Seedling rust resistance appears in 

most cases to be both physiologically and genetically related to foliage rust resistance. Lines with 

resistance to the foliage phase are also resistant to the seedling phase of the disease. Seedlings 

with a high level of resistance to the foliage phase exhibit less than 5% seedling death due to the 

seedling phase of rust. A close correlation has been found with the seedling rust resistance test 

as an efficient method for screening for foliage rust resistance. It is, therefore, concluded that 

foliage rust resistance may be effectively screened by the seedling test. The microliter drop (with 

a known number of teliospores suspended in a 1 mL) method has potential usefulness in host 

range and screening for resistance of large number of genotypes (Bruckart 1999). Reaction of 

several safflower introduction and selections for resistance to rust have been studied (Zimmer and 

Leininger 1965, Kalafat et al. 2009). Some safflower lines have been reported to be resistant to 

foliage as well as seedling phases of the disease. These are PI 170274-100, 193764-66, 199882

82, 220647-98, 220647-55, 250601-109, 250721-93, 253759-62, 253911-25, 253912-9, 253913-5-72, 

253914-5-108, 253914-7-9, and 257291-68. Other genotypes such as No. 30 and No. 26 in Turkey 

(Kalafat et al. 2009) and No. 1 and Tayan No. 1 in China are resistant to rust (Liu et al. 2009). 

The safflower line N-l-1-5 is moderately susceptible to the foliage phase of the disease, but it has 

been found outstandingly resistant to the seedling phase of the rust. Other such lines possessing 

a high degree of seedling resistance are PCA, PI 195895, and 6458-5. The seedling resistance of 

N-l-1-5 is governed by a single dominant gene (N). In certain situations, this source should be 

given a prime consideration in breeding for seedling rust resistance. Theoretically, utilization of 

seedling rust resistance may have the same influence on the development of races of P. carthami 
as elimination of alternate host would have on the development of races in a heteroecious species 

of the same genus. Because the major source of primary infection for the foliage phase is seedling 

infection, the utilization of seedling rust-resistant varieties would reduce the amount of primary 

inoculum and would consequently reduce the opportunity for new pathogenic strains to arise from 

the vegetative recombination. 

Noncultivated species with chromosome numbers 2n = 20, 40, or 64 have been found resis

tant to the foliage phase of the rust. Resistance available in C. oxyacantha is governed by single 

dominant gene (OYOY), and this has been successfully transferred to the cultivated safflower. 

Safflower lines with A, M, or N genes have sufficient resistance to rust. The rust resistance present 

in certain varieties is not linked or suppressed by the gene controlling an economically important 

thin-hull character of safflower. Virulence of P. carthami is reported to be inherited in a recessive 

manner. 

Several commercial varieties of safflower have been developed utilizing the different sources 

of resistance in a breeding program. However, the development of the new races, as seen earlier, 

has rendered the resistance ineffective depending upon the prevalence of races in a particular 

area. Induced resistance in safflower by exogenous chemicals such as salicylic acid (SA), oxalic 

acid, and vitamin K3 and by spray application of certain nutrients at certain concentrations 

is typically a systemic acquired resistance (SAR) characterized by systemicity and durability 

(Dordas 2008, Chen 2009). When the first and second leaves are sprayed with 4 mmol/L of SA, 

the activity of the defense enzymes (polyphenol oxidase, peroxidases, phenylalanine ammonia 

lyase [PAL], etc.) increases on the third and fourth leaves with decrease in rust disease index 

(Chen 2009). 
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Chemical Control 
Seed dressing with fungicides such as maneb, mancozeb, captafol, and thiram (each at 0.2%–0.3% 

concentration) has been reported to check the seedling infection of safflower rust. The use of sys

temic fungicides such as oxycarboxin seed treatment has been found most effective in inhibiting 

spore germination and in the management of the disease when 24–48 oz of the fungicide is used 

for 100 lb of seeds. Two sprays of systemic fungicides like calixin at 0.05% at an interval of 15 days 

are useful in the management of the foliar phase of the rust on safflower (Prasad and Suresh 2012, 

Varaprasad 2012). 

Cultural Control 
Cultural practices such as avoiding growing safflower in low-lying areas, avoiding monocrop cul

ture of safflower, and avoiding delay of irrigation until the crop exhibits moisture stress symptoms 

are effective in the management of safflower rust (Varaprasad 2012). 

BROWN LEAF SPOT OR FALSE MILDEW 

SYMPTOMS 

Grayish-chestnut to brown spots of 2–10 mm in diameter appear on the lower leaves. The undersur

face of the spot may show the presence of white growth of the fungus, owing to the emergence of tufts 

of conidiophores bearing conidia (Minz et al. 1961, Rathaiah and Pavgi 1977). The disease is some

times termed as false mildew. The spots may coalesce to cause withering of large area of the leaf. 

The capitulum may also be affected. The primary symptomatic differences between Alternaria and 

Ramularia are that Alternaria spots have a shotgun pattern with different colors to the leaf as the dis

ease progresses while Ramularia spots are uniformly brown and the underside of the leaf has a white 

appearance due to the presence of fungal bodies on the underside of the leaf. The differences are 

apparent with training and experience but are otherwise difficult to distinguish to a casual observer. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Brown leaf spot of safflower was first observed in 1924 in Siberia in the former Soviet Union. The 

disease was then reported to occur in several other countries, for example, Ethiopia, France, India, 

Israel, and Pakistan (Kolte 1985). The most important disease problem of safflower in northwest 

Mexico (particularly in the Yaqui Valley in the state of Sonora) is reported to be false mildew since 

the 2000 and has been common most years since then in that country causing losses in crop yield in 

the range of 6%–90% (Montoya 2005, 2008, Muñoz-Valenzuela et al. 2007). The disease has also 

been reported to occur in California, USA, and in Argentina, South America (Hostert et al. 2006). 

The disease is reported to cause a sharp decrease in yield and quality of the seed in the former 

Soviet Union and adversely affect growth of the plant. Epiphytotic occurrence of the disease was 

reported at Phaltan in the Maharashtra state of India in the 1981–1982 and in the 1988–1989 crop 

seasons (Sastry and Chatopadhyay 2005). 

PATHOGEN 

The pathogen is Ramularia carthami Zaprometov. 

The hyphae are hyaline and septate and measure 2–3 μm in diameter. Prior to formation of 

sclerotia, the hyphae become dark brown, thick walled, and closely septate, increasing to 7 μm in 

diameter. The sclerotia are formed by continued multiplication of cells of a single hyphal branch just 

below the epidermis. The mature sclerotia are chestnut brown, spherical to globose, and markedly 

raised above the level of epidermis. They measure 40–80 × 50–70 μm in size. 



 

  

 

 

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

343 Safflower Diseases 

The conidiophores are hyaline and unbranched and measure 15–81 × 3–5 μm. The conidia 

are one or two celled, rarely three celled, hyaline, and cylindrical with rounded apices and mea

sure 14–25 × 4.5–6 μm. The spermogonia may develop within the old conidial stomata. Mature 

spermogonia are ovate to globose; dark brown to black; and at first embedded subepidermally in 

the leaf tissue, later becoming erumpent and ostiolate and measure 45–110 × 40–150 μm. The 

spermatia measure 3.5–4 μm. The possibility of Mycosphaerella Johanson as the perfect stage of 

Ramularia carthami is suspected. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The conidial germ tubes enter the leaf by penetration of the stomata. On entering the substomatal 

chamber, the hyphae begin to spread intercellularly. The hyphae are never seen to penetrate the 

living host cell, but they penetrate after collapse and death of host cells. The pathogen is mainly 

airborne, spreading by means of conidia. The infection develops successfully at a temperature of 

>28°C coupled with high humidity (Patil and Hegde 1988). The disease becomes severe under irri

gated conditions favoring the epiphytotic occurrence of the disease. The disease does not occur on 

a rainfed safflower crop. 

DISEASE MANAGEMENT 

Host Plant Resistance 
The reaction of wild Carthamus sp. has been studied. C. oxyacantha and C. flavescens are

 resistant to R. carthami. In India, the safflower lines NS 133, HOE, 999, and 1021 (Kolte 1985) 

and IG FRI-116 (Kumar and Joshi 1995) are reported to be moderately resistant to brown leaf spot. 

Resistance to brown spot can be found in selections from the original brown spot–resistant GPB4 

selection and  from directed crosses of GPB4 onto varieties or experimental lines of safflower. 

Such improved brown spot–resistant safflower lines/varieties are S-746, S-334, S-336, and S-736 

(Weisker and Musa 2013) and the two most resistant lines being 04-787 and 04-765, which should 

be used as a source of resistance to breed improved varieties of safflower (Muñoz-Valenzuela et al. 

2007). A new linoleic variety “CLANO-LIN” tolerant to false mildew has been released in Mexico 

(Borbon-Gracia et al. 2011). 

Chemical Control 
Spraying the crop with copper oxychloride (0.3%) or mancozeb (0.25%) has been found to manage 

the disease. Aureofungin has also been found effective in the management of the disease. Three 

sprays of mancozeb (0.2%) or carbendazim (0.05%) at 15-day intervals starting at 55 days after sow

ing are also effective in the management of the disease (Patil and Hegde 1989, Prasad and Suresh 

2012). 

Cercospora LEAF SPOT 

SYMPTOMS 

Safflower plants are affected a few weeks after planting or when plants are in the flowering 

stage. Symptoms on leaves are characterized by the formation of circular to irregular brown 

sunken spots measuring 3–10 mm in diameter. The lower leaves show the symptoms first, and 

gradually, the middle and upper leaves are also affected. The spots have a yellowish tinge at 

the border and they are sometimes zonate. As the disease progresses, the leaves turn brown 

and show internal necrosis, and the entire leaves may be distorted. Under moist conditions, the 

spots have a velvety grayish-white appearance caused by sporulation of the fungus. Minute 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

344 Diseases of Edible Oilseed Crops 

black fructification of the pathogen may be seen on both upper and lower sides of the spots 

of affected leaves. Stems and nodes may also be affected. In case the disease becomes quite 

severe, the bracts are also affected and show the presence of reddish-brown spots. Affected 

flower buds turn brown and die. The entire capitulum may also be affected without formation 

of seeds. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The Cercospora leaf spot of safflower is worldwide in occurrence, particularly when safflower 

is grown in a large area as a pure crop. It is reported to occur in Ethiopia, India, Iran, Israel, 

Kenya, the Philippines, the former Soviet Union, and the western Great Plains and Northern 

Plains area in the United States (Mündel and Huang 2003). Epiphytotic occurrence of the 

disease was reported in the Coimbatore area in the southern part of India in 1921, 1924, and 

1925. However, information on estimates of losses caused by the disease is not available. 

Observations made in 2006–2007 in Montana, USA, have demonstrated that safflower is an 

additional host for the sugar beet pathogen, Cercospora beticola. This creates new potential 

disease problems for both crops if grown within 4 years of each other (Lyon et al. 2007). This 

provides further evidence that safflower is an alternative host of C. beticola. This is of sig

nificant importance since irrigated safflower is increasingly being evaluated for rotation with 

sugar beet in Montana, USA, and two crops are occasionally grown adjacent to each other 

(Lartey et al. 2005, 2007). 

PATHOGEN 

The pathogen is Cercospora carthami (H. and P. sydow) Sundararaman and Ramakrishnan. 

The mycelium is hyaline, smoky brown, septate, and branched and collects in the stomatal areas 

where stromata are formed. The conidiophores emerge separately or in fascicles (tufts of 12–20 

conidiophores) on both leaf surfaces. Under wet conditions, they emerge directly from the epider

mis (Kolte 1985). The conidiophores are simple, septate, occasionally branched, erect, and variable, 

measuring 104.74–209.6 × 4.6 μm in size. The conidia are hyaline, linear, with 2–20 septate, and 

borne on the conidiophores acrogeneously. They are broad at the base and taper toward the end in 

a whiplike manner, measuring 2.5–5 × 50–300 μm. The length of the conidia and number of septa 

vary according to prevalent environmental conditions. The conidia germinate readily in water, giv

ing germ tubes from both ends as well as from the sides. Each cell is capable of giving out a germ 

tube (Sastry and Chattopadhyay 2005). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

C. carthami is reported to have a restricted host range, and it does not infect other plants  

except Carthamus sp. The pathogen perpetuates through a vegetative saprobic mycelium and 

through  viable stromata embedded in crop debris. Stromata of the pathogen appear as small 

black dots in concentric rings on diseased leaves. The disease cycle is initiated when wind

blown or water-splashed conidia land on safflower and germinate in the presence of free 

moisture. The fungus infects plant parts through natural openings or wounds or through direct 

penetration. Heavy and continuous early morning dew or other free moisture is essential for 

infection, and the disease is most severe during warm, moist weather. The Cercospora leaf 

spot pathogen is disseminated by wind, water splashing, and movement of infested plant mate

rial (Lyon et al. 2007). 



 

  

  

 

 

 

              

 

345 Safflower Diseases 

DISEASE MANAGEMENT 

Though high degree of host plant resistance sources are known, five genotypes, namely, 8-12-1, 

SSF-650, 2-10-2, 4-13-1, and 2-11-2, are tolerant to both Cercospora leaf spot and aphid attack 

(Akashe et al. 2004). The disease can be managed by spray application of 1% Bordeaux mixture. 

Dithiocarbamate fungicides (0.25%) or copper oxychloride (0.3%) might also be effective in the 

management of the disease (Prasad and Suresh 2012). 

Seed treatment with thiram 3 g/kg and spraying of mancozeb 2.5 g or carbendazim 1 g/L of 

water may be useful in the disease management. Four strains of rhizobacteria (GBO-3, INR937a, 

INR937b, and IPC11), when micromobilized with the safflower seed, have been found to be induc

ers of systemic resistance in safflower preventing infection caused by C. carthami (Govindappa 

et al. 2013). Few specific cultural control strategies have been developed for Cercospora leaf spot. 

Crop rotations of 3 years or longer to nonhosts (small grains or corn), through incorporation of crop 

debris, and avoidance of overhead and excessive irrigation will likely reduce the incidence and 

severity of Cercospora leaf spot (Lyon et al. 2007). 

Macrophomina (Rhizoctonia) ROOT ROT 

SYMPTOMS 

Initially, dark-brown to black lesions are formed on the roots. Later, infected plants may show a 

characteristic silvery discoloration of the epidermal and subepidermal layer of the stem base and the 

root (ashy stem and root). The fungus spreads up to the vascular and pith tissues of the stem, finally 

forming numerous small sclerotia, like finely powdered charcoal (charcoal rot) giving the infected 

tissues a grayish-black color. Sclerotia are found along the vascular elements and bordering the pith 

cavity. Affected plants are stunted and ripen prematurely. A new type of distinct stem-split symptom 

is reported more recently to occur on 30-day-old safflower plants as minute cracks 2–3 cm above the 

soil surface that extend to both upward and downward directions resulting in the formation of wide 

split. The split portion becomes hollow and brown with white to gray mycelia mat of the fungus on 

the inner surface (Govindappa et al. 2005). Such plants fail to withstand. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

In general, the disease is considered to be of less importance in normal crop–growing season in  winter 

months, but because of changing climate in recent years, the disease has assumed wide  prevalence 

in warm temperate and tropical regions of the world. It causes serious yield losses  especially in 

dry seasons in Iran (Mahdizadeh et  al. 2011, Lotfalinezhad et  al. 2013). The Rhizoctonia phase 

of the disease is sporadic that regularly causes 1%–10% yield losses all over India (Prasad and 

Suresh 2012). The incidence of the disease is negatively correlated with yield and height of the crop 

(Chattopadhyay et al. 2003). 

PATHOGEN 

Macrophomina phaseolina (Tassi) Goid is the pathogen, which is the pycnidial stage of Rhizoctonia 
bataticola (Taub) Butler. The details of the characteristics of the pathogen and disease cycle have 

been described under peanut and sunflower diseases. Genetic diversity analysis using RAPD mark

ers and UPGMA cluster analysis could distinguish isolates prevalent in safflower-growing areas 

into two major groups. Dendrograph generated by cluster analysis reveals varied levels of genetic 

similarity, and it ranges from 50% to 55% (Prasad et al. 2011, Navgire et al. 2014). 
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DISEASE MANAGEMENT 

Host Plant Resistance 
Seed germination using towel paper and infested soil cup techniques has been developed at the 

Indian Institute of Oilseeds, Hyderabad, India, for screening safflower germplasm lines for resis

tance to the disease (Prasad and Navneetha 2010). However, resistance sources have not been 

detected either in cultivated or in wild safflower. Diameter of lower stem (DLS) of safflower has 

been found to have positive and significant correlation with length and width of the necrotic lesion 

on the stem of safflower; hence, DLS trait should be used as an index for indirect selection of 

resistant genotypes in safflower (Pahlavani et  al. 2007). Some of the disease-tolerant genotypes 

are IUT-k 115, GUA-va 16, CW-74, AC-Stirling (Pahlavani et  al. 2007), AKS-152 and AKS-68 

(Ingle et al. 2004), and NARI-6, SSF-658, A-2, PBNS 12, and PBNS 40 (Prasad and Suresh 2012). 

Four genotypes, namely, GMU-3259, GMU-3262, GMU-3306, and GMU-3316, are identified to be 

highly resistant with no seedling infection, whereas three genotypes GMU-3265, GMU-3285, and 

GMU-3297 are found to be resistant with only up to 1%–10% seedling mortality (Salunkhe 2014). 

These can be used in breeding program to improve resistance in safflower to charcoal rot and root 

rot caused by M. phaseolina. 

Chemical Control 
No practically useful economic chemical method is recommended for the control of the dis

ease. However, the seed-borne inoculum of the pathogen can be minimized by treating the 

safflower seed with thiram or carbendazim (Subeej25 DS) at 2 g/kg seed for the control of the 

disease and for better plant stand establishment in the field (Prashanti et al. 2000a, Prasad and 

Suresh 2012). 

Cultural Control 
The use of clean seed, the application of organic matter, long rotations with nonhost crops, and 

avoidance of excessively dense plant populations and sanitation, including the burial of debris by 

hand or by plough during summer, have each been suggested as cultural practices (Prasad and 

Suresh 2012) in the disease management. 

Biological Control 
Biocontrol agents such as Trichoderma harzianum, fluorescent Pseudomonads (P. fluorescens), 
and Bacillus subtilis obtained from the rhizosphere soil of safflower and finally prepared as talc-

based formulations are used as seed treatment; these biocontrol agents at 10 g/kg prove to be 

effective in the control of the disease and in triggering defense-related enzymes involved in phen

ylpropanoid pathways and phenols that induce systemic resistance. High activity of peroxidase, 

PAL, chitinase, polyphenol oxidase, and beta-1,3-glucanase could be observed in P.  fluorescens– 

and T. harzianum–treated safflower plants after challenge inoculation with M. phaseolina 
(Prashanti et al. 2000b, Kaswate et al. 2003, Singh et al. 2008a, Govindappa et al. 2010, 2011a). 

Soil amendment with saw dust + soil in the ratio of 1:10 when combined with seed treatment  

with T. harzianum at 4 g/kg seed shows lowest preemergence mortality due to M. phaseolina 
(Deshmukh et al. 2003). 

OTHER DISEASES OF SAFFLOWER 

The other diseases of safflower are given in Table 8.1. 
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P
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h
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 s
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. 
In

fe
ct

io
n
 o

f 
fl

o
w

er
s 

is
 f

o
ll

o
w

ed
 b

y
 i

n
v
as

io
n
 o

f 
th

e 
se

ed
 h

ea
d
, 

w
h
ic

h
 c
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 d
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h
e 
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e 
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f 

th
e 

p
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t 
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b
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. c
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f 
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e 
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m
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w

in
d
 b

o
rn
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d
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 b
e 
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t 
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e 
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m
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u
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d
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ab
u
n
d
an

tl
y
 s

ee
n
 i

n
 t

h
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b
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ra
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 t
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d
in

 

ro
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ra
n
,

re
g
io

n
 t

h
at

 b
ec

o
m

es
 b
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 p
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d
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 b
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 d
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.2

%
–
0
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d
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ra
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ra
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 d
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 C
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. m
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 b
ee

n
 f

o
u
n
d
 t

o
 g

iv
e 

ef
fe

ct
iv

e 
co

n
tr

o
l 

o
f 

th
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p
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ra
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 d
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h
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h
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 c
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 c
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 b
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 p
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 l
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d
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d
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ra
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 c
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. c
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 c
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 p
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 b
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 b
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 c
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p
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p
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 m
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 d
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n
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b
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 p
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h
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d
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 c
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 d
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h
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d
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d
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 d
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ra
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 m
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d
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 d
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 c
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 d
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 d
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ra
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 p
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 c
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Section VII
 

Soybean 
The soybean (United States) or soya bean (United Kingdom) (Glycine max L. (Merrill) is a species 

of legumes belonging to the plant family Papilionaceae, which is native to East Asia. The eastern 

half of North China is believed to be the primary center of origin, and Manchuria, the secondary 

center of origin. From there, it is believed to have spread to Korea and Japan, where it is widely 

grown for its edible bean, which has numerous uses (Yadava et al. 2012). Soybeans are now major 

crops in the United States, Brazil, Argentina, China, and India. 

The cultivated soybean plant is an annual plant, generally exhibiting an erect, sparsely branched 

bush-type growth habit with pinnately trifoliate leaves. Purple or white flowers are borne on short 

axillary racemes on reduced peduncles. The pods are either straight or slightly curved, usually 

hirsute. The height of the soybean plant varies from less than 0.2 to 2.0 m. The inconspicuous, self-

fertile flowers are borne in the axil of the leaf and are white, pink, or purple. The pods, stems, and 

leaves are covered with fine brown or gray hairs. There are one to three seeds per pod, and they are 

usually void to subspherical in shape. The seed coat ranges in color from light yellow to olive green 

and brown to reddish black. Like most other legumes, soybeans perform nitrogen fixation by estab

lishing a symbiotic relationship with the bacterium, Bradyrhizobium japonicum (syn. Rhizobium 
japonicum). For best results, an inoculum of the correct strain of bacteria should be mixed with 

soybean seed before planting. Modern crop cultivars generally reach a height of around 1 m and 

take 80–120 days from sowing to harvesting. 

The basic chromosome number is 2n = 40. The cultivated soybean (G. max) genome size is 

estimated to be about 1.12 Gb DNA, and the wild soybean (Glycine soja) genome size is about 1.17 Gb 

DNA (Qi et al. 2014). The first draft sequence and gene models of G. max (domesticated soybean) 

as well as G. soja (wild soybean) have been known and available for use in research purposes 

since 2010 (Kim et al. 2010). The comparison between genome sequences of G. max and G. soja 
shows significant differences between genomic compositions of the two. Major traits of agricultural 

importance including yield and stress tolerance are polygenic, and the presence of these favorable 

alleles in G. soja help breeding program to improve beneficial traits into cultivated soybeans (Kim 

et al. 2010, Joshi et al. 2013). 

In addition to high protein content (40%), the soybean seeds contain 18%–23% oil and thus add 

to the importance of the species as an edible-oil-yielding crop. Because of the terms of production 

and international trade and maximum share of about 57% of world’s oilseed production, the plant is 

now classed as an edible oilseed rather than a pulse by the UN Food and Agricultural Organization. 

Soybean cultivation is successful in climates with hot summers, with optimum growing conditions 
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in mean temperatures of 20°C–30°C. Soybean can be grown in a wide range of soils with opti

mum growth in moist alluvial soils with a good organic content. The main producers of soybean 

are the United States (36%), Brazil (36%), Argentina (18%), China (5%), and India (4%). The three 

largest producers have recorded an average nationwide soybean crop yields of about 3 tons/ha. 

Analyzing the presently prevailing situation and the amount of available arable land and water 

resources in Brazil, it is expected to eventually become the number one soybean-producing nation 

in the world. Already, South America as a continent produces more soybeans than North America 

(combined U.S. and Canada production). In the past decade, large tracts of fertile land and low 

labor costs have fueled explosive growth in South America’s soybean industry although poor road 

and rail infrastructure, as well as economic instability and environmental concerns, have been the 

primary checks to further expansion in South American countries. The introduction of this temper

ate crop to subtropical climatic conditions made it more vulnerable to problems like seed longevity, 

poor growth rate due to changed photoperiod, and various biotic and abiotic stresses (Hegde 2009, 

Yadava et al. 2012). Diseases of soybeans are described in Chapter 9 as follows. 



 

 

 

 

 
 

 

 

 

 

9 Soybean Diseases
 

SEED ROT AND SEEDLING BLIGHT COMPLEX 

CAUSAL FUNGI, SYMPTOMS, AND ENVIRONMENTAL RELATIONS  AND ECONOMIC IMPORTANCE 

Several species of fungi belonging to different genera, namely, Aspergillus flavus, Aspergillus niger, 

Aspergillus fumigatus, Mucor mucedo, Penicillium chrysogenum, Fusarium oxysporum, Rhizopus
 stolonifer, Cephalosporium acremonium, Rhizopus leguminicola, Alternaria alternata, Colletotrichum 
dematium, Macrophomina phaseolina, Phoma sp., Sclerotium rolfsii, and Curvularia lunata can be 

isolated from the seeds of soybean. A great number of fungi are observed on seed coat and cotyle

don, followed by axis. These pathogenic seed-borne and/or soilborne fungi  actually penetrate and 

colonize the seeds. Fungal hyphae are present intercellularly within the host tissues. Maceration, 

disintegration, and rupture of host cells are observed in infected seeds (Adekunle and Edun 2001, 

Ellis et al. 2013). Fusarium solani and M. phaseolina are recorded in the cotyledon and axis (Tariq 

et al. 2006). Though the frequencies of different microflora are often significantly different between 

the transgenic and conventional cultivars, the nature of microflora on these has been found to be 

similar (Villarroel et al. 2004). Germination of seed is directly related to the prevalence of fungi 

associated with the seed (Shovan et al. 2008) and infested soils (El-Hai et al. 2010). 

Pythium species: This may be the first cause of seed rot and damping-off of soybean seedlings 

in a growing season worldwide causing enormous losses in yield due to lack of plant stand estab

lishment. High-residue fields, and heavy or compacted soils, are at higher risk because of cooler, 

wetter conditions. Pathogen may attack seeds before or after germination and seeds killed before 

germination and emergence. On infected plants, the hypocotyls become narrow and are commonly 

pinched off by the disease. Emerged plants may be killed before the first true leaf stage. These 

plants have a rotted appearance. Diseased plants may easily be pulled from the soil because of 

rotted roots. The two species Pythium ultimum and Pythium aphanidermatum cause greater seed 

rot and damping-off than any other Pythium species under Canadian conditions. The interactions 

between temperature and Pythium spp. are more pronounced for P. aphanidermatum, which shows 

an increased percentage of seed rot with an increase in temperature (20°C–28°C), whereas Pythium 
irregulare, Pythium macrosporum, and Pythium sylvaticum show a decreased percentage of seed 

rot with an increase in temperature (Wei et al. 2011). Some differential disease responses can be 

detected between glyphosate-tolerant and glyphosate-sensitive cultivars following the application of 

certain category of such herbicides. However, glyphosate-tolerant and glyphosate-sensitive  soybean 

cultivars react similarly to most herbicide treatments with respect to root rot and damping-off 

(Harikrishnan and Yang 2002). 

Phytophthora species: This can attack and rot seeds prior to emergence and can cause pre- and 

postemergence damping-off. It produces tan-brown, soft, rotted tissue. At the primary leaf stage 

(V1), infected stems appear bruised and soft, secondary roots are rotted, the leaves turn yellow, and 

plants frequently wilt and die. Phytophthora sojae commonly infects at the seedling stage, causing 

pre- and postemergence damping-off. After emergence, infected plants will be clearly visible in 

low areas of fields but may also be hidden underneath the canopy of nearby plants within the row. 

P. sojae infection is favored by high soil moisture resulting from excessive rains, poor drainage, and 

heavy clay soil texture. 
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FIGURE 9.1  Seedling blight of soybean caused by R. solani. Note the RB lesion on soybean hypocotyls near 

the soil line. (Courtesy of Dr. Shrishail Navi, Iowa State University, Ames, IA.) 

Rhizoctonia solani: This shows the highest ability to infect the seeds and decreases seed   germination 

by 5.26%–15.8% with seedling mortality of 100% (Stephan et al. 2005, El-Hai et al. 2010). Trifluralin  

enhances the susceptibility of soybean radicles to R. solani (Montazeri and Hamdollah-Zadeh 

2005).  Rhizoctonia is more common in wet or moderately wet soils but not in saturated soils and 

its activity is most in warm soils (over 24°C), where soybean germination is slow or  emergence is 

delayed. Infection may be superficial, causing no noticeable damage, or may girdle the stem and kill 

or stunt plants. Reddish-brown (RB) lesion on soybean hypocotyl near the soil line is  characteristic 
of Rhizoctonia infection (Figure 9.1). It normally appears as the weather becomes warm (~27°C), is  

more often seen in late-planted soybean fields and causes loss of  seedlings (d amping-off) in small 

patches or within rows, and is usually restricted to the seedling stage. Stand loss is due to the soft 

and rotted seed with soil adhering to them. Plants may be killed by  damping-off before or after  

Rhizoctonia infection. 

Fusarium species: Seedling infection in soybean is caused by a complex of different Fusarium  
 species that prefer different conditions; some prefer warm and dry soils, while others prefer cool 

and wet soils. Some species attack corn, wheat, and other host plants. They cause light- to dark-

brown lesions on soybean roots that may spread over much of the root system, may attack the tap 

root and promote adventitious root growth near the soil surface, and may also degrade lateral roots, 

but usually do not cause seed rot. Less severe infections may degrade without resulting in plant 

death. Plant stand loss due to the patchy nature of Fusarium infection occurs in a specific area of the 

field. F. oxysporum, Fusarium semitectum (Fusarium pallidoroseum), Fusarium graminearum, and 

other fungal species such as S. rolfsii, M. phaseolina, and A. flavus appear to be dominant (Goulart 

et al. 2000, Goulart 2001, Pant and Mukhopadhyay 2002, Ellis et al. 2011). Fusarium commune 
as the cause of damping-off of soybean is the first report from the United States (Ellis et al. 2013). 

F. oxysporum f. sp. glycines reduces seed germination and seedling survivability by 40% and cause 

preemergence damping-off of soybean seedlings (Begum et al. 2007a). 

For soybeans, the soilborne pathogens P. sojae, several Pythium species, and R. solani as 

described earlier are considered to be the most important seedling pathogens in the North 

Central states in the United States. A study conducted in Iowa concluded that these three organ

isms  compose 90% of soybean-seedling diseases. Seed-borne fungi such as Cercospora species, 

Phomopsis  longicolla, or Fusarium species can also play a role in seed and seedling disease, par

ticularly if prevailing environmental conditions in the preceding crop season adversely affect the 

seed production. 
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DISEASE MANAGEMENT 

Host Plant Resistance 
Soybean genotypes showed differences in their reaction to seedling damping-off diseases caused 

by soilborne fungal pathogens such as R. solani, M. phaseolina, and S. rolfsii; for example, soy

bean cv Giza 21 shows the least incidence of preemergence damping-off followed by Giza 35 

and Giza 83 but only Giza 35 showed the least incidence of postemergence damping-off (Amer 

2005). Resistance to damping-off of seedlings caused by P. aphanidermatum in soybean cv 

Archer is governed by a single dominant gene Rpa1, which is independent of association of 

resistance governed by another gene Rps1K that confers resistance of Archer to P. sojae (Rosso 

et al. 2008). Many P. sojae races are found in South Dakota in the United States. Most of the 

genes that have been incorporated into  soybean for resistance to Phytophthora are vulnerable to 

races found in South Dakota including Rps1k. Producers are required to keep a good history of 

their fields that are prone to Phytophthora, so that they may judge the effectiveness of resistance 

genes in their varieties. The best strategy would be to plant varieties with Rps1k, Rps3a, Rps6, 

or a combination thereof. 

Resistance in Archer to Pythium damping-off and root rot is robust with its efficacy over a num

ber of Pythium spp. covering P. ultimum, P. irregulare, P. aphanidermatum, P. vexans, and over a 

range of plant developmental stages of soybean (Bates et al. 2008). Though Pythium resistance in 

soybean cv Archer can withstand the adverse effect of flooding, the disease as such may account for 

a portion of the negative response of soybean to flooding (Kirkpatrick et al. 2006). 

Chemical Control 
Identification of seedling disease is essential in fixing the problems as different fungicides are 

effective in controlling different seedling diseases. Though there are limited choices in fungi

cide seed treatments for managing the seed rot and seedling diseases, the best seed germination 

and field emergence of soybean seedlings can be obtained by treating the seeds with thiram 

at 0.3% (Raj et al. 2002) or with a combination of carbendazim + thiram (Goulart et al. 2000, 

Sonavane et al. 2011) or with captan or fludioxonil or a combination of fludioxonil + metalaxyl-M 

(MAXIM XL) (Gally et al. 2004, Ellis et al. 2011) depending on the prevalence of pathogenic 

fungi. Seeds treated with 0.3% thiram maintain germination above the minimum seed certifi

cation standard up to 10 months of storage, after which seed germination can fall below the 

certification standard. Excellent seed germination with best degree of seedling blight control 

can still be achieved due to seed treatment with a mixture of thiram +  carbendazim +  antagonist 

Trichoderma harzianum or T. hamatum at 3 + 1 + 4 g/kg seed (El-Sayed et al. 2009, Khodke and 

Raut 2010). Treatment of soybean seeds with R. japonicum (Rhizobia) and Thiabendazole (Tecto) 

induces significant increase in seed germination of soybean in soils infested with F. solani and 

M. phaseolina (Al-Ani et  al. 2011). Fungicide spray is recommended during the reproductive  

phase of soybean for disease control and for production of better quality soybean seeds in Brazil 

(Beal et al. 2007). 

Soaking soybean seeds with plant growth chemicals such as ethrel, CCC, or IBA at 200 ppm has 

been found to be significantly effective in reducing preemergence and postemergence damping-off of 

soybean seedlings under salinity stress conditions of soils in Pakistan (El-Hai et al. 2010). Systemic 

resistance in soybean plants can be induced by prior soaking of seeds in a mixture of  benzothiadiazole 

(0.25 g ai/L) and humic acid (4 g ai/L) for the control of damping-off and wilt diseases of soybean 

caused by F. oxysporum in Egypt (Abdel-Monaim et al. 2012, El-Baz et al. 2012). 

Cultural Control 
Cultural practices are also important. For example, soil drainage, delaying sowing after green 

manuring, and sowing at temperatures above the pathogen optimum; all precautions may be 

needed to prevent contamination of tools and irrigation water, in addition to the use of quality 
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seeds. Seed quality affects stand establishment and seedling rot in soybeans, particularly when 

seedlings are subjected to stress such as excessive moisture and low temperatures. In addition 

to quality seed, fungicide seed treatments are also highly recommended and often not optional. 

Fungicide seed treatments benefit stand establishment under adverse conditions such as cool, wet 

conditions and where pathogens are present. However, a fungicide seed treatment will not turn 

bad seed into good, and it will only provide a limited benefit under extreme weather and disease 

conditions. Certain organic soil amendments may have similar effects as an approach for indirect 

biological control through cultural practices. For example, dried powders of velvet bean and pine 

bark added to the soil at the rate of 50–100 g/kg of soil can reduce R. solani–induced damping-off 

and root and stem rot disease in soybean (Blum and Rodriguez-Kabana 2006a). Seed treatment 

with alum recorded maximum seed germination, root length, shoot length, and seedling vigor 

index (Chandrasekaran et al. 2000a,b). 

Biological Control 
Biological control has emerged as an alternative and promising means for the management of 

such type of diseases. Biological control agents like Gliocladium virens and T. harzianum antag

onize pathogens by antibiosis, competition, mycoparasitism, or other forms of direct exploita

tion (Pant and Mukhopadhyay 2001). Damping-off of seedlings of soybean caused by S. rolfsii 
in the East of Java in Indonesia, Malaysia, Thailand, and the Philippines has been proved to 

be brought under control by Actinomycetes and VAM (Sastrahidayat et  al. 2011). Antifungal 

activity of two bacteria obtained from the soybean rhizosphere as Pseudomonas fluorescens 
BNM296 and Bacillus amyloliquefaciens BNM340 has been shown to be antagonistic to P. ulti
mum causing damping-off and is able to increase seedling emergence rate under field conditions 

(Leon et al. 2009). Coating soybean seeds and roots with spores and mycelia of three antagonists 

(Aspergillus sulphureus, Penicillium islandicum, and Paecilomyces variotii) gives soybean ger

minating seeds and seedlings a very good protection from root rot and pre- and postemergence 

damping-off caused by P. spinosum. Applying these biocontrol agents (BCAs) to autoclaved and 

nonsterilized soil infested with P. spinosum provides an excellent way of protection (Al-Sheikh 

and Abdelzaher 2010). 

T. harzianum isolate UPM40 and Pseudomonas aeruginosa isolate UPM13B8 have been 

proved to be the most effective candidates in inhibiting the mycelial growth of F. oxysporum 
f. sp. glycines, which causes soybean seed rot (Begum et al. 2007a). Certain bacterial isolates 

such as the ones belonging to Bacillus species (B3, B12, B80) and fluorescent Pseudomonads 
(FLPs) (B43, B51, B63, B64), when obtained from the soybean rhizosphere in Iran, have been 

found to show strong antagonistic effects against P. sojae causing damping-off soybean seedlings 

indicating their potential use in the management of soybean-seedling diseases (Tehrani et  al. 

2002, Zebarjad et al. 2006). Soybean seeds coated with a peat-bond formulation of biocontrol 

bacterial agent Burkholderia ambifaria isolate BC-F give significant disease (seedling blight) 

suppression with significantly greater plant stand over a considerable period of plant growth due 

to the ability of isolate BC-F to persist for long periods in association with roots of diverse crop 

plants in different soils and the production of a metabolite(s) with broad-spectrum antibiotic 

activity (Li et al. 2002). 

Effect of Plant Extracts 
Seed-borne fungi of soybean can be controlled by using leaf extract of medicinal plant and BCA. 

Soybean seeds when treated with leaf extracts of Allium sativum L. and Azadirachta indica A. 

Juss inhibit the growth of seed-borne pathogenic fungi resulting in control of the seed rot and 

damping-off of diseases ensuring better establishment of the stand of the plants under field condi

tions (Rathod and Pawar 2012). The proportion of pathogenic fungi has been found to be the lowest 

in soybean seeds treated with Biosept 33SL (from grapefruit seed and pulp extract) or Zaprawa 

Oxafun T (37.5% carboxin + 37.5% thiram) as studied by Patkowska (2006) from Poland. 
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ANTHRACNOSE 

SYMPTOMS 

Plants may become infected at any stage of development and as a result exhibit a wide range of 

symptoms. The soybean is prone to be attacked by Colletotrichum truncatum at seed and seedling 

stages, resulting in pre- and postemergence damping-off (Begum et al. 2010). Seeds colonized with 

C. truncatum produce irregular gray spots with black specks. C. truncatum produces compact 

dark mycelium both intra- and intercellularly in the seed coat, cotyledon, and embryo. Mycelial 

growth is more abundant in the hourglass layer of the seed coat and hypodermis, where large 

intercellular spaces are present. Acervuli with setae and abundant hyaline sickle-shaped conidial 

masses are observed abundantly on the surface of infected seeds. Similar observations are found 

beneath the inner layers of the seed coat and upper surfaces of embryo and cotyledonary tissues. 

Brown conidial masses are produced during incubation and liberated in the form of ooze resulting 

in maceration and disintegration of the parenchyma tissues of the seed coat, cotyledon, and embryo 

(Begum et al. 2007b). 

Infected seedlings that do not die early appear healthy until blossom, but chances of infection 

tend to increase with maturity and symptoms consist of appearance of brown, irregularly shaped 

spots on leaves, stem, pods, and petioles (Figure 9.2). The girdling of petioles by large lesions results 

in premature defoliation. When pods are infected, mycelium may completely fill the cavity and no 

seeds are produced (pod blanking) or fewer and/or smaller seed form. Seed that does form may 

appear brown, moldy, and shriveled or may look normal. Dark acervuli develop in lesions on all 

host tissues. Leaf infections, which generally develop as a result of secondary  infection by conidia, 

may exhibit leaf rolling, necrosis of laminar veins, petiole cankers, and premature  defoliation 

(Figure 9.3). In general, infected plants appear stunted and may have significant yield reduction. 

This disease is commonly observed at maturity (Galli et al. 2007). Additionally, the presence of 

pathogens in seeds may lead to significant reductions in seed germination, plant emergence and 

vigor, duration of seed storage, and crop yield. 

Visible and near-infrared reflectance (Vis/NIR) spectroscopy technique has been applied to 

accurately detect the disease severity of soybean pod anthracnose in China (Feng et  al. 2012a). 

According to the results, Vis/NIR spectroscopy is feasible for the identification of C. truncatum 
on soybean pods. There is a potential to establish an online field application of early plant disease 

detection based on visible and near-infrared spectroscopy (Feng et al. 2012b). The fungus infects 

seedlings, stems, petioles, leaves, and pods. Pathogen produces stria-like lesions in the pods of 

soybean variety “Tai 75” in China. Based on the pathogen isolated, morphological observation, 

rDNA ITS sequence analyses, and pathogenicity tests, it is demonstrated that the lesion is a type of 

infection caused by fungal pathogen C. truncatum. The same pathogen infects soybean pods result

ing in two main types of symptom on various soybean varieties. The stria-like lesions appeared 

exclusively in the soybean variety “Tai 75,” whereas the round blotches could be observed with 

the other soybean varieties. Pod disease incidence of stria-like lesions in the soybean variety “Tai 

75” is observed to be 65.37%, whereas in the other soybean varieties, it could be in the range of 

1.02%–12.25%. There is a clear host- and variety-dependent characteristics of infection of fungus 

C. truncatum (Lou et al. 2009). 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Anthracnose is an economically important disease widely distributed in almost all soybean-

growing countries of the world. The causal fungus, C. truncatum (Schw.) Andrus and Moore, 

is present in almost all soybean-growing areas of the world (CMI map). It is generally more 

abundant in subtropical or tropical than temperate zones. It is reported to be the serious dis

ease in Argentina (Daniel Ploper et al. 2001, Ramos et al. 2010), Austria (Zwatz et al. 2000),  

http:1.02%�12.25
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FIGURE 9.2 Anthracnose leaf spots of soybean. (Courtesy of Dr. Anil Kotasthane, IGKV, Raipur, India.) 

Brazil (Klingelfuss and Yorinori 2001), China (Feng et al. 2012a), India (Jagtap et al. 2012b),  

and Zambia (Mayonjo and Kapooria 2003). During the last decade, soybean yield losses have  

increased as the disease is associated with monocropping, no-till systems, and genetic  uniformity  

of cultivars in the northern Pampeana region of Argentina (Ramos et al. 2010). This disease is  

severe in these areas, especially when precipitation and relative humidity is high. The combined  

attack of the disease with frogeye leaf spot (FLS) (Cercospora sojina) results in a yield loss of  

soybean yield in the range of 23.7%–32.5% in India (Mittal 2001). In  addition to yield reduction,  
C. truncatum  may affect seed quality. Seed-borne nature of the pathogen results in the shift  

in oil content reduction in the range of 18%–27%, beside the reduced seed germination up to  

29.2% and viability by 26.9% coupled with lower seedling vigor (Galli et al. 2005, Nema et al.  

2012). Moreover, seed infection can increase the electrolyte leakages compared to healthy seeds  

(Begum et al. 2008b). 



 

   

 

365 Soybean Diseases 

Anthracnose and pod blight
(Colletotrichum truncatum) 

(a) (b) 

(c) 

FIGURE 9.3 Anthracnose of soybean. Note the black dot-like acervuli on affected stem and pod of soybean. 

(a) Infected stem with acervuli of the pathogen. (b) Stem and pod blight symptoms. (c) Infected pods with 

acervuli of the pathogen. (Courtesy of Dr. G.K. Gupta, ICAR-Directorate of Soybean Research, Indore, India.) 

PATHOGEN 

The species most frequently associated with soybean anthracnose is C. truncatum (Schw.) 

Andrus and Moore (= C. dematium (Pers. ex Fr.) Grov (=  C. dematium var. truncatum (Schw.) 
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V. Arx) (teleomorph Glomerella truncata). This is the imperfect fungus that belongs to the sub

division Deuteromycotina form-class Deuteromycetes, form-subclass Coelomycetidae, form-order 

Melanconiales, and form-family Melanconiaceae. 

The morphology of both conidia and setae of C. truncatum isolates from soybean has been com

pared and found to be distinct. Curved conidial shape is more useful than size in isolate determina

tion (Begum et al. 2010). Sucrose is proved to be the best carbon source for growth and sporulation 

of C. truncatum (Jagtap and Sontakke 2009). Growth (mycelial dry weight) is most pronounced at 

28°C. Excellent sporulation is observed at 25°C–30°C and at pH 5.5, 6.0 (Singh and Singh 2001). It 

grows faster on soymilk dextrose agar than potato dextrose agar as soymilk used with agar or used 

alone as a broth has been found to be the best option for replacing the expensive processed culture 

media (Xiang et al. 2014). RAPD profiles generated by the random primers exhibit a high degree 

of variability among different isolates of C. truncatum. Infecting soybean and genetic relationships 

and molecular characterization of Colletotrichum species causing soybean anthracnose has been 

studied using AFLP method (Sharma 2009, Ramos et al. 2013). There appears to be a compatibility 

through perithecial formation among Colletotrichum spp. from chilli and soybean (Guldekar and 

Potdukhe 2011). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The pathogen is seed borne, although diseased plant debris in the soil may also harbor the  pathogen 

as primary source of inoculum. Percentage of seed-borne infection by C. truncatum, however, 

varies in soybean germplasms. For example, in total, 43 germplasms have been reported to be 

completely free from seed-borne infection in Bangladesh (Hossain et al. 2001). The production of 

acervuli of the fungus is obvious on the affected tissues under humid conditions. Consequently, 

rainy or wet weather facilitates the dispersal of the pathogen to become wind-borne and sec

ondary spread takes place through conidia formed in acrevuli on stems, branches, and pods.  

Anthracnose  disease  severity becomes maximum when the average temperatures remain around 

28.4°C with average relative humidity 76% and average rainfall 92.5 mm (Singh and Singh 2001). 

In the lowland  situation in the soybean fields under the Chhattisgarh conditions in India, the 

average percent anthracnose severity is reported to be 76.36%, which is quite higher than the 

upland situation due to much more favorable environmental temperature (26°C–31.5°C), relative 

humidity (80%–99%), soil moisture (92%–97%), and soil temperature (23.5°C–28.2°C) in the 

lowland situation (Shukla et al. 2014). Infection of pods can occur even when they are green. But 

it remains quiescent until the pods start maturing. C. truncatum can thus establish latent infec

tion without showing any visible symptom in all seed components (Begum et al. 2008b). Thus, 

there appears to be a prevalence of latent infection of C. truncatum in soybean at R5.2 growth 

stage under Brazil conditions (Klingelfuss and Yorinori 2001). Consequently, the development 

of anthracnose after harvest on apparently healthy pods is from the incipient (latent) infection of 

the pods in the field. 

Virulence of the fungus varies with isolates indicating the existence of distinct strains of the 

pathogen. Soybean cultivars under natural conditions have been found to be affected by four 

isolates of C. truncatum (Glomerella tucumanensis) (Ct 1, Ct 2, Ct 3, and Ct 4). The frequency 

of isolate Ct 3 is reported to be higher on infected leaves and pods of cv. VLS 1 (Akhtar and 

Khalid 2008). 

DISEASES MANAGEMENT 

Host Plant Resistance 
Seedling test is useful to study host reaction to the pathogen (Costa et al. 2009). The inoculations at 

stage V1/V2 show differences in the reactions of cultivars when compared to the inoculations made 

at stage V5/V6. The high resistance at V5/V6 suggests a mechanism of resistance of adult plant 
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(Costa et al. 2006). There is evidence that the activity of phenolics and oxidizing enzymes increases 

in resistant soybean cultivars (Chandrasekaran et al. 2000d). A number of soybean genotypes such 

as Ceresia, Essor, Labrador, and Quito (Zwatz et al. 2000); Klaitur, PKV-1, MAUS 13, and Birsa 

(Gawade et al. 2009a); and Birsasoya-1 and JS (SH) 98-22 (Mahesha et al. 2009) have been shown 

to possess resistance reaction against the anthracnose disease. Among the aforementioned, Kalitur 

genotype appears to possess stable degree of resistance to anthracnose (Kumar and Dubey 2007). 

The most resistant soybean cultivars to damping phase of the disease are as follows: MSOY 8001, 

Conquista, MSOY 8400, Engopa, and Vencedora (Galli et  al. 2007). The resistance in cultivars 

P30-1-1, Lee, and Himso 333 is governed by single dominant genes that are nonallelic (Kaushal and 

Sood 2002). 

Chemical Control 
Fungicide treatments significantly reduce infection on the average by 20%–40%. Folicur (2.5 g 

tebuconazole/L), with 43% efficacy, can give the best protection against C. dematium (Zwatz 

et al. 2000). In years with particularly high disease pressure, yield increases of up to 20% have 

been achieved. Considering incremental cost–benefit ratio (ICBR), the most economical treat

ment that results in giving the highest CBR is the fungicide carbendazim (CBR, 1:14.45) fol

lowed by a combination of carbendazim + mancozeb (CBR, 1:8.92) (Jagtap et al. 2012a). Similar 

results with the use of carbendazim (0.1% spray) have been obtained in a separate study made 

by Gawade et al. (2009b). Thiophanate methyl should be used as the first choice fungicide to  

control soybean pod anthracnose, then pyrimethanil, tebuconazole, etc. Applying fungicide two 

times at the stage of flower beginning, flower flourish, or seed filling of soybean, the control effi

ciency of soybean pods appears to be significantly higher than applying fungicide one time at the 

same stage. Applying fungicide one time at the stage of flower beginning and flower flourish or 

seed filling of soybean, respectively, the control efficiency reaches more than 95% (Wang et al. 

2012b). Maximum grain yield (2425 kg/ha) has been obtained with propiconazole 0.05% treat

ment, which appears to be higher by 28.85% over unsprayed plants, and the differences on seed 

weight plant-1, 100 seed weight in healthy and infected plants, seem to be significant (Guldekar 

and Potdukhe 2010). Treatments with carbendazim (double application) and azoxystrobin (single 

application) have shown the lowest values of premature defoliation due to multiple foliar diseases 

including anthracnose, and the maximum yield increase could be obtained with single applica

tion of azoxystrobin (39.3%) and double application of carbendazim (32.4%) (Ploper et al. 2001). 

The best management of C. truncatum was obtained when the seeds were treated with fludioxo

nil + mefenoxam and thiabendazole + thiram. These treatments also contributed to improve 

the physiological performance of the seeds (Pereira et al. 2009). The application of thiophanate 

methyl resulted in the lowest incidence of pod blight caused by C.  truncatum (Chaudhary et al. 

2005). Propiconazole, Vitavax-200 (carboxin + thiram), at 100–400 ppm (Shovan et al. 2008), 

and azoxystrobin (Quadris) at 6–9 ounce (Padgett et al. 2003) are also effective in the manage

ment of the disease. 

Systemic Acquired Resistance 
Systemic acquired resistance (SAR) in soybean has been first reported following infection 

with C. truncatum that causes anthracnose disease (Sandhu et al. 2009). Pathogenesis-related 

(PR) gene GmPR1 is induced following the treatment of soybean plants with the SAR inducer, 

2,6-dichloroisonicotinic acid (INA). Soybean GmNPR1-1 and GmNPR1-2 genes show high 

identities to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated 

by GmNPR1 genes (Sandhu et al. 2009). Both total and ortho-dihydroxy phenolics contents are 

greater in the resistant cultivar JS 89-37 (Chandrasekaran et al. 2000d). Alum at 5% reduced 

pod blight infection up to 90%. Dipotassium hydrogen phosphate and potassium chloride reg

istered 75% and 65% reduction in pod blight infection over the control at 0.1%, respectively 

(Chandrasekaran et al. 2000a). 
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Biological Control 
T. harzianum shows significantly variable antagonism ranging from 50.93% to 89.44% reduction of  

the radial growth of C. dematium. Among the promising antagonists, the T3 isolate of T.  harzianum 
showed the highest (89.44%) inhibition of C. dematium radial growth (Shovan et al. 2008). Introduction 

of bacterized seeds carrying bacterial isolates with proven growth-promotion capabilities and antago

nistic characteristics offer a valid alternative to chemical protectants. FLP strains GRP3, PEn-4, PRS1, 

and WRS-24 when studied in relation to natural occurrence of anthracnose caused by C. dematium 
also result in significant control of the disease (Tripathi et al. 2006). Soybean seed treatment with the 

tested bioagents and Rizolex-T also reduce damping-off and increase the survival of plants under field 

conditions. Trichoderma lignorum and Trichoderma viride are reported to be more effective than other 

treatments as they give results as good as Rizolex-T. The aforementioned treatments also increase fresh 

weight, dry weight, number of pods/plant, number of seeds/plant, and weight of seeds/plant (Saber et al. 

2003). T. harzianum 5 inhibits the growth of C. truncatum (Chandrasekaran et al. 2000b). Bio-priming 

with P. aeruginosa or T. harzianum (by increased colony-forming units from 1.2 × 109 to 5.1 × 109 

seed-1 after 12 h of bio-priming.) offers an effective biological seed treatment system and an alternative 

to the fungicide Benlate for the control of damping-off of soybean caused by C. truncatum of soybean 

(Begum et al. 2010). Two fungal BCAs, namely, Trichoderma virens isolate UPM23 and T. harzianum 
isolate UPM40, and a bacterial BCA, namely, P. aeruginosa isolate UPM13B8, strongly inhibit the 

growth of C. truncatum (Begum et al. 2008), though T. viride and T. harzianum are reported to be 

equally effective in reducing the disease (Guldekar and Potdukhe 2010). 

Bacillus subtilis strains AP-3 and PRBS-1 isolated from soil samples of Paraná State, Brazil, have 

been found to be effective in inhibiting soybean seed–pathogenic fungi including C. truncatum, indi

cating their potential usefulness in the biological control of seed-borne infection of C. truncatum as 

well as in promoting soybean growth as the metabolites of AP-3 increase production of root hairs, while 

the metabolites of PRBS-1 stimulate the outgrowth of lateral roots in soybean (Araujo et al. 2005). 

Effect of Plant Extracts 
Aqueous leaf extract of garlic, tulsi and onion, ginger, and neem leaf extracts at about 20% concen

tration appears to be the best in inhibiting the radial growth and mycelial dry weight of the patho

gen (Shovan et al. 2008, Jagtap et al. 2012a); the 10% leaf extract of Lawsonia inermis also reduces 

anthracnose disease incidence significantly (Chandrasekaran et al. 2000a). Combined application of 

leaf extract of L. inermis (5%) with alum at 1% and 0.1% can give 100% reduction in pod blight infection 

(Chandrasekaran and Rajappan 2002). Seed treatment with alum (0.1%) + a foliar spray with L. inermis 
leaf extract (1%) + alum (0.1%) reduce leaf anthracnose and pod blight incidences by 7.0% and 4.2%, 

respectively, with a grain yield of 2191 kg/ha (Chandrasekaran et al. 2000b). Dry hot water extract of 

Berberis aristata, Boenninghausenia albiflora, and Lantana camara has been shown to be highly 

potent against C. truncatum (Arora and Kaushik 2003). Among the other botanicals tested, minimum 

percent disease intensity (15.34%) could be recorded in Trachyspermum ammi seed extract (5%). The 

antifungal activity of essential oils from Hortelã do Campo (Hyptis marrubioides), alfazema-do-Brasil 
(Aloysia gratissima), and erva-baleeira (Cordia verbenacea) has potential as alternatives to synthetic 

fungicides in the control of anthracnose in soybean seeds (da Silva et al. 2012a). 

Overall integrated disease management using all possible options is the best strategy in manage

ment of the anthracnose disease of soybean (Chandrasekaran et al. 2000c). 

ASIAN SOYBEAN RUST 

SYMPTOMS 

Two Phakopsora species are known to cause soybean rust. The more aggressive species is 

Phakopsora pachyrhizi, known as the Asian (or Australasian) soybean rust. Phakopsora meibo
miae, the less virulent species, has only been found in areas in the Western hemisphere, and it is not 
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known to cause severe yield losses in soybean. The focus of the disease description in this section 

is therefore on Asian soybean rust (ASR) caused by P. pachyrhizi. 
Early symptoms of ASR on the upper side of leaves consist of yellow spots that turn brown then 

become necrotic, surrounded by wide yellow areas, and chlorosis and brown flecking appear on the 

lower leaves in the canopy. The key diagnostic features of soybean rust are the cone-shaped angu

lar lesions limited by leaf veins (Figure 9.4). Often, the first lesions appear toward the base of the 

leaflet near the petiole and leaf veins. This part of the leaflet probably retains dew longer, making 

conditions more favorable for infection. Lesions enlarge and, 5–8 days after initial infection, rust 

pustules (uredia, syn. uredinia) become visible. Uredia develop more frequently in lesions on the 

lower surface of the leaf than on the upper surface (Figure 9.4). Lesions are scattered within yellow 

areas that appear see-through (translucent) if the affected leaves are held up to the sun. Even though 

the lesions are small, each lesion often has several pustules. The anamorphic sori (uredo pustules) 

Rust (Phakopsora pachyrhizi) 

(a) 

(b) 

FIGURE 9.4  Asian soybean rust. Note the angular-shaped lesion-like uredo pustules on the undersurface 

of soybean leaf. (a) Symptoms of rust on leaf. (b) Urediniosori on lower surface of leaf. (Courtesy of Dr. G.K. 

Gupta, ICAR-Directorate of Soybean Research, Indore, India.) 
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are amphigenous, circular, minute (about the size of a pinhead), pulverulent, whitish becoming pale 

cinnamon brown, scattered or in groups on discolored spots, subepidermal becoming erumpent, and 

cone like, which can be confused with another disease, bacterial pustule. The uredia open with a 

round ostiole through which uredospores are released (Goellner et al. 2010). Besides leaves, uredo 

pustules can also appear on petioles, stems, and even cotyledons, but most rust pustules occur on 

leaves. Tan lesions on lower leaf surfaces contain small pustules surrounded by a small zone of 

slightly discolored necrotic tissue. The color of the lesion is dependent on lesion age and interac

tion with the host genotype. RB lesions with little sporulation indicate a semicompatible reaction, 

whereas tan lesions with much sporulation indicate a fully compatible reaction. It is used to compare 

virulence of P. pachyrhizi isolates from Asia (Bonde et al. 2006). 

The symptoms may be observed at any time during the crop cycle but are more evident at or 

after flowering. The symptoms progress from lower to upper leaves. The symptoms develop further 

up the plant until all leaves were infected. As uredo pustules age, they may turn black because of 

the formation of a layer of teliospores in the pustules, turning pustules from uredinia into telia. 

Premature defoliation occur in infected plants. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

P. pachyrhizi is widespread in Asia and Oceania (but not in New Zealand). In the neotropics, 

another soybean rust fungus, P. meibomiae, occurs, which was once treated as synonymous with 

P. pachyrhizi but has now been taxonomically segregated (Ono et al. 1992). 

The fungus that causes ASR, P. pachyrhizi, originally described in Japan in 1902, spread rap

idly throughout Southeast Asia in the 1960s. It made a surprise appearance in Hawaii in 1994. 

It is thus apparent that ASR originated in tropical and subtropical regions of Asia and most likely 

spread to several African countries via wind currents. It appeared in Uganda in Africa in 1997, and 

in 2001, it was discovered in South America and moved north above the equator in 2004. Once it 

moved north of the equator, it moved to North America on wind currents. Now, soybean rust occurs 

in many countries throughout Africa including South Africa (Jarvie 2009), Asia including India 

(Hegde et al. 2002, Ramteke et al. 2003), and South and North America covering the United States 

(Goellner et al. 2010), Canada, and Mexico (Yanez Morales et al. 2009). After reports of its first 

occurrence in Brazil in 2001 and the continental United States in 2004, research on the disease and 

its pathogen has greatly increased (Vittal et al. 2012a). This disease destroys photosynthetic tissue 

and causes premature defoliation and, if untreated prior to the R6 growth stage, can result in severe 

yield reductions. 

Yield losses as high as 20%–80% have been reported, but the amount of loss depends on when 

the disease begins and how rapidly it progresses. Yield loss equations for the ASR pathosystem using 

disease intensity at different phenological stages of the crop by manipulating sowing dates have been 

developed. The variables area under disease progress curve (AUDPC) present high correlation with 

yield, and variations in the severity of disease between crops affected the relationship AUDPC × 

yield (Hikishima et al. 2010). In April 2009, a severe rust outbreak in soybean developed at pheno

logical stage R3 of the plants, leading to the complete defoliation (Pérez-Vicente et al. 2010). Yield 

losses due to the disease have been recorded to be in the range of 10%–90%, depending on the vari

eties used and local agroclimatic conditions (Sumartini 2010, Hegde and Mesta 2012). Predicting the 

time of rust appearance in a field is critical to determining the destructive potential of rusts. Mean 

rust-induced yield reductions have been estimated to be 67% when infection starts at R2 (full bloom) 

and 37% when infection takes place at R5 (beginning seed) growth stage (Kumudini et al. 2008). 

Yield loss increases during later sowing periods due to greater inoculum pressure hindering disease 

management and decreasing grain yield (Cruz et al. 2012, Akamatsu et al. 2013). 

Soybean rust has been one of the most important problems in the agribusiness of the most impor

tant soybean-producing countries in South America, mainly in Brazil. Since its first detection in 

Paraguay and in the state of Paraná, Brazil, in 2001, the Asian rust has spread to all parts of Paraguay, 
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Bolivia, most of Brazil, and parts of Argentina. In the following years (2002 and 2003), it caused an 

estimated 4.011 million tons grain losses or the equivalent to U.S. $884.425 million (Yorinori 2004, 

Yorinori and Lazzarotto 2004). It is also reported to be of severe occurrence in Taiwan and Vietnam 

depending on the conducive environmental conditions for disease development (Tran et al. 2013). 

When untreated, soybean rust causes yield losses due to premature defoliation, fewer seeds per pod, 

and decreased number of filled pods per plant. For example, it reduces the weight of grains per plant 

in susceptible soybean TGx 1950-8F by 94.6% in Nigeria (Ittah et al. 2011). 

The disease was reported at epidemic levels in Argentina (Pioli et al. 2005) and in Brazil in 

2003/2004 (Nascimento et  al. 2012, Roese et  al. 2012) and in 2009–2010 (Garces Fiallos and 

Forcelin 2011). The main phytosanitary problem related to soybean in Brazil is ASR (do Nascimento 

et al. 2012). 

The potential geographical distribution range of soybean rust may include most U.S. soybean 

production regions and that yield losses would be light in the north but moderate in the south if 

environmental conditions are conducive (Li and Yang 2009). ASR continues to spread across the 

southeast and midsouth regions of the United States (Luster et al. 2012). Immunodiagnostic assays 

using monoclonal antibodies have been developed to detect rust-infected soybeans and ASR spores 

from sentinel surveillance plots (Luster et al. 2012). 

PATHOGEN 

Soybean rust is caused by two species, P. pachyrhizi H. Sydow & P. Sydow and, less commonly, 

P. meibomiae (Arthur) Arthur. The latter species (P. meibomiae), commonly known as the cause 

of Latin American rust or legume rust, is found in the Western hemisphere and is not known to 

cause severe yield losses. In this section, most part of the subject matter is dealt with ASR caused 

by P. pachyrhizi. 

Classification 
Domain: Eukaryota 

Kingdom: Fungi 

Phylum: Basidiomycota 

Subphylum: Pucciniomycotina 

Class: Pucciniomycetes 

Order: Pucciniales 

Family: Phakopsoraceae 

Genus: Phakopsora 
Species: pachyrhizi 

P. pachyrhizi is believed to have a microcyclic heteroecious life cycle, producing only uredinia 

and telia. Stage 0 = pycnial (spermitia) stage and Stage I = aecial stage (aecial spores) have not 

been found; Stage II = uredinial stage (uredinial spores) is quite common; Stage III = teleuto stage 

(teleutospores) can be observed but not common; and Stage IV = basidial sage (basidia or sporidia) 

is not identified. 

The uredinia are pustular and open with a round ostiole through which uredospores are 

released (Goellner et al. 2010). Each pustule contains hundreds of spores. The urediniospores are 

almost sessile, obovoid to broadly ellipsoid, and 18–34 × 15–24 μm. The spore wall is uniformly 

ca 1 μm thick, minutely and densely echinulate, and colorless to pale yellowish brown. This 

coloration is different from many other rust pathogens whose spores are often reddish brown 

(rust colored). Four to eight (mostly 6, rarely 2–10) germ pores are equatorial or scattered on 

the equatorial zone or occasionally scattered on and above the equatorial zone of the spore wall. 

Germination of P. pachyrhizi urediniospores occurs through an equatorial (central) pore, pro

ducing a germ tube that ends in an appressorium, which the fungus uses to penetrate the host 

directly or through a stoma. 
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The pathogen is known almost exclusively by its uredinial stage, and there are only a few records, 

mainly from Argentina of the occurrence of telial stage. This is thought to be the first report of 

epidemiological and morphological characterization of ASR in Argentina and the first report of the 

telial stage of P. pachyrhizi on soybean in South America (Carmona et al. 2005). In case the telia 

are formed, telia are found on infected leaves intermixed with uredinia in old lesions. Teliospores 

measure 9 × 23.8 μm on average. Telia are hypophyllus, pulvinate and crustose, chestnut brown to 

chocolate brown, subepidermal in origin, and 2- to 7-spore layered. The teliospores are one celled, 

irregularly arranged, angularly subglobose, oblong to ellipsoid, and 15–26 × 6–12 μm. The wall 

is uniformly ca 1 μm thick, sometimes slightly thickened (up to 3 μm) apically in the uppermost 

spores, and colorless to pale yellowish brown and these have never been shown to germinate (Ono 

et al. 1992). In fact, the causal agents of soybean rust are two closely related fungi, P. pachyrhizi 
and P. meibomiae, which are differentiated based upon morphological characteristics of the telia. 

P. pachyrhizi originated in Asia–Australia, whereas the less aggressive P. meibomiae originated in 

Latin America (Goellner et al. 2010). Twenty-four simple sequence repeat (SSR) markers have been 

developed for P. pachyrhizi (Anderson et al. 2008). The molecular characterization of the pathogen 

is possible by PCR. Determination of the nucleotide sequence of the internal transcribed spacer 

(ITS) region reveals greater than 99% nucleotide sequence similarity among isolates of either 

P. pachyrhizi or P. meibomiae, but there is only 80% sequence similarity between the two species. 

Utilizing differences within the ITS region, four sets of polymerase chain reaction (PCR) primers 

have been designed specifically for P. pachyrhizi (Frederick et al. 2002). 

Since sporidia, spermogonia, and aecia are not yet known and also if any alternate host is 

involved, the role of teleuto spores in the life cycle of the pathogen is not completely understood. It 

seems that urediniospores are the main, if not the only, means of dissemination and spread of the 

disease. 

Considering the lack of a known sexual stage of P. pachyrhizi, hyphal anastomosis followed by the 

parasexual cycle may explain the genetic diversity in virulence among populations of P. pachyrhizi 
(Vittal et al. 2012b). This study establishes a baseline of pathogenic variation of P. pachyrhizi in the 

United States that can be further compared with variation reported in other regions of the world and 

in future studies that monitor P. pachyrhizi virulence with regard to deployment of rust resistance 

genes (Twizeyimana and Hartman 2012). Detailed information on the taxonomy and molecular 

biology of the pathogen has been reviewed (Goellner et al. 2010). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Soybean rust pathogen is known to naturally infect 95 species from 42 genera of legumes,  inclusive 

of important weed species like Kudzu vine (Pueraria lobata) and major crop species such as 

 common bean (Phaseolus vulgaris). Such a broad host range is unusual among rust pathogens that 

normally have a narrow host range. The significance of the numerous alternative host possibilities 

for the soybean rust pathogen is that these may serve as an inoculum reservoir or a green bridge 
from one soybean planting season to the next (Jarvie 2009, Goellner et al. 2010). Alternative hosts 

are not to be confused with alternate host, which is a plant other than the principal host that is 

needed for a pathogen to complete its life cycle. In frost-free areas, such as South America, Central 

America, the Caribbean basin, southern Texas, and Florida, the inoculum source could be nearby 

on volunteer soybean plants, kudzu, or some other alternative host. In areas that experience frost, 

such as the Midwestern United States, inoculum must be blown in from overwintering sources that 

may be hundreds of miles away. The climatic and environmental factors are important in determin

ing the development of ASR (Young et al. 2011). Temperature highs common to southeastern states 

are a factor in the delay or absence of soybean rust in much of the United States. For example, the 

highest numbers of urediniospores are produced when day temperatures peaked at 21°C or 25°C 

and night temperatures dipped to 8°C or 12°C (Bonde et al. 2012). 
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In warm regions, the host species particularly Kudzu vine (P. lobata) may harbor the fungus 

throughout the year or during seasons in which soybeans are not cultivated and may serve as the 

primary infection source. Kudzu (Pueraria spp.) is thus an accessory ASR (caused by P. pachyrhizi) 
that is widespread throughout the southeastern United States (Jordan et al. 2010). 

In colder regions where aboveground parts of annual hosts die during winter, no source of new 

infections in the soybean-growing season has been identified. Soybean rust is sensitive to freez

ing temperatures and it will not survive anywhere that has adequate cold temperatures to kill off 

all vegetation. However, low temperature does not seem to be a limiting factor for the survival of 

P. pachyrhizi and that urediniospores could survive on volunteer plants until new soybean plants 

grow (Formento and de Souza 2006). ASR can only survive for extended periods of time on live 

host tissue. Therefore, it cannot overwinter anywhere above the freeze line (approximately Tampa 

Bay, Florida) since its primary hosts, kudzu and soybean, will be dead and defoliated. As such, it 

will have to blow into such areas each year to cause disease on soybean crops. Each year, inoculum 

(rust spores) must blow in from infected areas such as South Florida, Mexico, or South America to 

start the disease over again in the Southeastern United States. Over long distances, P. pachyrhizi is 

mainly spread by wind-borne spores (e.g., in the United States, it is considered that Hurricane Ivan 

transported it from South America to southern United States). Infections and sporulation by ASR 

are favored by cooler, wet weather. Hot dry weather will stop the spread of the fungus. P. pachyrhizi 
is unusual in that it penetrates from urediniospores directly through the leaf cuticle without  entering 

stomata. This unusual mode of penetration suggests that disease resistance  mechanisms might 

exist for  soybean rust that does not exist for most rust diseases. P. pachyrhizi utilizes primarily 

mechanical force, perhaps with the aid of digestive enzymes, to penetrate the cuticle on the leaf 

surface. However, the lack of deformation lines in micrographs indicate that digestive enzymes, 

without mechanical force, are used by the penetration hypha to penetrate the outer and inner epi

dermal cell walls (Edwards and Bonde 2011). The germination of the uredospores on the soybean 

leaves occur after 2 h of wetness, with a maximum germination appearing after 4 h of wetness. 

Wetness interruption affects mainly the spores that initiate the germination (Furtado et al. 2011). 

Successful infection further is dependent on the availability of moisture on plant surfaces. At least 

6 h of free moisture is needed for infection with maximum infections occurring with 10–12 h of 

free moisture. The development of the disease needs high humidity (>95%) and optimal tempera

ture for infection process, that is, 15°C–28°C. This temperature range commonly occurred in the 

dry season; therefore, rust disease often attacked soybean in the dry season (Nunkumar et al. 2009, 

Sumartini 2010, Alves et al. 2011, Mesquini et al. 2011). Urediniospores of the pathogen remain 

viable during the 11 weeks of storage; the germination of the urediniospores and the severity of 

ASR are reduced after 3 weeks of storage, and the urediniospores stored at 20°C (plus or minus 

2 degrees)  for up to 11 weeks are able to cause disease in soybean plants (Beledelli et al. 2012). 

This study indicates that extended periods of leaf wetness (18 h) increase disease severity and the 

rate of spread of the disease in the upper canopy. These results, in combination with spore monitor

ing, may be used to refine models of pathogen reproduction, prediction, and risk in certain regions 

(Narvaez et al. 2010). 

Spore germination in the dark (40.7%) is found to be statistically different from spore germina

tion in the light (28.5%). The same effect can be observed with appressorium formation, in the dark 

(24.7%) and in the light (12.8%) (Furtado et al. 2009). The dark incubation period of 8–16 h and light 

intensity of 600–400 lux (lx) are favorable for the infection of soybean rust urediospores. The infec

tion of soybean rust can be reduced gradually with extended or shortened dark incubation period. 

The infection rate of the urediospores also decreases gradually with the light intensity increasing 

or decreasing. Higher light intensity (>3000 lx) or lower light intensity (<200 lx) is disadvantageous 

for the infection of the urediospores and it is advantageous for the infection of the urediospores with 

the light intensity changing to the favorable light intensity from the higher or lower light intensity 

(Mo et al. 2008). 
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Rain events are the most dominant cause of wetness in the lower canopy. It is revealed that a 

majority of the wet deposited P. pachyrhizi urediniospores would be removed from soybean leaf 

surfaces by subsequent rainfall, but sufficient percentages of spores (10%–25%) will likely remain 

on the leaf tissue long enough to germinate and infect during heavy summer rains lasting ≥30 min 

(Dufault et al. 2010b). 

The uredinial stage is the repeating stage. This means that urediniospores can infect the same 

host on which they are produced (soybean) during the same season. The quantity of urediniospores 

over the crop fields is positively correlated to the disease severity and incidence as well as to cumu

lative rainfall and favorable days for P. pachyrhizi infection (Nascimento et al. 2012). Epidemics can 

develop quickly from only a few pustules because spore-producing pustules will develop within a 

week to 10 days after infection, and hundreds of spores are produced after about 3 weeks. For rust 

to be damaging, first infections will probably have to occur before the R3 stage of soybean devel

opment. Among other environmental factors, sunlight intensity negatively affects P. pachyrhizi 
biology with possible effects on disease epidemiology. Field observations suggest that higher dis

ease severity occurs in shaded environments, such as on soybean leaves in the lower canopy and 

kudzu leaves under trees, compared with open ground. Soybean rust is more severe in the lower 

canopy and shaded (20% sunlight) areas, shade duration being at least 2 days (Dias et al. 2011). 

Though row spacing and rainfall intensity do not show significant effect on the vertical distribu

tion of uredinia throughout the soybean canopy, approximately half of the urediniospores can be 

retained within the upper portion of the soybean canopy, and the other half are distributed between 

the mid- and low-canopy sections (Dufault et al. 2010a). 

On average, severe ASR epidemics develop when 18 cloudy days are observed after disease 

onset, and mild epidemics occur when only 8 cloudy days are observed. In four growing seasons 

in Brazil and two in the United States, the progress of ASR epidemics does not follow a wavelike 

pattern, and it results in an exponential distribution of distances to disease locations over time with 

variable monthly expansion rates. The disease front reach 500 km distance from major inoculum 

sources after 3 months similarly in both countries. Greater solar radiation intensity is associated 

with delays in epidemic onset and this knowledge may be useful to improve risk assessments for 

seasonal ASR epidemics. Variability in disease development across canopy heights in early-planted 

soybean may be attributed to the effects of solar radiation not only on urediniospore viability but 

also on plant height, leaf area index, and epicuticular wax, which influence disease development of 

SBR. These results provide an understanding of the effect solar radiation has on the progression of 

SBR within the soybean canopy (Young et al. 2012). 

The studies made by Ponte et  al. (2006) highlight the importance of rainfall in influencing 

soybean rust epidemics in Brazil, as well as its potential use to provide quantitative risk assessments 

and seasonal forecasts for soybean rust, especially for regions where temperature is not a limiting 

factor for disease development. Temperature variables show lower correlation with disease severity 

compared with rainfall and has minimal predictive value for final disease severity. 

Factors that both increase and decrease the risk for ASR epidemics could be prevalent in the 

United States (Pivonia et al. 2005, Smith 2005), Brazil (Yorinori et al. 2005), Paraguay (Yorinori 

et al. 2005), and South Africa (Levy 2005). In the United States, soybean rust disease predictions are 

made on a daily basis for up to 7 days in advance using forecast data from the United States National 

Weather Service (Tao et al. 2009). Using microsatellite markers, genetic variability in P. pachyrhizi 
spore populations indicates that vertical genetic resistance, provided by single genes, is a risky strat

egy for soybean breeding programs that aim resistance to ASR (Tschurtschenthaler et al. 2012). 

P. pachyrhizi, the soybean rust pathogen, overwinters on kudzu in the southern United States. 

However, even with severely affected kudzu adjacent to soybean fields, disease symptoms do 

not occur on soybeans until plants are in midreproductive stages of growth during mid- to late 

summer. These observations suggest that soybeans are exposed to airborne inoculum of the patho

gen long before symptoms occur, and it is hypothesized that these plants may be latently infected 

(Ward et al. 2012). Soybeans can become infected by the rust pathogen during early stages of plant 
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growth, but symptoms often develop during the midreproductive stages. This extended latent infec

tion period may be an optimum time for fungicide applications. 

Surveys of virulence of pathogen population have been carried out in Asia, South America, 

and the United States for many years, and these studies have identified a wide range of races of 

P. pachyrhizi, by their interaction reaction on a set of differential lines of soybean having five 

specific genes Rpp1, Rpp2, Rpp3, Rpp4, and Rpp5 for rust resistance and two universal susceptible 

cultivars (Yamaoka et al. 2002, 2011, Pham et al. 2009). ASR resistance genes (Rpp1, Rpp2, Rpp3, 

Rpp4, Rpp5, and Rpp5) are genotyped with five single nucleotide polymorphism (SNP) markers 

(Monteros et al. 2010). Based on this study, a total of 16 soybean genotypes including cultivars and 

lines have been selected as a differential set to test the virulence of soybean rust populations from 

three South American countries, Argentina, Brazil, and Paraguay. Nine differentials are reported to 

carry resistance to P. pachyrhizi (Rpp) genes (Table 9.1). 

Of the known Rpp1-4 sources of resistance, plant introduction (PI) 459025B (Rpp4) produces 

RB lesions in response to all of the P. pachyrhizi isolates, while PI 230970 (Rpp2) produces RB 

lesions to all isolates except one from Taiwan, in response to which it produces a susceptible tan 

(TAN) lesion. PI 200492 (Rpp1) and PI 462312 (Rpp3) produce TAN lesions in response to most 

P. pachyrhizi isolates (Pham et al. 2009). 

This work will be useful in breeding and management of soybean rust by facilitating the iden

tification of resistant genotypes and targeting cultivars with specific resistance to match prevailing 

P. pachyrhizi pathotypes in a given geographical zone (Twizeyimana et al. 2009). 

The regional dynamics of soybean rust, caused by P. pachyrhizi, in six southeastern states 

(Florida, Georgia, Alabama, South Carolina, North Carolina, and Virginia) in 2005 and 2006 could 

be analyzed based on disease records collected as part of U.S. Department of Agriculture’s soybean 

rust surveillance and monitoring program. Regional spread of soybean rust may be limited by the 

slow disease progress on kudzu during the first half of the year combined with the short period 

available for disease establishment on soybean during the vulnerable phase of host reproductive 

development, although low inoculum availability in 2005 and dry conditions in 2006 also may have 

reduced epidemic potential (Christiano and Scherm 2007). 

TABLE 9.1 
Asian Soybean Rust Differential Hosts 

Differential Resistance Genera Origin 

1. PI 200492 Rpp1 Japan 

2. PI 368039 Rpp1 Taiwan 

3. PI230970 Rpp2 Japan 

4. PI417125 Rpp2 Japan 

5. PI462312 Rpp3 India 

6. PI459025 Rpp4 China 

7. Shiranui Rpp5 Japan 

8. PI416764 ND Japan 

9. PI587855 ND China 

10. PI587880A Rpp1 China 

11. PI587886 Rpp1 China 

12. PI587905 ND China 

13. PI594767A ND China 

14. BRS 154 ND Brazil 

15. TKS ND Taiwan 

16. Wayne ND United States 

a Rpp1–Rpp5 have been mapped to different loci; ND, not determined. 
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DISEASE MANAGEMENT 

Host Plant Resistance 
High levels of ASR resistance are usually associated with one or a few dominant genes. Six 

dominant resistance genes (Rpp) as Rpp1 (in genotypes PI 200692, PI 200492, PI 3680390), Rpp2 

(in genotypes PI 230970, PI 417125), Rpp3 (in genotype PI 462312 Ankur), Rpp4 (in genotype PI 

459025 B), Rpp5 (in genotype Shiranui), and Rpp6 (in genotype PI 567102B) have been identi

fied as capable of conferring ASR resistance in soybean and these have been mapped to different 

loci (Ivancovich 2008, Meyer et  al. 2009, Schneider et  al. 2011, Maphosa et  al. 2012a, Morales 

et al. 2012). For example, genotypes PI 200492, PI 561356, PI 587886, and PI 587880A have been 

analyzed to identify SNP haplotypes within the region on soybean chromosome 18 where the single 

dominant ASR resistance gene Rpp1 maps, whereas ASR resistance in PI 594538A is governed 

by Rpp1-b gene (Monteros et al. 2010, Kim et al. 2012). Dominant alleles at three loci condition

ing resistance to soybean rust races have been found in Nigeria and the symbols for the three loci 

controlling resistance to rust in soybean are designated as Rsbr1, Rsbr2, and Rsbr3 (resistance to 

soybean rust) (Iwo et al. 2012). Differential proteomic analysis of proteins involved in resistance to 

ASR has been done for understanding the host responses at the molecular level for effective control 

of the disease (Wang et al. 2012a). 

While these dominant genes confer high levels of resistance and are relatively easy to incorpo

rate into new soybean cultivars, they are not effective against all races of P. pachyrhizi. Deployment 

of varieties with new resistance genes is usually followed in a few years by the emergence of races of 

P. pachyrhizi that are virulent on them. This high degree of variability in the soybean rust pathogen 

is common in many rusts and requires the frequent discovery and incorporation of new sources of 

resistance. Currently, isolates of P. pachyrhizi exist that are virulent on each of the six known genes 

for resistance. 

To select germplasm with levels of resistance to soybean rust, a differentiation must be made 

between the kinds of lesions on the leaves that are classified into three basic types: the resistant 

genotypes show RB nonsporulating pustules, whereas the moderately resistant genotypes show 

rectangular, RB sporulating pustules. The susceptible genotypes exhibit TAN-type gray sporulat

ing pustules of light to medium density on all leaves, and premature defoliation is much common in 

these genotypes (Paul et al. 2011). The utility of detached-leaf assay for screening large number of 

genotypes soybean for rust resistance has been demonstrated (Twizeyimana et al. 2007) and that a 

determination of numbers and sizes of uredinia will detect both major gene and partial resistance 

to soybean rust (Bonde et al. 2006). Cell wall lignifications are markedly higher in inoculated resis

tant lines compared with inoculated susceptible lines, indicating a possible protective role of lignin 

in rust infection development in resistant soybean lines (Lygin et al. 2009, Schneider et al. 2011). 

Since the resistant genotype forms significantly lower lesion area, the reduced disease severity and 

the lack of sporulation in the resistant genotype will likely minimize the impact of the disease on 

canopy photosynthesis and yield (Kumudini et al. 2010). 

The Asian Vegetable Research and Development Center (AVRDC) and several national agricul

tural research and educational institutions in Taiwan have conducted research to incorporate rust  

(P. pachyrhizi) resistance in soybean. Most races of rust in Taiwan produce TAN-type, profusely  

sporulating lesions and the predominant rust races are complex. Screening of germplasms initially  

resulted in three resistant lines, namely, PI 200492, PI 200490, and PI 200451. Consequently, 

PI 200492 has been used to develop three improved rust-resistant cultivars, namely, Tainung 3, 

Tainung 4, and Kaohsiung 3 in 1967, 1970, and 1971, respectively. Further screening of germ

plasms by AVRDC showed G 8586 (PI 230970), G 8587 (PI 230971), PI 459024, PI 459025, and 

G. soja (PI 339871) to be resistant. In subsequent years, all the aforementioned germplasms have 

been observed to be susceptible to rust, apparently due to new races of the pathogen. Recognizing  

the ineffectiveness of single gene resistance, AVRDC conducted research on rate-reducing and 

partial resistance and tolerance. A combination of genotypes combining the aforementioned three 
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strategies can withstand rust and give higher yield. The resistant and tolerant materials appear 

promising in India, Africa, and Latin America (Table 9.2). AVRDC’s germplasms are available to 

any scientist who needs soybean rust-resistant/tolerant materials (Shanmugasundaram et al. 2004). 

Soybean lines having resistant reactions to U.S., Brazil, and Paraguay isolates may be important 

sources for developing elite cultivars with broad resistance to ASR (Li 2009). Soybean major and minor 

rust-resistant genes showing predominantly additive effects are dispersed among parents and it is pos

sible to select inbred lines superior to the best yielding parent from most crosses (Ribeiro et al. 2007). 

The threat posed by soybean rust on soybean production is worsened by resistance breakdown 

associated with single gene resistance present in most cultivars. The marker gene pyramiding 

involving gene combination for three independent soybean rust resistance genes, Rpp2, Rpp3, and 

Rpp4 is feasible and can substantially increase resistance to soybean rust through reduced severity 

and reduced sporulating lesions (Maphosa et al. 2012a). Soybean genotype UG 5 as parental line has 

been proved to be the most outstanding one producing the greatest number of resistant populations 

underscoring the importance of additive gene effects in the control of soybean rust severity and 

sporulation rate (Maphosa et al. 2012b). 

There are differences in virulence among Asian and Brazilian and the Japanese rust populations 

and should be considered in order to select and use resistant resources. The number of resistant 

varieties or resistance genes useful in these countries appear limited. Therefore, a resistant cultivar 

that is universally effective against soybean rust should be developed by pyramiding some major 

resistance genes and by introducing horizontal resistance (Yamanaka et al. 2010). 

An-76, a line carrying two resistance genes (Rpp2 and Rpp4), and Kinoshita, a cultivar carrying 

Rpp5, could contribute differently to resistance to soybean rust and that genetic background plays 

an important role in Rpp2 activity. All three loci together work additively to increase resistance 

when they were pyramided in a single genotype indicating that the pyramiding strategy is one good 

breeding strategy to increase soybean rust resistance (Lemos et al. 2011, Kendrick et al. 2011). 

The soybean cultivar Ankur (accession PI462312), which carries the Rpp3 resistance gene, when 

interacts with avirulent isolate Hawaii 94-1 of P. pachyrhizi, elicits hypersensitive cell death that 

limits the fungal growth on Ankur and results in an incompatible response (Schneider et al. 2011). 

Some soybean mutant lines obtained through seed irradiation using gamma rays (10–30 kR) and 

ethyl methanesulfonate (0.4%–0.8%) have been found to show improved rust resistance in India 

(Basavaraja et al. 2004). 

Quantitative PCR (QPCR) assay of fungal DNA (FDNA) screening technique demonstrates its 

use to distinguish different types of resistance and could be used to facilitate the evaluation of soy

bean breeding populations, where precise quantification of incomplete and/or partial resistance is 

needed to identify and map quantitative trait loci (QTL) (Paul et al. 2011). 

Molecular Breeding for Rust Resistance 
A biotechnological approach may help to broaden resistance of soybean to this fungus. Molecular 

breeding is considered as a feasible method to improve soybean rust resistance and minimize the 

adverse effects from overuse fungicides. QPCR assay of FDNA screening technique demonstrates 

its use to distinguish different types of resistance and could be used to facilitate the evaluation of 

soybean breeding populations, where precise quantification of incomplete and/or partial resistance 

is needed to identify and map QTL (Paul et al. 2011). 

Molecular markers in a backcross breeding program to introgress the Rpp5 gene of ASR resis

tance into HL203, an elite Vietnamese soybean variety, have been used (Tran et al. 2013), and a 

new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP) leaves 

has been cloned; CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act 

in plant cell defense as xylanase inhibitors. Its role on inhibiting the germination of fungal spores 

makes it an eligible candidate gene for the control of Asian rust (Vasconcelos et al. 2011). 

Two peptides, Sp2 and Sp39, have been identified that inhibit urediniospore germ tube devel

opment when displayed as fusions with the coat protein of M13 phage or as fusions with maize 
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cytokinin oxidase/dehydrogenase (ZmCKX1); when peptides Sp2 and Sp39 in either format are 

mixed with urediniospores and inoculated to soybean leaves with an 8 h wetness period, rust 

lesion  development is reduced. Peptides Sp2 and Sp39, displayed on ZmCKX1, are found to 

interact with a 20 kDa protein derived from germinated urediniospores incorporating peptides 

that inhibit  pathogen development and pathogenesis. Such molecular breeding programs may 

contribute to the development of soybean cultivars with improved, durable rust tolerance (Fang 

et al. 2010). 

Chemical Control 
Factors such as recent weather conditions, proximity to sources of ASR, cost of available prod

ucts, and an estimate of a crops yield potential should be considered when choosing a fungicide 

program. An immunofluorescence technique in combination with propidium iodide (PI) staining– 

counterstaining has been developed to specifically detect viable P. pachyrhizi urediniospores. The 

method is rapid and reliable, with a potential for application in forecasting soybean rust based on the 

detection of viable urediniospores (Vittal et al. 2012b). This system of detection has been touted for 

use as a potential warning system to recommend early applications of fungicides. 

The fungicides used to control ASR include the following: triazoles (cyproconazole, difenocon

azole, epoxiconazole, tebuconazole) and strobilurins (azoxystrobin, pyraclostrobin, and trifloxys

trobin). The treatments with these fungicides can control the disease showing severity average lower 

than 2, without difference among them (Soares et al. 2004, Gasparetto et al. 2011, Araujo et al.  

2012, Debortoli et al. 2012, Doreto et al. 2012, Pogetto et al. 2012). Applications of triazole and 

triazole + strobilurin fungicides result in lower rust severity and higher yields compared with other 

fungicides. The strobilurin fungicides provide the highest yields in many locations; however, sever

ity tends to be higher than that of the triazole fungicide. These fungicides are among the most 

effective for managing soybean rust and maintaining yield over most locations (Miles et al. 2007, 

Rezende and Juliatti 2010). The combination of azoxystrobin + cyproconazole or picoxystrobin + 

cyproconazole is reported to be the most efficient treatment when plants are foliar sprayed with the 

fungicide mixture at GS R3 and/or GS R5 resulting in the lowest AUDPC values and highest yields 

with a few exceptions (Mueller et al. 2009, Scherm et al. 2009). 

Crop yield increase up to 26.9%, 33.3%, and 38.9% with the application of mancozeb, triforine, 

and tebuconazole, respectively, under the weekly, 2-weekly, and 3-weekly spray schedules, has been 

obtained with the highest economic return for mancozeb (Kawuki et al. 2002). Two sprays of triad

imefon (Bayleton at 0.1%) are also very effective, as these can completely control the rust infection 

and increase the yield (32%) over the control. Tilt [propiconazole] when sprayed significantly results 

in rust control with increase in yield (Khot et al. 2007). 

Substances added to the suspension or solutions of fungicides, such as adjuvants (NimbusReg), 

can influence the fungicide efficacy (Nascimento et al. 2012). The leaf area indices of soybean culti

vars influence fungicide drop deposition and fungicide penetration into canopy resulting in the effi

ciency fungicide application for rust disease control, the fungicide applications being accomplished 

most successfully in R1 and R4 growth stages (Tormen et al. 2012). 

A premix of 60 g azoxystrobin/ha + 24 g cyproconazole/ha when applied at R2 and R5 has been 

found to be the most efficient treatment in reducing rust severity and AUDPC and increasing yield 

by 50% (Godoy et al. 2009). 

The demethylation inhibitor fungicide myclobutanil can be an effective component of spray pro

grams designed to control the ASR. High degree of xylem systemicity is displayed by myclobutanil 

in soybean foliage and is a contributory factor toward its commercial effectiveness for the control of 

ASR (Kemmitt et al. 2008). Fungicides containing protective and curative properties like Silvacur 

Combi 30 SC and other triazole classes of fungicides could be applied at the first detection of soy

bean rust symptoms on lower trifoliate leaves. The disease seems to affect soybean after flowering, 

about 55 days after planting, and mainly during January to March when the weather is cool and 

moist (Sinha and Reyes 2009). 
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TABLE 9.2 
Soybean Genotypes Resistant (R) or Moderately Resistant (MR) to Asian Soybean Rust 
(ASBR) as Reported from Different Countries in the World
 

Genotype Country R/MR/Genes Reference(s) 


DS 228 and DS 227 India R Khot et al. (2010) 

PI 567099A Paraguay R (recessive at the Rpp3 Ray et al. (2011) 

locus) 

Hyuuga, PI 462312 (Ankur) United States R (Rpp3), (Rpp5) Kendrick et al. (2011) 

(Rpp3) and PI 506764 

(Hyuuga), PI 417089B (Kuro 

daizu 

PI 567104B United States R (Rpp genes) Walker et al. (2011) 

PI 230970 (Rpp2), PI 459025B United States R/MR (Rpp2, Rpp4, Miles et al. (2011) 

(Rpp4), PI 594538A (Rpp1b), Rpp1b) 

PI 561356 

PI 594760B, TMG06_0011, United States R Garcia et al. (2011) 

TMG06_0012 

USP 97-08135 Brazil MR Araujo and Vello (2010) 

PI 398998, PI 437323, and Vietnam R Pham et al. (2010) 

PI 549017, PI 230970 (Rpp2) 

(PI459025B) United States R (Rpp4C4) Meyer et al. (2009) 

BR01-18437 inbred line Brazil R (as parental line) Ribeiro et al. (2009) 

EC241778 and EC241780 India R Ammajamma and Patil 

(2009) 

MNG 10.3 MNG 3.26 Uganda R Oloka et al. (2009) 

Williams 82 (Rpp1) United States R Paul and Hartman (2009) 

GC00138-29, the cross Uganda R Kiryowa et al. (2008) 

GC00138-29 × Wondersoya 

PI 587886 and PI 587880A United States R Ray et al. (2009) 

PI 567102B, PI 200492 (Rpp1), United States R Li (2009) 

PI 230970 (Rpp2), PI 462312 

(Rpp3), and PI 459025B (Rpp4) 

PI594538A, PI 200492 United States R Chakraborty et al. (2009) 

EC 241778, EC 241780 India R Patil and Ammajamma 

(2006) 

G 33, G 8527, G8586, G 8587, Uganda R/MR Oloka et al. (2008) 

GC 60020-8-7-7-18, GC 

87016-11-B-2, GC 87021-26

B-1, SRE-D-14A, SRE-D-14B, 

and SS 86045-23-2 

PI 200456 and PI 224270 United States R Calvo et al. (2008) 

PI567102B United States R Li and Young (2009) 

Cristalina and IAC 100 Brazil MR (high partial R) Martins et al. (2007) 

Lu Pi Dou and Hei Dou China Leaf-yellowing prevention Yamanaka et al. (2011) 

characteristic 

Emgopa 313 and Monsoy 8211 Brazil R Azevedo et al. (2007) 

Breeding lines: TGx 1835-10E, Nigeria, United States, R Twizeyimana et al. (2008) 

TGx 1895-50F, and TGx Uganda 

1903-3F and Accessions 

(PI 594538A, PI 417089A, and 

UG-5) 

(Continued) 
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TABLE 9.2 (Continued ) 
Soybean Genotypes Resistant (R) or Moderately Resistant (MR) to Asian Soybean Rust 
(ASBR) as Reported from Different Countries in the World 

Genotype Country R/MR/Genes Reference(s) 

PI 379618TC1, PI 417115, PI Brazil R Costamilan et al. (2008) 

423956, and the Shiranui and 

Kinoshita (PI 200487) 

BRS 134, BRSMS Bacuri, CS Brazil R (RB-type lesion) Arias et al. (2008) 

201, FT-17, FT-2, IACpl1, KIS 

601, and OCEPAR 7 

PI 506863, PI 567341, and Paraguay R Miles et al. (2008) 

PI 567351B, PI 181456, 

PI 398288, PI 404134B, and 

PI 507305, PI 587886, 

PI 587880A, and PI 587880B, 

PI 587905 and PI 605779E, 

PI 594754, PI 605833, 

PI 576102B, and PI 567104B 

EC 241778 and EC 241780 United States R Patil et al. (2004) 

MNG 7.13, MNG 8.10, and Sub-Saharan Africa R Tukamuhabwa et al. (2012) 

MNG 1.6 and worldwide 

EC 325115, EC 251378, EC United States MR Patil et al. (2004) 

389149, EC 432536, EC 

241760, and EC 333917 

Ankur, PK 1029, TS 98-21, India R Rahangdale and Raut (2004) 

EC 389160, and EC 389165 

JS 19, RPSP-728 and PK 838 India R Verma et al. (2004)
 

Early TGx 1835-10E, late TGx Uganda MR Kawuki et al. (2004)
 

1838-5E 

EC 389160, EC 393230, and India R Rahangdale and Raut (2003)
 

TS 98-21 

PI 567102B, PI 200492 (Rpp1), Paraguay R Li (2009)
 

PI 230970 (Rpp2), PI 462312 

(Rpp3), and PI 459025B 

(Rpp4) 

EC241780 India R Shivakumar et al. (2011) 

TGx 1805-1F, TGx 1951-3F, Nigeria Highly R Ittah et al. (2011) 

TGx 1935-3F, and TGx 

1972-1F 

TGx 1949-8F, TGx 1935-5F, Nigeria R Ittah et al. (2011) 

TGx 1448-2F, TGx 1965-7F, 

and TGx 1936-2F 

EC-241778 and EC-241780 India R Parameshwar et al. (2012) 

EC 241780, EC 456573(A), EC India R Kurundkar et al. (2011) 

456580, EC 427283, EC 

481454, EC 457172, EC 

481441, and EC 457266(Ku) 

TGx1987-62F, TGx1935-3F, Nigeria Nigeria (IITA) Iwo et al. (2012) 

TGx1951-3F, TGx1936-2F, 

TGx1987-10F, TGx1972-1F, 

and TGx1949-8F 
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Three sprays of hexaconazole alone reduce rust disease severity considerably to higher level and 

result in significantly higher seed yield (24.79 q/ha), 100 seed weight (14.37), and the inclusion of 

nimbecidine in the spray schedule not only is more useful in reducing the cost of protection but also 

gives higher benefits in addition to giving insurance against resistance development by the fungus 

against hexaconazole (Hegde and Mesta 2012). Combined with the organosilicone adjuvant, Silwet 

L-77 plus fungicide pyraclostrobin + epoxiconazole contribute to improve soybean rust control 

increasing the productivity and weight of 1000 grains. 

The efficacy of fungicides varies with the cultivars also. For example, three sprays of hexacon

azole are sufficient to manage rust and produce high yields in JS-335, while two sprays of the same 

hexaconazole have been enough to lower disease severity and to obtain high yields for PK-1029 

(Hegde et al. 2002). Similarly, the resistant line CB06-953/963 (Rpp4 gene) needs 13.3 days longer 

than the susceptible cultivar to reach the ETL; late-season fungicide applications reduce rust sever

ity and increase the yield of the resistant cultivar (Koga et al. 2011). The cultivars M-Soy 8199RR 

and Emgopa 315RR that are less susceptible to disease and a control program termed monitoring 
(in which the appearance of new pustules of the pathogen is monitored to make the decision at each 

fungicide spray) have been found to be the most effective (da Silva et al. 2011). 

The rate of 80 kg/ha K2O associated with fungicide sprays with azoxystrobin + cyproconazole 

is promising to reduce the deleterious effects of ASR (Doreto et al. 2012). The glyphosate at rates 

between 0.84 and 1.68 kg/ha can delay the onset of ASR in soybeans (Feng et al. 2008). 

Systemic Acquired Resistance 
Silicon (Si) is recognized for its prophylactic role in alleviating diseases when absorbed by plants 

and has been proposed as a possible solution against soybean rust, caused by P. pachyrhizi. Soybean 

plants supplied with Si show reduction in ASR symptoms (Arsenault-Labrecque et al. 2012, da Cruz 

et  al. 2012). Si can protect soybean plants against soybean rust through mediated resistance. 

Saccharin (3 mM) applied as a root drench at the second trifoliate (V3) and early reproductive (R1) 

stages has been found more effective than the foliar spray treatment at inducing SAR (Srivastava 

et al. 2011). The severity of the soybean rust (area under disease progress curve) is significantly 

reduced when the soybean plants are fertilized with the combination of 8 and 11 mmol/L of K and 

Ca, respectively (Pinheiro et al. 2011). 

Soil applications of wollastonite (CaSiO3) (Si 0.96–1.92 tons/ha) or foliar applications of 

potassium silicate (K2SiO3) (Si at 500–12,000 mg/kg) may lead to the development of SBR con

trol practices that can benefit organic and conventional soybean production systems (Lemes et al. 

2011). Silicon (Si) amendments have been studied as an alternative strategy to control SBR because 

this element is reported to suppress a number of plant diseases in other host. Potassium silicate 

(KSi) sprays (40 g/L) could reduce the intensity of soybean rust (Rodrigues et al. 2009). The foliar 

application of MnSO4 (0.3%) records lower percentage of rust disease index (33.7) compared to the 

control (89.6) consequently increasing the yield. Considering the effect of MnSO4, in terms of both 

yield and environmental advantages, it is suggested to replace traditional fungicide application with 

MnSO4 (Morab et al. 2003). 

Cultural Control 
There are several cultural practices that may help manage soybean rust. In most areas of the United 

States where rust must be introduced each year for an epidemic to occur, changing planting and har

vest dates may avoid disease. Planting date and soybean cultivar significantly affect disease severity, 

with severity being higher on soybean crops planted during the wet season than those planted in the 

dry season. This study suggests that selection of planting date could be a useful cultural practice 

for reducing soybean rust (Twizeyimana et al. 2011b). For example, early sowing (end of June) of 

the crop is less damaged (36.15%) when compared with crop sown in mid- and end of July in India 

(Shukla et al. 2005). For all of the sowing dates, the early-season cultivar, M-SOY 6101, shows a 

lower risk of being affected by the rust and consequently exhibits less yield loss exhibiting a lower 
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variance in yield, which represents more stability with regard to the inter-annual climate variability, 

that is, the farmers who use this cultivar will be able to recover more economic benefits (de Avila 

Rodrigues et al. 2012). Planting dates may also be delayed so that the vulnerable reproductive period 

occurs during dry conditions that do not favor rust. 

In areas where the weather is marginal for rust development, wider row spacing along with 

lower plant populations may hasten canopy drying, thus reducing the dew period enough to prevent 

or at least slow disease development. Thus, the row spacing of 60 cm lowers AUDPC values and 

higher crop productivity (Madalosso et al. 2010). Cultural practices such as the use of reduced seed 

rates, increased row widths, and row orientation to the sun have been prescribed as environmental 

modifications that create a microclimate less conducive to foliar disease development. Therefore, it 

is important to determine the influence of different periods of leaf wetness and respective microen

vironments on infection and rust development on soybean plants in a local geographical area in the 

field (Narvaez et al. 2010). The expression of partial resistance of both cultivars can be influenced due 

to variation of P and K levels. Lower doses of P and K induce a greater difference in the latent period 

of the pathogen. The association of genetic cultivar background to mineral nutrition might result in 

an integrated management disease program, along with evasion and chemical protection strategies 

(Balardin et al. 2006). The severity of soybean rust is higher in plants under crossed sown lines. The 

increase in the number of seeds from 15 to 30 per meter in the crossed sown lines reduces the severity 

of the disease only in some cultivars as in the case of M7211RR cultivar (Lima et al. 2012). 

Biological Control 
The fungus Simplicillium lanosoniveum can colonize P. pachyrhizi and significantly lower amounts 

of DNA of P. pachyrhizi and lower rust disease severity when soybean leaves are colonized with 

S. lanosoniveum indicating its potential use in biological control of soybean rust disease (Ward 

et al. 2012). 

Effect of Plant Extracts 
The essential oils of H. marrubioides, A. gratissima, and C. verbenacea are fungitoxic by inhibiting 

100% of urediniospores of P. pachyrhizi and are effective at higher concentration only as preventive 

treatments in the control of the ASR. But these essential oils at these dosages are not as efficient as 

the pyraclostrobin + epoxiconazole–based fungicide (da Silva et al. 2012b). It is inferred that the 

essential oils from Corymbia citriodora (Eucalyptus citriodora), Cymbopogon nardus, A. indica, 

or Thymus vulgaris at concentrations of 1.0%, 0.5%, 1.0%, and 0.3% have the potential to reduce 

infection by P. pachyrhizi, agent of the ASR (Medic-Pap et al. 2007). 

Integrated Control 
An integrated management system must include intensive scouting for ASR during reproductive 

soybean growth stage; early disease diagnosis; use of moderately rust-resistant cultivars and use 

of fungicides from groups III and IV (strobilurins, triazoles, and mixture of both); alternative host 

elimination, including soybean volunteer plants; and early planting dates and diversification in 

planting dates and may be used in combination with appropriate cultural practices and fungicides 

when needed. Wider row spacing may also allow better fungicide application and penetration into 

the canopy, increasing the effectiveness of chemical control (Rupe and Sconyers 2008). Using a 

spray mixture of cow urine (10%) + plant extract of Prosopis juliflora (0.5%) or cow urine (10%) + 

neem oil (0.5%) has been found to be economically effective in rust disease management of soybean 

(Jahagirdar et al. 2012). 

Spore trapping and aerobiological modeling are useful in maintaining the effectiveness of 

the Integrated Pest Management (IPM) Pest Information Platform for Extension and Education 

(ipmPIPE), increasing North American producers’ profits by hundreds of millions of dollars each 

year. In the United States, control practices based on up-to-date maps of soybean rust observa

tions and associated commentary from Extension Specialists delivered by the ipmPIPE may have 
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suppressed the number and strength of inoculum source areas in the southern states and retarded 

the northward progress of seasonal soybean rust incursions into continental North America 

(Isard et al. 2011). 

SUDDEN DEATH SYNDROME 

SYMPTOMS 

Sudden death syndrome (SDS), caused by F. solani f. sp. glycines, is a season-long root rot disease 

of soybean that results in severe foliar symptoms beginning in late vegetative and early reproductive 

stages of plant growth. Pattern of symptoms in the field ranges from distinct oval to circular patches 

to irregularly shaped bands or streaks across the field (Figure 9.5). In severe cases, a majority of 

field may show the symptoms. The SDS is characterized by root rot followed by the development of 

foliar symptoms. Root systems may show rotting and discoloration of lateral and tap roots. When 

split open, internal tissues of taproot and lower stem may show a light-gray to light-brown discolor

ation. Foliar symptoms begin as scattered yellow blotches in the interveinal leaf tissues. These yel

low blotches increase in size and merge to affect larger areas of leaf tissues. Symptoms range from 

the development of chlorotic spots to severe interveinal chlorosis and necrosis (Figure 9.6). Veins 

typically stay green. The bright yellow blotches between the green veins give affected leaves a strik

ing appearance. As the interveinal leaf tissue turns brown, it also dries out. Taproots of symptomatic 

plants are necrotic and stunted and stems exhibit a light tan discoloration, but never the dark-brown 

discoloration typical for brown stem rot (BSR); the pith of the SDS-affected stem remains white. 

This is a key symptom to differentiate SDS from BSR, a disease with similar foliar symptoms. The 

SDS is most recognized by the development of interveinal chlorosis and necrosis on leaves and 

premature defoliation (Leandro et al. 2012). In severe cases, the leaflets may drop off, leaving the 

petioles (leaf stalks) attached or they may curl upward and remain attached to the plant (Westphal 

FIGURE 9.5  SDS of soybean at the seedling stage. (Courtesy of Dr. Shrishail Navi, Iowa State University, 

Ames, IA.) 

FIGURE 9.6  SDS of soybean at the reproductive stage. (Courtesy of Dr. Shrishail Navi, Iowa State University, 

Ames, IA.) 



 

 

 

 

 

  

 

 

 

 

 

 

 

 

    
   

    

 

  

384 Diseases of Edible Oilseed Crops 

et al. 2008). In other diseases that exhibit similar symptoms, the dead leaflets essentially tend to 

remain attached to the petiole. But these symptoms are not diagnostic by themselves. If the plants 

are uprooted when soil is moist, small, light-blue patches may be visible on the surface of the tap

root near the soil line. These patches are blue spore masses of the fungi that cause SDS. As the root 

surface dries, the blue color fades, but these blue spore masses, seen in conjunction with the other 

symptoms mentioned earlier, are strong diagnostic indicators of SD. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

The SDS of soybean caused by Fusarium virguliforme was first discovered in Arkansas in 1971 in 

the United States and in South America in the early 1990s (Roy et al. 1997, Colletto et al. 2008). 

The disease has spread extensively since then and can be economically devastating depending on 

disease intensity and timing of disease onset in most soybean-growing regions of the North and 

South America and the world (Malvick and Bussey 2008, O’Donnell et al. 2010, Leandro et al. 

2012, Mbofung et al. 2012). SDS is ranked in the top four on the list of diseases that  suppressed 

soybean yield during 2003–2005 in the United States (Wrather et al. 2003, Aoki et al. 2005, Wrather 

and Koenning 2006). The extent of yield losses due to SDS depends on the severity and timing 

of  disease expression relative to plant development in regard to yield components. If the disease 

develops early in the season, flowers and young pods tend to abort. When the disease develops later, 

the plants produce fewer seeds per pod or smaller seeds. SDS reduces soybean yields in four of 

the top eight soybean-producing countries in the world, Argentina, Brazil, Canada, and the United 

States. In the year 2006 alone, yield was reduced by 1.849 million metric tons worldwide (Wrather 

et al. 2010). Yield suppression of SDS in the United States increased from 3.7 million bushels in 

1996 to 34.5 million bushels in 2009 (Wrather and Koenning 2009, Koenning and Wrather 2010). 

From 1996 to 2007, losses averaged U.S. $190 million a year in the Midwestern U.S. soybean-

producing region (Robertson and Leandro 2010). Gibson et al. (1994) estimated yield reduction of 

7–34 kg/ha per unit increase in SDS incidence, whereas others have reported total yield decreases 

of 12%–22% per unit increase in foliar symptom severity. The earlier severe disease develops, 

the more the yield is reduced. In Argentina, average yield loss is in the range of 192–3770 kg/ha 

(Mercedes Scandiani et  al. 2012). Soybean cyst nematode (Heterodera glycines) and F. virguli
forme causing SDS have a synergistic effect on yield when they occur jointly in the field (Gelin 

et al. 2006, Xing and Westphal 2009). 

PATHOGEN 

SDS is caused by soilborne fungi within a group (clade 2) of the F. solani species complex (Aoki 

et al. 2003, 2005). Phenotypic and multilocus molecular phylogenetic analyses, as well as patho

genicity experiments, have demonstrated that four morphologically and phylogenetically distinct 

fusaria can induce soybean SDS (O’Donnell et  al. 2010). Among the four species of Fusarium, 

Fusarium brasiliense, Fusarium cuneirostrum, Fusarium tucumaniae, and F. virguliforme, only 

two, F. virguliforme Akoi (O’Donnell, Homma and Lattanzi) (syn. F. solani f. sp. glycines) and 

F. tucumaniae, are the main casual fungi in North and South America, respectively (Aoki et al. 

2005). The fungus, F. virguliforme (syn. F. solani f. sp. glycines), is semibiotrophic, which grows 

slowly in culture and is difficult to isolate from diseased plants (Yuan et al. 2008). Once a pure 

culture is obtained, blue spores and other cultural characteristics distinguish the SDS pathogens 

from other Fusarium species that can infect soybean roots. In North America, the SDS pathogen is 

considered clonal and has been considered asexual; the pathogen, however, has never been isolated 

from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been con

sidered to cause foliar SDS. One such toxin is the F. virguliforme toxin (FvTox1) that causes foliar 

SDS-like symptoms in soybean. This is a low-molecular-weight protein of approximately 13.5 kDa 

(FvTox1) purified from F. virguliforme culture filtrates. FvTox1 induces foliar SDS in soybean, most 
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likely through production of free radicals by interrupting photosynthesis (Brar et al. 2011). Of the 

four fusaria that have been shown to cause soybean SDS, field surveys indicate that F. tucumaniae 
is the most important and genetically diverse SDS pathogen in Argentina. The first report of sexual 

reproduction through perithecia formation by a soybean SDS pathogen, that is, F. tucumaniae that 

originated from Argentina, has been made by Scandiani et al. (2010). F. tucumaniae life cycle in 

South America includes a sexual reproductive mode, and thus, this species has greater potential for 

rapid evolution than the F. virguliforme population in the United States, which may be exclusively 

asexual (Covert et al. 2007). These findings support the hypothesis that the North America SDS 

pathogen is clonal and F. virguliforme in North America and F. tucumaniae in South America are 

the main casual fungi of SDS of soybean (Aoki et al. 2005, Westphal et al. 2008, Scandiani et al. 

2011). A new TaqMan real-time PCR assay for the quantification of F. virguliforme in soil has been 

developed. The assay can be used as a diagnostic tool for rapid screens of field and greenhouse soil 

and for symptomatic and asymptomatic plants (Mbofung et al. 2012). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The SDS pathogen survives between soybean crops as chlamydospores in crop residue or freely in 

the soil. As soil warms in the spring, chlamydospores near soybean roots are stimulated to germi

nate and then infect soybean roots (Westphal et al. 2008). Soybean seeds as the primary source of 

inoculum of SDS pathogen are also evident because the seeds contain the fungus mycelium after 

12 months of storage and the fungus is transmissible after 12 months of storage (Balardin et al. 

2005). The fungus also can survive in cysts of the soybean cyst nematode (SCN), H. glycines. The 

two pathogens F. solani f. sp. glycines (syn. F. virguliforme) × H. glycines act as a complex and the 

disease development is strongly dependent on high soil moisture (Xing and Westphal 2006). 

Evidence for the existence of genetic variation in F. virguliforme has been provided and that the 

minor quantitative traits and environmental interactions are primarily responsible for the variation 

in aggressiveness found among isolates within the species (Mbofung et  al. 2012). Variability of 

aggressiveness based on measurements of SDS foliar severity, shoot, root, and root lesion lengths; 

shoot and root dry weights; and total dry weights has been found among isolates (Li et al. 2009). 

Variability in carbon source utilization among F. virguliforme isolates is evident, but it is inde

pendent of geographic origin of the isolates (Tang et  al. 2010). An international collection of 

F.  virguliforme isolates has been established and maintained at the National Soybean Pathogen 

Collection Center, University of Illinois at Urbana-Champaign in the United States (Li et  al. 

2009). A real-time QPCR assay to compare the accumulation of genomic DNA among 30 F. solani 
f. sp. glycines (FSG) isolates in inoculated soybean roots has been developed. Isolates may differ 

significantly in their DNA accumulation on a susceptible soybean cultivar when detected and quan

tified using an FSG-specific probe/primers set derived from the sequences of the nuclear-encoded, 

mitochondrial small subunit ribosomal RNA gene (Li et al. 2008). Isolates of F. virguliforme from 

corn, wheat, ryegrass,  pigweed, lambsquarters, canola, and sugar beet are the asymptomatic hosts 

of the pathogen (Malvick and Bussey 2008, Kolander et al. 2012). F. virguliforme may infect roots 

of soybean seedlings as early as 1 week after crop emergence. A protoplast-based fungal transfor

mation system for F. virguliforme has been developed for the production of a green fluorescent pro

tein (GFP)-expressing fungal transformant. The GFP-expressing fungus can be used to study fungal 

infection processes including fungal penetration, colonization, and spread, especially at the early 

stages of disease development (Mansouri et al. 2009). It is apparent that roots are most susceptible 

to infection during the first days after seed germination and that accelerated root growth in warmer 

temperatures reduces susceptibility to root infection conducive to foliar symptoms. However, soil 

temperature may not affect infections that occur as soon as seeds germinate (Gongora-Canul and 

Leandro 2011b). Cool temperatures are more favorable for root infection by F. virguliforme than 

warmer temperatures. Optimum soil temperature for root rot development is 15°C–17°C with 

root rot severity being lower at higher temperatures. Interestingly, in contrast to root infection, the 
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expression of foliar symptoms is favored by warmer temperatures of around 22°C–25°C. High soil 

moisture has been shown to favor SDS. Foliar symptoms are more severe in irrigated fields dur

ing wet season. The presence of continuous soil moisture throughout the growing season is most 

favorable for the development of the SDS. Rate of disease progress increases as inoculum densities 

increase for both root and foliar disease severities. The incubation period for root and foliar disease 

severity range from 9 to 18 and 15 to 25 days, respectively (Gongora-Canul et al. 2012). 

The pathogen is capable of degrading lignin, which may be important in infection, colonization, 

and survival of the fungus (Lozovaya et al. 2006), but aboveground symptoms of SDS rarely appear 

until soybean plants have reached reproductive stages. The fungus produces toxins (FvTox1) in 

the roots that are translocated to the leaves (Brar and Bhattacharyya 2012). Often, symptoms first 

appear after heavy rains during reproductive stages; high soil moisture increases the disease sever

ity (Xing and Westphal 2006). SDS is more severe when the SCN (H. glycines) is also present in a 

field and the cultivar is susceptible to both pathogens (Xing and Westphal 2006). The toxin requires 

light to initiate foliar SDS symptoms. Irrigation treatments during mid- to late reproductive growth 

stages result in significant increase in SDS foliar symptom development (de Farias Neto et al. 2006). 

Both F. virguliforme and SCN are widespread. The close association of the pathogens is also 

apparent in the fact that the SDS pathogen can be isolated from cysts of SCN (Roy et al. 1997). The 

SCN, H. glycines, and the fungus F. solani f. sp. glycines that causes SDS of soybean frequently 

co-infest soybean fields. The infection of soybean roots by H. glycines does not affect root coloniza

tion by the fungus, as determined by real-time PCR. Although both pathogens reduce the growth 

of soybeans, H. glycines does not increase SDS foliar symptoms, and interactions between the two 

pathogens are seldom significant (Gao et al. 2006). 

Although the pathogen may produce spores (macroconidia) on the surface of the taproot during 

the summer, these spores spread only short distances within a growing season. Over a period of 

years, flowing water and cultivation practices that move soil can move spores over longer distances 

within or between fields. 

DISEASE MANAGEMENT 

Host Plant Resistance 
The use of resistant cultivars is the most effective method for controlling SDS in soybean. Although 

soybean cultivars that are less susceptible to SDS have been developed, no highly resistant cultivars 

are available (Njiti et al. 2002). Soybean genotypes with yellow seed coat show a relatively good field 

response to SDS and a moderate seed yield. Soybean cultivars show differences in their resistance 

to both the leaf scorch and root rot of SDS. Root susceptibility combined with reduced leaf scorch 

resistance has been associated with resistance to H. glycines (race 14) of the SCN (Kazi et al. 2008). 

These superior genotypes can be used as potential parents in soybean breeding programs (Gelin 

et al. 2006, Wen et al. 2014). Providing multiple resistance traits in the same variety is especially 

important to manage SDS, because both SDS tolerance and SCN resistance are frequently needed 

in the same variety (Butzen 2010). Research has led to the identification of soybean genotypes with 

18 QTLs. However, it is possible that only 11 or 12 loci may contribute to host resistance as some of 

these loci may have multiple alleles. Some of these QTLs have been shown to be in close proxim

ity to QTL that contribute to resistance to SCN with potential linkage between the two resistance 

QTLs (Leandro et al. 2012). Multigenic QTL present significant problems to analysis. Resistance to 

soybean SDS caused by F. virguliforme had been partly underlain by QRfs2 that could be clustered 

with, or pleiotropic to, the multigeneic rhg1 locus providing resistance to SCN (H. glycines) (Iqbal 

et al. 2009). 

Soybean genotypes Ripley and PI 567374 both have partial resistance to SDS and the LG D2 

QTL should be useful sources of SDS resistance (Farias Neto et al. 2007). The beneficial alleles of 

the QTL have been shown to be associated with resistance to either foliar disease severity or root 

rot severity or resistance to both foliar and root rot severity. QTL for resistance to F. virguliforme 
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are different from those that confer resistance to F. tucumaniae. The report that sexual reproduc

tion occurs in nature in F. tucumaniae offers a greater challenge for disease management in regions 

where this species is found since host resistance to disease be easily overcome. As three other 

Fusarium species, as referred earlier, cause SDS in soybean in South America, it is important to use 

soybean varieties with broad resistance to the disease in this region (Leandro et al. 2012). 

Molecular mechanisms underlying plant resistance and susceptibility to F. virguliforme have been 

studied using Arabidopsis thaliana. A. thaliana enabled a broad view of the functional relationships 

and molecular interactions among plant genes involved in F. virguliforme resistance. Dissection of 

the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the 

functional relationships and molecular interactions among plant genes involved in F.  virguliforme 
resistance (Yuan et al. 2008). Selection of seedlings in the greenhouse and marker-assisted  selection 

(MAS) are faster and cheaper. DNA markers associated with loci contributing seedling resistance to 

F. solani in the southern and northern U.S. germplasm sources have been established. It is revealed 

that the SDS resistance can be a pleiotropic effect of shoot and root characters in partially resistant 

and relatively susceptible genotypes (Njiti and Lightfoot 2006). FvTox1 is an important  pathogenicity 

factor for foliar SDS development, and expression of anti-FvTox1 single-chain variable-fragment 

(scFv) antibody in transgenic soybean can confer resistance to foliar SDS, and this could be a suit

able biotechnological approach for protecting soybean crop plants from toxin-induced pathogen 

such as F. virguliforme (Brar and Bhattacharyya 2012). The fungal genome of F. virguliforme has 

been sequenced by conducting shotgun 454-sequencing. The genome sequence of F. virguliforme 
would become important public resource to a broad community of researchers engaged in develop

ing tools to manage SDS (Srivastava et al. 2014). 

Chemical Seed Treatment 
Bayer CropScience has developed a chemical ILeVO for soybean seed treatment to provide protec

tion for soybean seedlings from F. virguliforme, the fungus that causes SDS. ILeVO-seed treatment 

protects soybean from early-season infection and reduce late-season chlorosis and necrosis that 

leads to flower and pod abortion resulting in yield loss. The active ingredient in ILeVO is systemic 

and moves from the seed into the tissue of both stem and roots of soybean seedlings. The cotyledons 

and roots act as a sink for ILeVO, enabling the product to stay where it is needed to protect against 

early-season infection way in advance of SDS visual symptoms appearing in the field (Roden 2014). 

Since the fungus only colonizes the roots and base of the stem and it does not spread to the leaves 

and cannot be isolated from foliar portion, the foliar spray of the fungicides is not effective and 

hence foliar sprays of fungicides are not recommended. 

Cultural Control 
Soybean roots become less susceptible to xylem colonization and the subsequent development of 

foliar symptoms as plants mature. Therefore, practices aimed at protecting seed and seedling roots 

from infection may improve soybean sudden death management (Gongora-Canul and Leandro 

2011a). In a regular growing season, an epidemic of SDS is highly correlated with the planting date 

and the  disease tends to be more severe in earlier-planted soybeans in the United States (Navi and 

Yang 2008). Fields with a history of SDS should be planted later, rather than earlier in the spring. But 

planting may not be delayed to the point of compromising yield potential. A row spacing × infestation 

interaction indicated 7% greater yield in narrow rows (38 cm) than wide rows (76 cm) in uninfested 

plots, with no yield advantage to narrow rows in infested plots. In infested plots with greater SDS 

symptom expression, the yield advantage of narrow rows may be negated; therefore, cultivar selection 

is crucial when planting is done in narrow rows to maximize yield (Swoboda et al. 2011). Improving 

soil drainage, reducing compaction, evaluating tillage systems, and reducing other stresses on the 

crop if possible, in fields with recurring SDS problems, are useful SDS management practices. For 

example, a tillage system of disking or ridge till is effective in reducing the incidence of SDS as 

revealed from the studies done at the University of Missouri in the United States (Wrather et al. 1995). 
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The likely broad host range limits the efficacy of crop rotation and indicates that crops other than 

soybean can be damaged by F. virguliforme and can maintain or increase inoculum in soil crop 

rotation to have little impact on SDS incidence and severity (Xing and Westphal 2009, Kolander 

et al. 2012). Soil suppressiveness against the disease complex of the SCN and SDS of soybean is 

demonstrated (Westphal and Xing 2011). Chitosan is able to induce the level of chitinase antifungal 

enzymes to SDS pathogen in soybean resulting in the retardation of SDS development in soybean; 

it is thus helpful in partially protecting soybeans from F. solani f. sp. glycines infection (Prapagdee 

et al. 2007). SDS varies in severity from area to area and from field to field. This requires scouting 

fields when disease symptoms are present, ideally using GPS tools to map SDS-prone areas and 

then combination of crop management practices can help minimize the damage from SDS. By tak

ing steps to manage H. glycines (resistant cultivars, nematicides), it is possible to help check SDS or 

at least manage its potential impact if not the disease itself. 

CHARCOAL ROT 

SYMPTOMS 

Symptom expression depends on the soybean plant’s growth stage at the time of infection. Infected 

soybean seedlings show reddish discoloration of the hypocotyls appearing at soil level from root 

infection. Lesions become dark brown to black and infected seedlings may die under hot dry weather 

conditions. If wet and cool weather persists, infected seedlings survive but carry the latent infection 

and symptoms do not develop until plants reach reproductive stages, and only if heat and drought 

stress the plants. Hence, the disease is also known as dry weather wilt and summer wilt (Hartman 

et al. 1999). If the growing point is killed, a twin-stem plant may develop. 

After flowering, the surface tissues (epidermis) of the lower stems of affected plants usually 

exhibit a light-gray or silvery discoloration and stems often have a shredded appearance. When 

the epidermis of lower stems and taproots is removed (by scraping with the thumbnail), extremely 

small, black fungal structures called microsclerotia are found embedded in the diseased tissue, 

which is the diagnostic feature of charcoal rot. Microsclerotia are tiny black masses of fungal tissue 

usually so numerous that they resemble charcoal dust, hence the name of the disease (Figure 9.7). 

The microsclerotia can be best seen with a good hand lens. Positive identification of the micro

sclerotia distinguishes charcoal rot from other similar diseases. The pycnidial stage is uncommon 

in soybean in contrast to formation of both microsclerotia and pycnidia on infected stem tissue of 

other host plants. Splitting the taproot often reveals dark-gray to blue-black streaks within. Later in 

the season, leaflets turn yellow, then die and shrivel, but remain attached to the plant. And finally, 

infected plants lose vigor and may die prematurely, and patches of such wilted and died plants are 

seen in the infested fields. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

Charcoal rot is a disease of economic significance throughout the world. It is widely distributed 

throughout tropical, subtropical, and warm temperate regions. Its effect is more pronounced in 

crops under biotic or abiotic stress. Changing global climatic conditions particularly occurrence 

of frequent drought or drought-like situations are making soybean more vulnerable to this disease. 

Charcoal rot is endemic in southern states in the United States and is a major problem in the central 

part of the Midwest, especially in Kansas and parts of Missouri. It is now occurring with greater 

frequency in the upper Midwest, with outbreaks reported in Illinois, Indiana, Iowa, Minnesota, 

North Dakota, and Wisconsin. 

Root infection by germinating microsclerotia can occur very early in soybean plant develop

ment and about 80%–100% incidence of seedling infection can be observed within 3–4 weeks 

after planting. Based on estimates from 2006 to 2009, charcoal rot is listed as one of the 10 most 
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Charcoal rot (Macrophomina phaseolina) 

(a) (b) 

FIGURE 9.7  Charcoal rot of soybean-seedling mortality under field conditions and infected stems of 

soybean. (a) Seedling mortality by charcoal rot. (b) Infected lower stem and minute black sclerotia of patho

gen in outer corticle and pith region. (Courtesy of Dr. G.K. Gupta, ICAR-Directorate of Soybean Research, 

Indore, India.) 

yield-suppressing diseases in the United States (Koenning and Wrather 2010, Radwan et al. 2013).  

Charcoal rot ranks second among economically important diseases in the Midsouthern United  

States next to SCN. Estimated annual loss in soybean in the United States is about seven million 

bushels, whereas in Brazil, Argentina, and Bolivia, a loss of one million bushels could be attributed 

to charcoal rot in 1998. Interestingly, yield loss due to charcoal rot in soybean ranges from 6% to 

33% even in irrigated environments in the United States (Mengistu et al. 2011). Infection with this 

pathogen reduces the number of pods per plant, seeds per pod, 100-seed weight, and seed yield. 

For example, infected plants may yield as low as 67.7 pods/plant, 1.5 seeds/pod, 6.5 g/100-seed  

and 6.4 g/plant compared to 205.8 pods/plant, 2.2 seeds/pod, 15.2 g/100 seed, and 69.7 g/plant of 

healthy plants. It is clear that soybean plants infected with charcoal rot have a reduced seed yield 

representing less than 10% of normal plant seed yield in Iraq (Abbas et al. 2003). Predominantly 

occurring in most of the soybean-growing states of India, charcoal disease causes 70% or more 

yield loss in soybean (Ansari 2010). Charcoal rot infection may alter seed composition and nitrogen 

fixation in soybean. The alteration in seed composition depends on cultivar susceptibility to char

coal rot and irrigation management (Bellaloui et al. 2008). 

PATHOGEN 

The disease is caused by the fungus M. phaseolina  (Tassi) Goid. Its synonyms are Macrophomina  
phaseoli (Maubl.) Ashby, Rhizoctonia bataticola  (Taub.) Butler, Sclerotium bataticola  (Taub.)  

Butler., and Botryodiplodia phaseoli (Maubl.) Thir. 
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Classification 
Kingdom: Fungi 

Phylum: Ascomycota 

Class: Dothideomycetes 

Subclass: Incertae sedis 

Order: Botryosphaeriales 

Family: Botryosphaeriaceae 

Genus: Macrophomina 
Species: phaseolina 

M. phaseolina is highly variable, differing in size of sclerotia and the presence or absence of

 pycnidia. M. phaseolina has a wide host range and geographic distribution, infecting more than 

500 crop and weed species. The fungus is highly variable, with isolates differing in microscle

rotial size and the ability to produce pycnidia. Microsclerotial morphology is a key taxonomic 

characteristic in the identification of this fungus. Cultural and morphological characteristics 

can vary as a result of continuous subculturing. The optimal temperature for growth in culture 

ranges from 28° to 35°C. The details of morphological characteristics of M. phaseolina have been 

described earlier under peanut and sunflower diseases chapters. The number of pycnidia that are 

produced by M. phaseolina isolates is dependent on induction medium; however, peanut butter 

extract–saturated filter paper placed over soy nut butter extract agar (PESEA) allows for greater 

pycnidia and conidia production than the other media. This conidia inoculum production method 

can facilitate soybean charcoal rot resistance screening evaluation with different soybean isolates 

(Ma et al. 2010). 

EPIDEMIOLOGY  AND DISEASE CYCLE 

The fungus M. phaseolina is a causative agent of charcoal rot diseases in more than 500 plant 

species. The fungus is primarily soil inhabiting but is also seed borne in many crops including 

soybean. It survives in the soil mainly as microsclerotia. These are black, spherical to oblong in 

shape, and typically measure 0.002–0.008 in. in diameter. Microsclerotia produced in host tissues 

are released into soil as plant tissues decay. Corn, grain sorghum, and cotton generally support lower 

populations of microsclerotia in soil than does soybean. In dry soils, microsclerotia survive in soil or 

embedded in host residue for 2 or more years. In wet soils, microsclerotia cannot survive more than 

7–8 weeks and mycelia no more than 7 days. Microsclerotia must germinate either on the surface of 

or in close proximity to roots for infection to occur. Pathogen growth and infection of soybean can 

occur at emergence and at the cotyledonary stage with 80%–100% of seedlings infected 2–3 weeks 

after planting. Phytotoxin, botryodiplodin, is suggested to be produced more abundantly by certain 

isolates of M. phaseolina facilitating infection in soybean (Ramezani et al. 2007). 

Temperature optima for fungal growth and disease development are high (30°C–37°C). 

Considerable infection of soybean occurs at these temperatures. Seedling blight of soybean due to 

M. phaseolina is seen in tropical countries only where soil temperatures are at least 30°C at plant

ing. Dry conditions, relatively low moisture and nutrients (NPK), and high temperature ranging 

from 25°C to 35°C are favorable for the disease at pod formation and filling stage (Ansari 2010). 

For example, August 2003 was the driest month recorded in Iowa, which may have contributed 

to the disease outbreaks in that crop season (Yang and Navi 2005). Similarly, in the humid trop

ics of southwestern Nigeria, areas with high soil moisture levels are unfavorable for the growth 

and pathogenicity of M. phaseolina, while areas with low soil moisture levels favor the growth 

and pathogenicity of the fungus (Wokocha 2000). Drought stress thus has been proved to increase 

M. phaseolina infections and reduces seedling dry weight in soybeans (Gill-Langarica et al. 2008). 

Low C:N ratio in the soil and high bulk density as well as high soil moisture content adversely 

affect the survival of microsclerotia. The scattered literature on these aspects has been reviewed 

(Gupta et  al. 2012). The fungus is seed borne and invariably present in the seed coat of all the 
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infected seeds and moved into the cotyledons (including embryonal axis) of the 40% infected seeds 

(Tariq et al. 2006, Mengistu et al. 2012). The pathogen can remain viable for 15 months in seeds at 

room temperature and is transmitted to seedlings during germination by local contact (Kumar and 

Singh 2000). Although initial infections occur at the seedling stage, they usually remain latent until 

soybean plant approaches maturity (growth stages R5, R6 and R7). Plants infected after seedling 

stage generally show no aboveground symptoms until after midseason. There is a significant patho

genic and genetic variability within the soybean isolates of M. phaseolina from Iran, India, Italy, 

and Mexico (Munoz-Cabanas et al. 2005, Jana et al. 2005a,b, Rayatpanah et al. 2012a,b). Genetic 

variability studies among Brazilian isolates of M. phaseolina have revealed that one single root 

can harbor more than one haplotype. It is significant that M. phaseolina isolates from soybean are 

chlorate-sensitive isolates that grow sparsely with a feathery-like pattern and the isolates character

ized by the feathery-like pattern are more virulent on soybean and sunflower (Rayatpanah et al. 

2012a). Moreover, cultivation with crop rotation tends to induce less specialization of the pathogen 

isolates. Knowledge of this variation may be useful in screening soybean genotypes for resistance to 

charcoal rot (Almeida et al. 2003b). Genetic differentiation of M. phaseolina can be altered by crop 

rotation that M. phaseolina is a highly diverse species and also reveals a strong effect of the rotation 

system on genetic diversity (Almeida et al. 2008). 

Cultivation with crop rotation probably tends to induce less diversity of the pathogen isolates 

(Rayatpanah et al. 2012b). The AFLP analysis has revealed great genetic diversity in M. phaseolina 
since more than 98% of amplified products appear to be polymorphic. But no clear association 

between geographical origin or host of each isolate and AFLP genotype has been found. A genetic 

dissimilarity greater than 10% is reported between a group of isolates from Mexico and Italy and 

isolates from other countries (Munoz-Cabanas et al. 2005). 

Single primers of SSRs or microsatellite markers have been used for the characterization of 

genetic variability of different populations of M. phaseolina obtained from soybean and  cotton 

grown in India and the United States. The variability found within closely related isolates of 

M. phaseolina indicated that such microsatellites are useful in population studies and represents 

a step toward identification of potential isolate diagnostic markers specific to soybean and cotton 

(Jana et al. 2005b). Universal rice primers (URPs) (primers derived from DNA repeat sequences 

in the rice genome) using PCR (URP-PCR) are sensitive and technically simple to use for assaying 

genetic variability in M. phaseolina populations (Jana et al. 2005a). 

DISEASE MANAGEMENT 

Host Plant Resistance 
Strong resistance to charcoal rot does not exist among soybean cultivars. Six genotypes (one geno

type in MG III, one in late MG IV, and four in MG V) have been identified as moderately resistant 

to M. phaseolina at levels equal to or greater than the standard DT97-4290, a moderately resistant 

high-yield potential cultivar (Paris et al. 2006, Ansari 2007). The genotypes identified as having 

moderate resistance across the 3 years could be useful as sources for developing resistant soybean 

cultivars (Mengistu et al. 2012). One such first report on soybean genotype with high levels of  

resistance to charcoal rot is PI 567562A and resistance in this genotype is greater than the standard 

DT 97-4290 (Mengistu et al. 2012). Mexican lines H86-5030 and H98-1552, as well as Mexican 

cultivar Suaqui-86, are reported to be moderately resistant to M. phaseolina (Gill-Langarica et al. 

2008). 

Generally, the late maturity groups of soybeans are more tolerant to the disease. Lines B.P-692, 

J.K-695, and K.S-69035 show the highest tolerance to charcoal rot. Based on the results and the 

qualitative and quantitative agronomic characteristics, two lines (J.K-695 and B.P-692) have been 

selected as the suitable cultivars and are introduced as Sari and Telar, respectively, for cultivation 

in Mazandaran region in Iran (Rayatpanah et al. 2007). Early-maturing cultivars that do not have 

late reproductive growth stages might coincide with periods of drought stress and high temperatures 
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may help avoid severe damage to the disease during years with hot, dry summer weather condi

tions. Resistance to this pathogen in some genotypes is associated with drought tolerance. Some 

drought-tolerant soybean genotypes may resist root colonization by M. phaseolina, but this is not 

true for all drought-tolerant genotypes (Wrather et al. 2008). Ten genotypes (JS 335, G 213, Birsa 

Sova-1, GS 1, GC 175320, G 9, G-688, NRC 37, DSb 6-1, and RSC 14) have been identified as highly 

resistant (<1.0% morality) to M. phaseolina (Ansari 2007). Soybean cv Rawal is less susceptible 

to M. phaseolina (Ehteshamul-Haque et al. 2007). Planting earlier-maturing varieties in order to 

shorten the effect of a dry period at the end of the growing season is useful. 

The cut-stem inoculation technique, which has several advantages over field tests, successfully 

distinguishes differences in aggressiveness among M. phaseolina isolates, and relative differences 

among soybean genotypes for resistance to M. phaseolina are comparable with results of field tests 

(Twizeyimana et al. 2012). 

Induced Systemic Resistance 
Some chemicals may play an important role in controlling the soybean charcoal rot disease, through 

induction of systemic resistance in soybean plants. The effect of two inducer chemicals, that is, ribo

flavin (B2) and thiamine (B1), on the induction of systemic resistance in soybean against charcoal 

rot disease and biochemical changes associated with these treatments in soybean plants have been 

investigated under greenhouse conditions. Riboflavin (0.1–15 mM) and thiamine (2.5–5 mM) are 

sufficient for maximum induction of resistance; higher concentration does not increase the effect 

(Abdel-Monaim 2011). 

Plant growth–promoting rhizobacteria (PGPR), such as B. japonicum strain USDA 110, Azoto
bacter chroococcum, Azospirillum brasilense, Bacillus megaterium, B. cereus, and P.   fluorescens 
when inoculated on soybean plants, result in inducing and enhancing the activity of PR proteins 

(chitinase and beta-1,3-glucanase), peroxidase, phenylalanine ammonia lyase (PAL), and phenolics 

and contribute to protect the soybean plants against M. phaseolina infection (Attia et al. 2011). 

Chemical Control 
Since M. phaseolina is also seed borne in soybean, seed treatment with effective fungicide can pro

tect the seedlings from infection. Soybean seeds treated with thiophanate methyl applied as 0.1% 

or 0.2% dry seed treatment or as fungicide slurry with the addition of methyl cellulose result in the 

highest control of charcoal rot (Lakshmi et al. 2002). Seed treatment with carbendazim (as Bavistin 

50 WP) (2.0 g/kg seed) and thiophanate methyl (as Topsin M) (1.0 g/kg seed) is also effective in 

eliminating the pathogen from infected seeds (Kumar and Singh 2000). 

Cultural Control 
Several disease management approaches involve the management of populations of microsclerotia 

using cultural practices to control charcoal rot. It may be a better alternative to suppress charcoal 

rot by using the no-tillage cropping system in comparison to conventional tillage (CT) system to 

conserve soil moisture and reduce disease progress (Almeida et al. 2003a, Mengistu et al. 2009a). 

Farm practices that increase residue destruction immediately after harvest or those that enhance 

Trichoderma spp. populations may directly or indirectly lower the relative longevity of soilborne 

pathogens, including M. phaseolina (Baird et al. 2003). Water management can limit, but not pre

vent, colonization of soybean by M. phaseolina; excessively dense planting increases drought stress 

when water becomes limiting. Hence, avoiding excessive seeding rates is practiced so that plants do 

not compete for moisture, which increases disease risk during a dry season. 

Macrophomina infection has been found to be lower in NPK treatment, and the lowest rate of 

disease development can be observed in the case of the highest NPK combination. By increasing the 

NK supply, the degree of infection is decreased (Csondes et al. 2008). 

Soybean cultivars and other crop species in the host range differ in colonization, and these differ

ences may affect soil densities of the fungus (Kendig et al. 2000). One-year corn–soybean rotation 
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is ineffective in managing charcoal rot since the fungus also causes corn stalk rot. However, the 

fungus is less damaging to corn than to soybean. Several years of corn or small grain crops rota

tions are necessary to reduce charcoal rot risk in severely infested fields. Although corn is a host, 

the microsclerotia numbers are still reduced under this crop. It requires at least 3 years without a 

soybean crop before microsclerotia levels are low enough to plant soybean again. Once the numbers 

of microsclerotia are low, a rotation of 1 year of soybean with 1 year of corn may keep microsclero

tia numbers at low sustainable level (Kendig et al. 2000). 

Microbial communities are more abundant and active in direct seeding (DS) than in CT in 

response to high nutrient content in soil (Perez-Brandan et al. 2012). Indeed, DS systems present 

higher soil OM and total N, K, and Ca than CT. Electrical conductivity and aggregate stability 

(AS) are also improved by DS. Soybean grown in high-quality soil is thus not affected by charcoal 

rot; however, under CT, disease incidence in soybean appears to have been 54%. These differences 

are correlated to the higher microbial abundance and activity under DS, the biological component 

being a key factor determining soil capacity to suppress the soilborne pathogen like M. phaseolina 
(Perez-Brandan et al. 2012). 

Biological Control 
Application of more than one antagonist of diverse origin is suggested as a reliable means of reduc

ing the variability and increasing the reliability of biological control. T. harzianum and plant growth 

promontory rhizobacteria P. fluorescens when tested alone and in combinations for their relative 

biocontrol potential against M. phaseolina causing charcoal rot of soybean result in effective con

trol of the disease (Mishra et al. 2011). P. aeruginosa strain Pa5 is a good candidate for use as 

BCAs against M. phaseolina on soybean cv Rawal (Ehteshamul-Haque et al. 2007). P. fluorescens 
isolates Pf-12 and Pf-63 inhibit the mycelial fungal growth of M. phaseolina through production 

of antibiotics as well as volatile metabolites, whereas B. subtilis isolates B-13, B-42, B-126, and 

B-84 do so through volatile and nonvolatile metabolite production. P. fluorescens isolates, how

ever, also produce hydrogen cyanide. In greenhouse studies, the B. subtilis isolates B-13 and B-126 

have been shown to be effective in reducing the intensity of charcoal rot of soybean by 59%–66%. 

The combinations of isolates B-13 and B-126 are also effective in reducing the intensity of disease 

(Sharifi-Tehrani et al. 2005). Bacillus sp. and Trichoderma-inoculated soybeans showed increased 

plant height, number of pods, vegetative growth, and aerial and radical weights (Cardona Gomez 

et al. 2000). 

One strategy to control charcoal rot is the use of antagonistic, root-colonizing bacteria. 

Rhizobacteria A5F and FPT721 and Pseudomonas sp. strain GRP3 are characterized for their 

plant-growth-promotion activities against the pathogen. Rhizobacterium FPT721 exhibits higher 

antagonistic activity against M. phaseolina on dual plate assay compared to strain A5F and GRP3. 

FPT721 and GRP3 give decreased disease intensity. Lipoxygenase (LOX), PAL, and peroxidase 

(POD) activities have been detected in extracts of plants grown from seeds treated with  rhizobacteria 

and inoculated with spore suspension of M. phaseolina (Choudhary 2011). 

Another strategy to control charcoal rot is the use of antagonistic, root-colonizing PGPR. Effective 

biological control by the PGPR isolates indicates the possibility of application of  rhizobacteria for 

control of soilborne diseases of soybean including that of charcoal rot in Pakistan and other coun

tries (Inam-Ul-Haq et al. 2012). PGPR, such as B. japonicum strain USDA 110, A. chroococcum, 

A. brasilense, B. megaterium, B. cereus, and P. fluorescens when inoculated on soybean plants 

result in inducing and enhancing the activity of PR proteins (chitinase and beta-1,3-glucanase), 

peroxidase, PAL, and phenolics and contribute to protect the soybean plants against M. phaseolina 
infection (Al-Ani et al. 2011, 2012, Attia et al. 2011). 

PGPR as mentioned earlier, phosphate-solubilizing bacteria (B. megaterium var. phosphaticum), 

and potassium-solubilizing bacteria (B. cereus and P. fluorescens) have been proven for their 

 efficacy against M. phaseolina on soybean plants and for their influencing effect on percentage of 

healthy plant and growth. Data suggest the positive impact of PGPR in improving the stand and 
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vigor of soybean plants in Macrophomina-infested soil. In the field trial, results have shown that 

all tested PGPR significantly can decrease root rot and wilt disease incidence. B. megaterium– 
treated plots have been found to be the most effective treatment followed by the combination of 

A. chroococcum, A. brasilense and B. megaterium. The reduction in disease incidence reflected on 

plant growth and the apparent bacterial plant growth-promoting and bacterial BCAs could provide 

a means for reducing the incidence of root rot and wilt disease complex of soybean in addition to 

avoiding the use of fungicides. Such biocontrol approach should be employed as a part of IPM 

system (El-Barougy et al. 2009, Attia et al. 2011). For example, seed treatment with B. japonicum 
and T. viride and soil application of Zn with B and Fe reduce chaffy pods as well as the disease 

incidence up to 75%. Seed treatment with Trichoderma and irrigation at the time of moisture stress 

reduce the intensity of disease to about 50% (Ansari 2010). 

YELLOW MOSAIC DISEASE 

SYMPTOMS 

The diseased plants start appearing in the field when the crop is about a month old. Two types of 

symptoms—yellow mottle and necrotic mottle—are noticeable. The first visible sign of the disease 

is the appearance of yellow spots scattered on the lamina. They are mostly round in shape. In yel

low mottle, the spots diffuse and expand rapidly. The leaves show yellow patches alternating with 

green areas and also later turn yellow. Such completely yellow leaves gradually change to a whitish 

shade and ultimately become necrotic. These color changes of affected plants are so conspicuous 

that the disease can be spotted in the field from a distance (Figure 9.8). In necrotic mottle, the center 

of yellow spots develops necrosis and the virus becomes systemic in the plant and all newly formed 

leaves show signs of mottle. There may be a reduction in size of leaves. Number and size of pods 

per plant and seeds per pod are generally reduced. The pods are deformed and contain shriveled 

undersized seeds. 

FIGURE 9.8  Yellow mosaic of soybean at various stages of crop growth. (Courtesy of Dr. A.K. Tewari, 

GBPUA&T, Pantnagar, India.) 
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GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

At first, it was observed in North India in the early 1970s (Nene 1972) and since then, it has 

spread at alarming proportions. The disease is now endemic in South Asian countries (India, 

Pakistan, Bangladesh, Bhutan, Nepal, Sri Lanka). It is also reported to occur in the Philippines 

and Thailand. In the northern parts of India, the incidence of the disease may range from 20% 

to 80%. Soybean plants, if infected at prebloom stage, show 16%–73% losses in yield in differ

ent cultivars. Yield losses are of lower magnitude with infection of postbloom stage. In India, 

yield losses of 10%–88% had been reported due to YMD of soybean (Nene 1972, Bhattacharyya 

et al. 1999). 

Pathogen: Mung bean yellow mosaic virus (MYMV) and mung bean yellow mosaic India virus 

(MYMIV). 

Enzyme-linked immunosorbent assay, immunospecific electron microscopy, and whitefly trans

mission studies reveal that the etiological virus causing YMD in soybean is a begomovirus of 

the family Geminiviridae. Begomoviruses have characteristic icosahedral geminate particles that 

encapsidate the genome of circular single-stranded DNA. They infect dicots and are transmitted by 

the whitefly Bemisia tabaci Gennadius. Genomic components of the begomovirus that cause yel

low mosaic disease (YMD) in soybean in Delhi, India, when cloned, sequenced, and evaluated for 

infectivity; nucleotide sequence analysis of the virus isolate revealed more than 89% identity with 

MYMIV; therefore, it is designated as a soybean isolate of MYMIV (MYMIV-Sb). Total nucleotide 

and predicted amino acid sequence analysis of MYMIV-Sb with other yellow mosaic virus isolates 

infecting legumes established dichotomy of the isolates into two species, namely, MYMIV and 

MYMV. The involvement of at least two distinct viruses in the etiology of soybean YMD in India 

is established (Usharani et al. 2004). 

Yellow mosaic virus infecting soybean in northern India is distinct from the species-infecting 

soybean in southern and western India (Usharani et al. 2004). Girish and Usharani (2005) further 

determined the complete nucleotide sequences of two soybean-infecting begomoviruses from the 

central and southern parts of India, and the sequence analyses show that the isolate from Central 

India is a strain of MYMIV and the southern Indian isolate is a strain of MYMV. Thus, involve

ment of at least two distinct viruses in the etiology of soybean YMD in India is reported (Usharani 

et al. 2004). YMD of soybean is reported to be caused by soybean isolate of MYMIV (MYMIV-sb) 

(Radhakrishnan et al. 2008, Yadav et al. 2009). MYMIV-sb is similar to cowpea isolate of MYMIV 

(MYMIV-cp) in its ability to infect cowpea, but differing from blackgram (MYMIV-bg) and mung 

bean (MYMIV-mg), which do not infect cowpea (Usharani et  al. 2005). Genomic analysis of 

DNA-A and DNA-B components of the MYMIV isolates shows characteristic differences in com

plete DNA-B nucleotide sequence correlating with host range differences (Usharani et al. 2005). 

Interestingly, MYMV virulent variant MYMV-Pp1 has been confirmed through nucleic acid spot 

hybridization using homologous probes to DNA-A and DNA-B of MYMV-Bg to cause infection in 

soybean (Biswas 2002). 

They have a bipartite genome (two components, viz., DNA- ‘A’ and ‘B’), which replicates via 

rolling circle replication (RCR) model with the help of few viral and several host factors. MYMIV 

is a representative of the genus Begomovirus/Begomoviridae, which is prevalent in the northern 

part of Indian subcontinent causing YMD. The most affected leguminous crops by MYMIV are 

Cajanus cajan, G. max, Phaseolus aconitifolius, Phaseolus aureus, P. vulgaris “French bean,” and 

Vigna mungo. MYMIV possesses bipartite ssDNA genomes named as DNA-A and DNA-B, both 

being ~2.7 kb in size. Both components share a common region (CR) of about 200 bp containing the 

important cis-elements for viral DNA transcription and RCR. 

Bipartite geminiviruses possess two movement proteins (NSP and MP), which mediate the intra- 

and intercellular movement. In order to accomplish the transport process, the MPs interact with 

viral nucleic acids in a sequence nonspecific manner (Radhakrishnan et al. 2008). Multiple DNA-B 

components could be detected with the soybean strain of MYMV species. The nucleotide sequence 
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similarity between the DNA-A components of the two isolates is higher (82%) than that between the 

corresponding DNA-B components (71%) (Girish and Usha 2005). 

In bipartite begomoviruses, DNA-A encodes proteins required for replication, transcrip

tion, and encapsidation, whereas DNA-B encodes proteins required for movement functions. 

Phylogenetic analysis of complete DNA-A and amino acid sequence of various protein products 

of DNA-A clearly indicate the bifurcation of YMV isolates into two different species—MYMIV 

and MYMV. More number of isolates representing all geographical regions under soybean cul

tivation are required to be studied to find out if any recombinant between MYMIV and MYMV 

exists, as begomoviruses are known to show high frequency of recombinations. Phylogenetic 

study based on comparison of DNA-A nucleotide sequence of YMV isolates with other begomo

viruses revealed a unique feature. Members of the genus Begomovirus are known to form clusters 

according to their geographical origin with distinct branches for viruses from America, Africa, 

and Asia. 

TRANSMISSION 

Female adults of the vector, B. tabaci, are more efficient vectors than males. Minimum acquisi

tion feed time is 15 min and the same time is required for inoculation. Increasing feeding period 

up to 4 h increases transmission ability. Incubation period (latency) in the vector is at least 3 h, 

optimum being 5–6 h. Preacquisition starvation of the vector increases the efficiency to acquire 

the virus. In general, the vector is reported to acquire the virus 1–3  days before symptoms 

appear. A single viruliferous whitefly can transmit the virus but maximum infection is obtained 

with 10–20 whiteflies per plant. Neither female nor male adults can retain the virus through

out the life span. Normally, the female adults retain infectivity for 10 days and male adults for 

3 days. 

EPIDEMIOLOGY  AND DISEASE CYCLE 

Disease development is favored when maximum temperature and relative humidity prevail 

between 29.9°C–36.2°C and 62%–75%, respectively. The earliest YMD appearance of YMD is 

usually observed at 26–54 days after sowing (DAS). Disease spread becomes evident at 7–32 days 

after the initial disease appearance. The efficiency of whitefly (B. tabaci) as vector is affected 

by surrounding crops. YMD incidence is lower when soybean is alternated with mung bean.  

Cross inoculation tests revealed that YMD from mung bean or urd bean (Vigna mungo) is not 

directly transmitted to soybean, but YMD from soybean can be directly transmitted to French 

bean (P. vulgaris), Alternanthera sessilis, Paracalyx scubiosus, and Sida rhombifolia and vice 

versa. Disease development reaches its peak at 40–60 DAS then decreases thereafter. The dis

tance-wise spread of YMD does not vary among high-, low-, and medium-risk fields. Epidemic 

development is observed at 60–70 DAS. At 50 DAS, disease development is positively associated 

with sunshine hours, relative humidity, cloudiness, temperature, and wind velocity (Gupta and 

Keshwal 2003). 

Long-term surveillance study on disease flare-ups revealed that fields near irrigation canals, 

water points, low-lying areas and foot hills usually show high disease incidence when compared 

to unirrigated field plains in the state of Madhya Pradesh in India. Soybean cv. JS 81-335 and 

Corchorus olitorius have been found to act as bridge hosts in bringing inoculum of yellow mosaic 

virus from mung bean to soybean. Plant species such as P. scubiosus is found to act as reservoir host 

of yellow mosaic virus inoculum. In addition, A. sessilis (A. sessilis) and S. rhombifolia, the weed 

hosts, have been found to help the multiplication and spread of inoculum. The study of weather 

parameter on yellow mosaic virus and whitefly population revealed that the rate of disease develop

ment is high when maximum temperature and relative humidity range between 31.0°C–36.2°C and 

62%–75%, respectively (Gupta and Keshwal 2002). 
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DISEASE MANAGEMENT 

Host Plant Resistance 
Highly YMD-resistant soybean cultivars/genotypes such as SL 295, SL 328, SL 525, SL 603, UPSM 

534, PK 1029, PK 1024, PK 416, and JS 9305 can be used as parents in crossing programs (Ramteke 

et al. 2007). Screening under controlled conditions with artificial inoculation with different isolates 

of the virus and pyramiding genes conferring resistance will help in breeding for durable resistance 

to MYMV in soybean (Lal et al. 2005, Ramteke and Gupta 2005). Soybean cultivars PK 1042, PK 

1046, Pusa 20, and Pusa 40 are resistant to MYMV-Pp1. The resistant cultivars take longer time 

(16–29 days) to exhibit symptoms compared to susceptible cultivars (8–17 days) after inoculation 

(Biswas 2002). Soybean cultivar resistant to MYMIV infection induces viral RNA degradation ear

lier than the susceptible cultivar (Yadav et al. 2009, Yadav and Chattopadhyay 2014). More recently, 

out of 500 soybean germplasm lines collected from different parts of the world, only 48 genotypes 

have been detected to be resistant to YMD over 3 years (2007–2009) of consecutive hotspot screen

ing (Kumar et al. 2014). 

The inheritance of YMV resistance studied in two highly resistant varieties DS9712 and DS9814 

indicated that the resistance is dominant and is controlled by single major gene (Talukdar et al. 2013). 

Similarly, the YMV resistance in wild accession, G. soja, is governed by a single dominant gene 

(Bhattacharyya et al. 1999) and the segregating populations generated will act as starting materials 

for developing improved lines with YMV resistance simultaneously paving the way for mapping the 

gene for YMV resistance with linked molecular marker. It is possible to develop molecular markers 

linked to MYMIV resistance to facilitate the genotyping of soybean germplasm for MYMIV reac

tion. Applying linked marker-assisted genotyping, plant breeders can carry out repeated genotyping 

throughout the growing season in absence of any disease incidence (Maiti et al. 2011). 

A construct containing the sequences of Rep gene (566 bp) in antisense orientation has been used 

to produce MYMIV-resistant soybean plants, and the inheritance of transgene has been found to 

follow classical Mendelian pattern transgenic lines (Singh et al. 2013). 

Vector Control 
The management of the disease through prevention of population buildup of the vector can be pos

sible. Spray of 0.1% metasystox, starting when the crop is about a month old or as soon as single 

diseased plant is seen in the field, can be useful in preventing severe incidence of the disease. 

However, control of the disease through control of vectors is often not very effective due to the fact 

that commonly recommended insecticides do not cause instant death of all individual vectors in 

the vector population and even a very few surviving population is capable of spreading the disease 

rapidly. Oil sprays can be more effective because they kill the insects within 15 min but they can 

be phytotoxic. Soil application of granular systemic insecticides at recommended doses can be a 

much better option for reducing vector population and delaying the appearance of the disease. Some 

fungal parasites of B. tabaci vector have been reported, which are potentially applicable for the 

development of biological control of the vector. 

SOYBEAN CYST NEMATODE 

SYMPTOMS 

The aboveground visible symptoms and definite signs of cyst nematode attack become detectable in 

a field only when the cyst content of the soil has gone very high. Foliar symptoms of SCN infection 

are not unique to SCN infection. In the first few crop seasons, after entry of the nematodes in a field, 

the disease goes undetected while the population of the cysts continues to rise. The symptoms at this 

stage could be confused with nutrient deficiency, particularly iron deficiency, stress from drought, 

herbicide injury, or another disease. The first signs of infection are groups of plants with yellowing 
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of leaves that have stunted growth. High population densities of the SCN can result in large portions 

of soybean fields with plants that are severely stunted and yellow. Small patches of poorly growing 

plants may appear in the field. The plants appear as if suffering from poor nutrition. Suspect fields 

usually have plants of different heights. Temporary wilting of plants occurs during hotter part of 

the day. Typical aboveground symptoms of heavy soil infestation are stunting and yellowing. Early 

senescence or maturation of the crop can be an indirect symptom of SCN. 

When several crops of soybean are taken in the same field year after year, the patches of sick 

plants increase in dimension. The nematode feeds on the roots and root stunting, discoloration, and 

fewer nodules are belowground symptoms of SCN. The pathogen may also be difficult to detect on 

the roots, since stunted roots are also a common symptom of stress or other plant disease. Signs 

of root infection are the presence of adult females and white to brown cysts filled with eggs that 

are attached to root surfaces. Young females are small white and partly buried in the roots, with 

only part of them protruding on the surface, whereas older females are larger almost completely on 

the surface of the root and appear yellowish or brown depending on maturity. Once the cysts have 

matured, they turn brown and fall off the root. 

GEOGRAPHICAL DISTRIBUTION  AND LOSSES 

SCN is thought to be a native of Asia and has been a problem in China and northeastern Asian coun

tries for centuries. The first documented report of damage by the SCN (H. glycines Ichinohe) was by 

S. Hori in Japan in 1915 (Davis and Tylka 2000). SCN was first reported in the United States in 1954 

in North Carolina—an area known to import flower bulbs from Japan. It then spread with the expan

sion of soybean in the soybean belt (Illinois, Indiana, Iowa, Minnesota, Ohio, Missouri, Wisconsin) 

and adjacent states in the United States. Currently, this nematode causes more than U.S. $1 billion 

yield losses annually in the States alone, making it the most economically important pathogen on soy

bean (Liu et al. 2012). A 4-year study (2006–2009) done in the United States revealed that SCN (H. 
glycines) caused annual losses of $1.286 billion (128.6 million bushel). The SCN caused more yield 

losses than any other disease during 2006–2009 (Koenning and Wrather 2010). Yields may decrease 

slowly for a number of years as the population of SCN increases in the soil and infection of roots 

increases. SCN was detected in Colombia, South America, in the early 1980s and was soon thereafter 

found in Argentina and Brazil—two of the world’s important  soybean production countries. Yield 

losses can reach 100% in Brazil (Dias et al. 2009). The mean yield is reported to be 48% greater for 

the resistant cultivar compared with the susceptible cultivar in Iran (Heydari et al. 2012). SCN has 

also been reported from Egypt and Italy. In a survey of the top 10 soybean-producing countries in the 

world, SCN has been found to be the most damaging pathogen of soybean. 

The penetration, feeding, and reproduction in soybean roots by the nematode result in direct 

yield losses and also allow other diseases to invade soybean roots. SCN can reduce soybean yield 

by more than 30% with no aboveground symptoms. When SCN infestation is severe, plants can 

become stunted and chlorotic and in some cases die resulting in up to 100% yield losses. In addi

tion to causing yield loss directly, SCN also interacts with other pathogens (F. virguliforme and  

Phialophora gregata) making other diseases (SDS and BSR) worse during the same crop season. 

PATHOGEN: H. glycines ICHINOHE 

Classification 
Kingdom: Animalia 

Phylum: Nematoda 

Class: Chromadorea 

Order: Tylenchida 

Family: Heteroderidae 
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Subfamily: Heteroderidae 

Genus: Heterodera 
Species: glycines Ichinohe 

The disease is caused by a microscopic roundworm, the plant-parasitic nematode, that changes 

shape as it goes through its life cycle, which forms cysts (overwintering structures) on soybean 

roots. Like all nematodes, the SCN (H. glycines) has six life stages—egg, four juvenile stages 

(J1–J4), and the adult stage. The duration of the SCN life cycle runs from 3 to 4 weeks, but this 

may be influenced by environmental conditions (mainly adequate temperature and moisture). The 

first-stage juvenile occurs in the egg; the worm hatches from an egg in the soil to produce the 

second-stage juvenile, or J2, nematode. The J2 is worm shaped, 375–520 μm long, and about 18 μm 

in diameter. It is the only life stage that can penetrate roots, and the third and fourth stages occur in 

the roots. The J2 enters the root moving through the plant cells to the vascular tissue where it feeds. 

The J2 induces cell division in the root to form specialized feeding sites. As the nematode feeds, in 

the root, juveniles become males or females and swell. SCN adults are sexually dimorphic, mean

ing that they are dissimilar in appearance. The females are swollen and sedentary, and the males 

are vermiform (worm shaped) and motile. The female eventually becomes flask shaped (0.4 mm in 

length × 0.12–0.17 mm in diam) and swells so much that its posterior end bursts out of the root and 

it becomes visible to the naked eye. In contrast, the adult male regains a wormlike shape (1.3 mm 

long × 30–40 μm in diam) and it leaves the root in order to find and fertilize the large females. 

Higher percentage of males is produced when the nematodes or host plants are under stress. Males 

do not feed, but they are required for sexual reproduction (copulation) with females that are exposed 

on the root surface. The male and juvenile stages must be extracted from soil or plant roots to be 

viewed under a microscope. 

The fully developed yellowish-brown lemon-shaped female (0.6–0.8 mm in length × 0.3–0.5 mm 

in diam) after fertilization continues to feed as it lays 200–400 eggs in a yellow gelatinous matrix, 

forming an egg sac, which remains inside in its body, but some eggs may be laid in a gelatinous 

matrix extruded from the posterior (vulva) of the female. The female then dies. Eggs in the  gelatinous 

matrix may hatch immediately, and the emerging second-stage juveniles may cause new infections. 

Subsequently as the gravid female dies, its cuticle becomes a brown, hardened structure (the cyst) 

that encases and protects hundreds of viable eggs. Cysts often fall from roots and remain free in 

the soil. 

About 21–24 days is required for the completion of the life cycle of the nematode. Depending 

upon the environment, several generations of SCN can be completed in a typical soybean-growing 

season. A significant proportion of eggs that are retained within cysts are in a dormant state— 

they do not hatch until soybeans are planted for the next growing season. The overall body of the 

nematode is covered by a flexible, outer cuticle. The outside of the cuticle has a series of fine rings 

(annulations) that allow the cuticle to bend at any point along the nematode’s body. The cuticle is 

composed mainly of the structural protein collagen, and the cuticle is molted four times to allow 

growth and maturation of the nematode. The head of the nematode can be recognized by the pres

ence of a short, dark spear with basal knobs (the stylet) just inside the tip of the head. The stylet 

is hollow (like a hypodermic needle) and protrudes from the head when used by the nematode for 

feeding from plant cells and penetrating plant tissues. The very outer tip of the nematode head above 

the stylet (called the lip region) is slightly elevated, rounded, and darkened in J2 of SCN. In a rela

tively clear area just below the stylet, a round, muscular pumping organ called the metacorpus can 

be seen—the metacorpus pumps substances (i.e., food and secretions) up and down the esophagus 

of the nematode. Just below the metacorpus is another relatively translucent area that contains three 

esophageal glands that overlap the nematode’s intestine on the ventral (stomach) side of its body. 

The intestine can be recognized as a fairly long, dark area extending from the esophageal glands to 

the tail of the nematode. The tail of SCN J2 tapers uniformly to a fine, rounded tip that is hyaline 

(Davis and Tylka 2000). 
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EPIDEMIOLOGY  AND DISEASE CYCLE 

Main source of survival of cyst nematode is the cyst. Eggs within the cyst can survive for 10 or 

more years. As with many plant-parasitic nematodes in soil, SCNs do not move far from the root 

zone. In most cases, the natural migration of SCN within a field is defined as contagious—small 

patches of infested areas that gradually enlarge to encompass significant areas of disease. The cysts 

are usually spread along with soil adhering to farm implements or anything that is contaminated 

with infested soil including seed-size clumps of dried soil within contaminated seed stocks. Surface 

drainage water, compost, shoes and feet of workers, movement of animals, and wind-borne dry 

soil are important means of spread. Even waterfowl and other birds feeding in infested fields may 

ingest cysts and carry them considerable distances. Diseased areas become much more pronounced 

in sections of soybean fields that are under environmental stress. It is possible that many soil fac

tors may affect SCN reproduction and soybean yield loss, but only two soil factors are commonly 

associated with SCN damage and population densities—soil texture and soil pH. SCN is capable of 

infesting soils of all textures, but symptoms and yield loss generally are greater in sandy soils than 

medium- and fine-textured soils. SCN-infected roots are stunted and lack fine roots and, thus, can 

explore much less soil for water and nutrients than healthy roots. Also, coarse-textured soils do not 

hold water and some nutrients as well as medium- or fine-textured soils and SCN seem to cause 

greater damage to plants stressed by other factors, such as lack of water and/or minerals. The SCN 

population densities are more strongly related to high-pH soils (Rogovska et  al. 2009, Pedersen 

et al. 2010). Among the microelement treatments, FeCl3·6H2O is the best one to inhibit J2 survival 

with the lowest value of LC50 (Zheng et al. 2010). A combination of soil compaction and real-time 

PCR enables rapid and sensitive quantification of SCN eggs in soil (Goto et al. 2009). SCN does not 

produce cysts containing eggs at a soil temperature of 33°C, although it does produce eggs at 25°C 

and 29°C. At soil temperature above 33°C for 200 h or longer, the egg reproduction ratio is signifi

cantly suppressed. After cultivation of resistant Peking, the egg number in the soil is significantly 

suppressed compared to that after Fuki (Uragami et al. 2005). 

SCN has been reported to parasitize a broad range of host plants, encompassing nearly 150 

legume and nonlegume genera representing 22 plant families. Several SCN host species are com

mon winter annual weeds in U.S. soybean. The influence of winter annual weed management on 

SCN population densities has received little attention to date and warrants further investigation 

(Johnson et al. 2008). The SCN shows considerable degree of pathogenic variability all over the 

soybean-growing countries in the world (Dias et  al. 2005, Rocha et  al. 2008, Afzal et  al. 2012, 

Asmus et al. 2012, Matsuo et al. 2012). This variability is large in Brazil, where 11 races (1, 2, 3, 

4, 4+, 5, 6, 9, 10, 14, and 14+) have been found. Races 4+ and 14+ are found only in Brazil and 

differ from the classical 4 and 14 races, respectively, for their ability to parasite Hartwig, a North 

American soybean cultivar previously resistant to all races (Dias et al. 2009). Races are character

ized by their ability to reproduce on certain soybean varieties. A system of designating races using 

the four differentials (Pickett, Peking, PI 88788, and PI 90763) has increased the number of poten

tial races to 16 in the United States (Anonymous 2000). 

When susceptible crop is planted, some hatching factor from the roots induces release of larvae. 

Hatching and emigration of larvae take place actively as a result of rise in temperature followed by 

host penetration and infection. The most rapid development and greatest female production occur 

between 20°C and 28°C. Male and female ratios do not differ in this range (Melton et al. 1986). 

However, the male-to-female ratio is the highest at 30°C–35°C (Rocha et al. 2008). Host penetration 

and infection occurs at a constant temperature of 20°C–22.2°C (Wang et al. 2009). These nema

todes invade the root and partially reorganize root cell function to satisfy their nutritional demands 

for development and reproduction. After SCN hatch from eggs, the infective second-stage larvae 

penetrate primary roots or apical meristems of secondary roots. The larvae pierce their stylets into 

and feed off cells of the cortex, the endodermis, or the pericycle, causing the enlargement of these 

cells. The group of enlarged cells are called syncytia and serve as feeder cells for the nematode. 
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Syncytia often inhibit secondary growth of both phloem and xylem. Because a short portion of 

a root may be attacked by many larvae, the large number of syncytia that develop reduces the 

conductive elements and results in poor growth and yield of soybean plants, especially under stress 

of moisture (Wang et al. 2000, Alkharouf et al. 2006). 

DISEASE MANAGEMENT 

Once established in a field, SCN cannot be eradicated. However, there are various practices that can 

be implemented individually or in an IPM program to minimize SCN population densities at low to 

medium levels and maximize soybean yields in infested fields. 

Host Plant Resistance 
Effective management of this pathogen is contingent on the use of resistant cultivars. The genetic 

resistance is the most economical and accepted SCN control method by growers. Cultivars resistant 

to SCN can show greater yields in both high- and low-yielding environments and provide greater 

yield stability. These data support the selection of new cultivars that yield well at multiple loca

tions and specifically cultivars with resistance to SCN for fields infested with SCN as a method to 

increase yield and yield stability (de Bruin and Pedersen 2008). However, host resistance must not 

be the only option because of the high genetic variability of the pathogen. This variability is large 

in most soybean-growing areas in the world (Dias et al. 2009). 

Although more than 100 PIs (exotic varieties) have been identified with resistance to one or more 

SCN population designations, current resistant varieties trace to only a few PIs such as Pickett, 

Peking, PI 437654, PI88788, and PI 90763 from the soybean germplasm collection, which is also 

referred to as Hartwig resistance or the branded CystX® resistance (Anonymous 2008). The most 

widely used source of resistance is PI 88788. Because of the spread of multiple SCN races in 

Hokkaido, the Tokachi Agricultural Experiment Station (Japan) has bred soybeans for SCN resis

tance since 1953 by using two main resistance resources PI84751 (resistant to races 1 and 3) and 

Gedenshirazu (resistant to race 3) (Suzuki et al. 2012). It is confirmed that race 1 resistance in 

PI84751 is independently controlled by four genes, two of which are rhg1 and Rhg4. Suzuki et al. 

(2012) further classified the PI84751-type allele of Rhg1 as rhg1-s and the Gedenshirazu-type allele 

of Rhg1 as rhg1-g. I. 

Having a variety with the correct source of resistance is the first step. Knowing the level of resis

tance is the second, and equally important, step. The level of resistance is given by the female index 

or resistance designation. In a general sense, the level of resistance is determined by how many 

resistance genes the variety has inherited from the original source of resistance. Both the source of 

resistance and the level of resistance are important for managing SCN in a field. 

Resistance is described by no or limited reproduction of an SCN population on a given variety or 

genotype of soybean. This resistance is due to several (two, three, four, or more) genes being present 

and interacting in a soybean genotype. Soybean varieties labeled as resistant to SCN vary greatly in 

yield and in control of SCN. Both are determined by the genetics of the soybean variety and also the 

genetics of the SCN population in the field. The results of an HG-type test indicate how well a popu

lation will be controlled by the various sources of resistance used to develop soybean varieties. It is 

important to understand that the SCN designation describes the reaction of a population or group 

of individual nematodes with different genotypes to a source of resistance. Most field  populations 

actually contain individual nematodes that would have different designations, but the population 

designation describes the average or majority reaction of the individual nematode genotypes in that 

population (Niblack et al. 2002). SCN-resistant varieties offer significant yield advantages (as much 

as 50% or more) over susceptible varieties when grown in heavily infested soil. However, variability 

of the pathogen enables some individuals to reproduce on resistant varieties thus making them less 

effective. To reduce the possibility of this happening, some researchers recommend that growers 

alternate the use of the soybean cultivars with different sources of SCN resistance and also that a 
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susceptible cultivar be grown once after all types of available resistance have been rotated. As far 

as possible, SCN-resistant varieties with other needed defensive traits, such as tolerance to iron 

deficiency chlorosis or resistance to SDS or Phytophthora root rot, should be preferred. 

The HG-type test (HG represents H. glycines, the scientific name for SCN) is designed to give 

practical information about how well an SCN population in a field can reproduce on the various 

sources of SCN resistance. The HG-type system that has replaced the race system indicates which 

genetic sources of soybean resistance any given population of SCN can infect. 

What population designation (race or HG type) represents the population of SCN individuals in 

the field is important to know. The most common population designation, for example, in Minnesota, 

is race 3 (one of 14 HG types). Knowing the population designation in a field is necessary in order to 

know what source of SCN resistance in the soybean would be most effective for that field (Niblack 

et al. 2002, Niblack 2005). Since 2003, the HG-type test has been adopted to replace the race test. 

This new test includes seven sources of resistance (germplasm lines) and the results are shown as 

a percentage, indicating how much the nematode population from a soil sample increased on each 

of the seven lines. This test indicates which sources of resistance would be good for the field being 

tested and which would be poor. Since the genetic sources of resistance are limited in commercially 

available soybean varieties, it is important to rotate these sources of resistance to delay the buildup 

of a virulent SCN population. Shift in virulence of SCN is associated with use of resistance from PI 

88788. Rotation with alternative sources of resistance is recommended as a means to slow the adap

tation to PI 88788 (Niblack et al. 2008). To delay SCN populations developing the ability to repro

duce on SCN-resistant soybean varieties, producers should grow varieties with different sources of 

resistance in different years. If it is not possible to obtain the seed of an SCN-resistant variety with a 

source of SCN resistance different from what had been previously been used, rotate among different 

SCN-resistant varieties with the common source of SCN resistance, PI 88788 (Anonymous 2008). 

The most common strategy applied by soybean genetic breeding programs in Brazil to introduce 

SCN resistance has been the selection of lines derived from populations resulting from crosses includ

ing adapted genotypes and North American cultivars with resistance derived from Peking (Sharkey, 

Centennial, Padre, Forrest, Gordon, among others) and/or the PIs 88788 (Bedford, Linford, Fayette, 

Leflore, etc.), 90763 (Cordell), and 437654 (Hartwig). The resistant cultivars are being developed 

along with the progress of the breeding programs and they, in turn, begin to replace with advantages 

of the North American resistant sources. Presently, there are about 50 soybean cultivars resistant to 

SCN in Brazil (Dias et al. 2009). Soybean germplasm lines S01-9364 (Reg. No. GP-350, PI 646156) 

and S01-9391 (Reg. No. 351, PI 646157) have value as parents in soybean improvement programs 

because of their broad resistance to SCN (H. glycines) populations (Liu et al. 2012). 

Molecular Breeding for Resistance to SCN 
Molecular mapping of QTL for resistance to SCN and MAS for breeding for SCN resistance have 

proven useful in order to assist in the development of SCN-resistant soybean cultivars at many major 

soybean breeding research institutes in the world (Arelli et al. 2010, Delheimer et al. 2010, Carter 

et al. 2011, Ferreira et al. 2011, Kim et al. 2011, Liu et al. 2011a,b, Mazarei et al. 2011, Vuong et al. 

2011, Wu and Duan 2011, Arriagada et al. 2012, Yuan et al. 2012). 

Recent advances in H. glycines genomics have helped identify putative nematode parasitism 

genes, which, in turn, will aid in the understanding of nematode pathogenicity and virulence and 

may provide new targets for engineering nematode resistance (Niblack et  al. 2006). Real-time 

QPCR has been developed for screening for resistant cultivars, which can serve as a prelude to 

differentiation of resistance levels in soybean cultivars. With the QPCR assay, the time needed 

to differentiate highly resistant cultivars from the rest is reduced (Lopez-Nicora et al. 2012). This 

QPCR assay has the potential to replace the traditional female index-based screening and improve 

precision in determining infection levels. 

Methods for MAS for SCN resistance have been identified (Young and Mudge 2002). Yields of 

the resistant cultivars are greater than those of the susceptible cultivars, except for the Peking source. 
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Compared with the susceptible cultivars, cultivars with H. glycines resistance from PI 88788 give 

a 13% increase in yield associated with a 15% increase in growth during R1–R5 growth stages. In 

cultivars with resistance from Hartwig, a 6% increase in yield is associated with a 4% increase in 

R1–R5 growth stages duration and increased seed-set efficiency. This work demonstrates that yield 

increases due to resistance to H. glycines can be attained by different physiological mechanisms 

associated with the different resistance sources and probably are controlled by different genes. This 

opens the possibility of pyramiding genes conferring resistance by different mechanisms (Rotundo 

et al. 2010). Recent advances in the study of the interaction between soybean and SCN at the genetic 

and genomic levels have been reviewed (Mitchum and Baum 2008). A total of 17 QTL mapping 

papers and 62 marker-QTL associations have been reported for resistance to SCN in soybean. SCN-

resistant QTLs have been classified into three categories: suggestive, significant, and confirmed. 

Confirmed QTLs are credible and can be candidates for fine mapping and gene cloning. QTLs on 

linkage groups (LGs) G, A2, B1, E, and J are classified as confirmed. QTLs on LGs B2, C1, C2, 

D1a, D2, L, M, and N are classified into suggestive or significant. A relationship between soybean 

QTLs and SCN races has been reviewed (Guo et al. 2006). 

Soybean PI 404198A is one of the newly identified sources that can provide a broad spectrum of 

resistance to SCN. QTL has been identified to be associated with resistance to SCN races 1, 2, and 

5 in PI 404198A. LGs G and A2 are associated with resistance to race 1. Soybean PI 404198A may 

carry rhg1 on LG G, Rhg4 on LG A2, and a QTL on LG B1 (Guo et al. 2006). A SNP linked to 

the QTL of SCN resistance has been validated by comparing sequences amplified from Hartwig, a 

broad-based SCN-resistant line, and Williams 82, an SCN susceptible line (Gua et al. 2005, 2006). 

Chemical Control 
Chemical control with nematicides is not normally used because the economic and environmental 

costs are prohibitive. There are a few nematicides that are labeled for use against SCN, including 

the fumigant 1,3-dichloropropene (Telone) and the nonfumigants aldicarb (Temik or Bolster) and 

oxamyl (Vydate). When applied at planting, the effect of the nematicides may last long enough to 

provide an economic yield benefit (Schmitt et al. 2004). The performance of the nematicide will 

depend on soil conditions, temperatures, and rainfall. Yield and economic benefits generally are not 

guaranteed, but the chemicals are suggested to be applied at the soil depths of 5–15 cm, which can 

last for 1 month after soybean-seedling emergence for the effective management of the nematodes 

(Wang et al. 2009). Supplementing resistance with chemicals may improve soybean yield and/or 

nematode management, so a nematicide application, Aldicarb, {aldicarb[2-methyl-2 (methylthio) 

propionaldehyde O-(methylcarbamoyl) oxime]}, when included in the schedule, increases total plant 

biomass by 9% during R1–R5 soybean growth stages. 

Cultural Control 
SCN cannot reproduce if host plants are not present. Hence cultural practices, such as crop  

rotation, are useful as an effective tactic for SCN management. Because SCN is an obligate 

parasite (requires a living host), a crop rotation involving SCN nonhost plants like corn, alfalfa, 

small grains,  sunflowers, flax, and canola can decrease the population of SCN (Jackson et  al. 

2005). For example, annual rotation of resistant soybean and corn results in the lowest SCN popu

lation density and produces the highest yield of both crops (Chen et al. 2001, 2007, Chen 2007). 

Similarly, the 2-year corn–soybean rotation generally results in increased soybean yield, decreased 

winter annual weed growth, and reduced SCN population density in comparison to when soybean 

is followed by soybean (Mock et al. 2012). In the North Central region of the United States, corn 

is almost exclusively used as a nonhost rotation crop with soybean (Miller et al. 2006). However, 

the data suggest that a single year of rotation of soybean with any other crops like sunflowers and 

flax before planting a susceptible soybean may not be sufficient in managing SCN (Miller et al. 

2006). SCN-resistant soybean  cultivars often are incorporated into a multiyear cycle of rotations 

with nonhost crops—this combination of practices is an excellent integrated management strategy 
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(Kulkarni et al. 2008, Dias et al. 2009). A certain percentage of SCN individuals can reproduce 

on resistant varieties. If sources of resistance are not rotated, these individuals can produce a SCN 

race shift. This will reduce the effectiveness of genetic resistance available in commercial soybean 

varieties. 

Plants that have adequate moisture and nutrients are better able to withstand infection by SCN. In 

land infested with SCN, maintaining proper soil fertility and pH levels and minimizing other plant 

diseases, insect, and weed pests that weaken the plants are more critical to maximizing soybean 

yield than when land is noninfested. 

The movement of soil can be best managed by following sanitation practices. If only certain 

fields on a farm are infested, planting and cultivating of infested land should be done only after 

noninfested fields have been worked. Soil on equipment should be thoroughly removed with high-

pressure water or steam, if available, after working in infested fields. Also, seed grown on infested 

land should not be planted in noninfested fields unless the seed has been properly cleaned; SCN 

may be spread in the seed-size soil clumps mixed in with the seed (Davis and Tylka 2000, Schmitt 

et al. 2004, Donald et al. 2009). 

Poultry litter at rates of 8 tons/ha when applied to SCN-infested soil results in the highest reduc

tion in the number of SCN females and egg production (Lima et al. 2011). Anaerobically digested 

swine manure, which is actually the volatile fatty acid (VFA) manure, when applied to the soybean 

fields every 35 days, gives better results in reducing the SCN counts by 18%–34% (Xiao et al. 2007). 

Potassium fertilization at 150–600 mg/dm3 (Pinheiro et al. 2009) and shallow tillage have been 

found to be advantageous to decrease the SCN population and to promote the suppressive effects of 

nonhost or trap crops, such as maize, crotalaria, and red clover (Tazawa et al. 2008). 

Biological Control 
Cysts and eggs of SCN are often found infected with one of several fungi such as Fusarium, 

Verticillium, Neocosmospora, Dictyochaeta, and more recently Hirsutella minnesotensis and 

Hirsutella rhossiliensis (Schmitt et  al. 2004, Liu and Chen 2005). Biocontrol methods can play 

an important role in suppressing occurrence and damage of the nematodes (Chen et  al. 2011). 

H. minnesotensis and H. rhossiliensis are endoparasites of nematodes, and their biological control 

potential against H. glycines is well known (Liu and Chen 2005). In general, percentage reduction 

of egg population density in the soil is negatively correlated with soil pH and positively correlated 

with sandiness. There appears to be no or weak correlation between egg reduction and organic mat

ter. Soil pH and/or texture is important in influencing biocontrol effectiveness (Liu and Chen 2009). 

Verticillium chlamydosporium is another fungal BCA of SCN. Zn2+ stimulates the hatching of eggs 

of SCN. Cu2+, Mn2+, and Fe2+, however, decrease hatching and Cu2+ could, therefore, be applied as a 

supplement to the biological control formulation (Xing et al. 2002). H. minnesotensis isolates vary 

in their efficacy in reducing the nematode population (Qian et al. 2011). 

H. rhossiliensis controlled H. glycines more effectively in J2-infested soil than in egg-infested 

soil. Monitoring the population dynamics of a BCA in soil can be precisely studied with real-time 

PCR and bioassay (Zhang et al. 2008). Natural suppression of SCN exists and becomes increasingly 

attractive; however, ecological mechanisms leading to the suppressive state are rarely understood. 

Both bacteria and fungi are potentially involved in the soil suppressiveness to SCN: soil disturbance 

and biocide application may reduce natural soil suppressiveness that could be potentially associated 

with soil nematode community diversity and microbial enzyme activities (Bao et al. 2011). 

Certain species of arbuscular mycorrhizal (AM) fungi could effectively inhibit the infection 

processes of SCN. It is proved that the tested AM fungi could significantly decrease SCN damage, 

reduce disease severity, the number of cysts on roots, the number of cysts and the second-stage 

juveniles (J2) in the rhizospheric soil, and the number of eggs per cyst. Among the AM fungi 

tested, Glomus fasciculatum, Gigaspora margarita, and Glomus intraradices are much more 

effective than Glomus mosseae and Glomus versiforme against the infection process of SCN 

(Li et al. 2002). 
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Effect of Plant Extracts 
Mortality of SCN female induced by aqueous extract of the neem plant branches, leaves, and seeds 

is reported to be 99%, 97%, and 99.9%, respectively. The number of females on the root system 

when determined 30 days after the incorporation of 15 g of whole leaves/kg of soil or 10 g each 

of ground branches, whole seeds, and ground seeds/kg soil, the number of females recovered after 

incorporation of whole leaves, ground branches, whole seeds, and ground seeds has been found to 

be 1, 32, 9.1, and 0.8/root system, respectively, the differences being significantly different (5%). The 

number of females in the control roots could be 61, indicating the presence of toxic compounds in 

neem (Rodrigues et al. 2001). Overall, Lolium multiflorum is the most effective of all plant species 

tested for reducing populations of H. glycines, by increasing egg hatching of the nematode in the 

absence of a host, depleting lipid reserves of the juveniles, and inducing the lowest nematode para

sitism of all nonhost residues studied (Riga et al. 2001). 

OTHER DISEASES OF SOYBEAN 

BROWN SPOT 

Brown spot of soybean is caused by Septoria glycines Hemmi (teleomorph: Mycosphaerella uspen
skajae Mashkina & Tomilin) and occurs in most soybean-growing regions in the world particularly 

in Argentina, Brazil, China, Pakistan, and the United States. Angular RB spots that vary in size 

from a pinpoint to 1/5 in. may appear on the lower leaves. Infected leaves turn yellow and fall pre

maturely. In severely infected fields, the lower half of the plant may lose all its leaves. The primary 

infection source of S. glycines is mainly from conidia within pycnidia surviving in plant residues 

infected in the previous year. The infection of S. glycines may be limited by the duration of water 

retention on the leaf, with a period of at least 24 h required. Warm, moist weather and poor drainage 

favor the spread of the disease. Management measures include the use of disease-free seed, crop 

rotation, deep burial of crop residue, and use of strobilurin foliar fungicides at R3 growth stage 

(Mirza and Ahmed 2002, Mantecon 2008, Carmona et al. 2010, Cruz et al. 2010). 

DOWNY MILDEW 

The disease is caused by the fungus Peronospora manshurica (Naumov) Syd., which is of quar

antine significance (Singh et al. 2003). It is the most widespread disease of soybean in the world. 

First, symptoms appear as indefinite yellowish-green areas on the upper leaf surface. Later, these 

areas become light- to dark-brown spots with yellow-green margins (Figure 9.9). In years favorable 

FIGURE 9.9  Downy mildew of soybean. Note the initial symptoms on leaves. (Courtesy of Dr. Shrishail 

Navi, Iowa State University, Ames, IA.) 



 

 

 

 

 

 

 

 

 

 

 

406 Diseases of Edible Oilseed Crops 

for the development of the pathogen, yields of susceptible cultivars may be considerably reduced. 

Disease symptoms may be systemic and local. Most typical symptoms occur on leaves, in the form 

of chlorotic spots, which necrose and coalesce with time. Conidiophores and conidia grow over the 

reverse side of the leaf. P. manshurica survive through oospores, which reside on seeds and plant 

residues. In the course of the growing season, P. manshurica proliferates by conidia (Vidic and 

Jasnic 2008a). Management measures include the growing of resistant cultivars. Soybean cultivar 

AGS129 is resistant to downy mildew. Marker OPH-021250 has been found to be present in 13 of 

16 resistant soybean cultivars so investigated and absent in susceptible cultivars, thus confirming a 

potential for MAS for breeding for downy mildew resistance (Chowdhury et al. 2002). The use of 

healthy seed or seed treatment with fungicides based on metalaxyl, oxadyxil, and mancozeb could 

be useful in preventing the spread of inoculum through seed. 

PURPLE SEED STAIN 

This disease is caused by the fungus—Cercospora kikuchii (Matsumoto & Tomoyasu) M. W. Gardner. 

It is reported to occur in almost all soybean-growing regions in the world. This disease often appears 

late in the season and can cause leaf blighting and staining of the seed. Yield losses are often mini

mal, but a reduction in seed quality can occur due to staining. In most cases, 7%–13% reduction in 

emergence can occur in the field. Leaves often have red to purple lesions, less than 1 cm in diameter, 

which become noticeable in August or early September. Infected seed has a distinctive purple dis

coloration (purple seed stain), varying from violet to pale purple to dark purple over part or all of the 

seed coat (Figure 9.10). This discoloration is often confined to the upper two layers of the seed coat. 

Size of the discoloration may vary from a small spot to the entire seed surface. The pathogen attacks 

other plant parts and overwinters in diseased leaves and stems as well as in infected seed. Premature 

defoliation may occur when leaves are severely infected. When infected seeds are planted, the fun

gus grows from seed coats and infects seedlings. This serves as a primary source of inoculum. Wet 

weather during the growing season favors the development of the disease. RH above 80% and tem

perature from 20°C to 24°C are more favorable for the germination of conidia and disease develop

ment (Kudo et al. 2011). The fungus overwinters in diseased crop residue as well as on infested seed. 

There is a high degree of genetic variability and cercosporin production among isolates (Lura et al. 

2011), and the population genetic structure of C. kikuchii is different between South America and 

Japan (Imazaki et al. 2006a). The disease management involves using a variety with greater tolerance. 

Three genotypes, AG5701 (Asgrow), TV59R85 (Terral), and PI80837, are among the more resistant 

cultivars to the disease (Jackson et al. 2008, Cai et al. 2009). Clean seed and a fungicide (azoxystrobin 

or carbendazim) seed treatment crop rotation and removal of residue to reduce infection have been 

potentially useful strategies in disease management (Imazaki et al. 2006b, Prasanth and Patil 2007). 

FROGEYE LEAF SPOT 

FLS, caused by C. sojina K. Hara, is a common disease of soybean in most soybean-growing 

countries of the world. Significant yield losses of soybean (10%–60%) have been attributed to FLS 

under hot and humid growing conditions (Mian et al. 2008). This disease usually appears late in 

the growing season and the economic impact is usually minimal. The fungus infects leaves, stems, 

and pods but is most conspicuous on the leaf. Symptoms occur in midseason and then become more 

severe after flowering. On the leaf, it causes an eyespot lesion composed of a gray or tan central 

area surrounded by a narrow RB margins. Lesions are 1–5 mm in diameter with a tan center and a 

dark-red/brown border. Older lesions coalesce, and leaves may appear ragged or with a slight slit in 

the center of the lesion. Badly infected leaves fall prematurely. The fungus is seed borne and also 

overwinters in residue and causes weak seedlings. 

Eight genotypes such as ID, LMD, NLC, DI, PLLA, Cristalina, Davis, and Uberaba are the 

most resistant. The additive, dominant and epistatic genetic effects are important for the expression 
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FIGURE 9.10 Purple seed stain of soybean. Note the symptoms on leaf (a) and seed stain discoloration (b). 

(Courtesy of Dr. G.K. Gupta, ICAR-Directorate of Soybean Research, Indore, India.) 

of resistance, although the additive genetic effect is reported to be the most important component. 

These cultivars can be recommended as parents in soybean breeding programs for enhanced resis

tance to C. sojina (Gravina et al. 2004). Advances in research on soybean resistance and inheritance 

and breeding of resistance against the fungal pathogen C. sojine  [C. sojina] have been reviewed 

(Cao and Yang 2002). Results demonstrate that the resistance to C. sojina is controlled by a domi

nant gene or a gene block; additive genetic effect and dominance are involved; the effect of the 

environmental variation is minimum; and the interaction among the genes ranges from the partial 

to the complete dominance type, depending on the characteristic used in the evaluation of the resis

tance (Martins Filho et al. 2002). Advances in research on soybean resistance and inheritance and 

breeding of resistance against the fungal pathogen C. sojine  [C. sojina] have been reviewed (Cao 

and Yang 2002). C. sojina is a dynamic pathogen with extensive virulence or race diversity. Twelve 

differentials and 11 races of the pathogen have been identified, which should provide the founda

tion for the identification and comparison of additional soybean resistance genes and new races of 

C. sojina (Mian et al. 2008). Management measures include planting disease-free seed and plowing 

under crop residue and crop rotation with nonhosts, such as corn or wheat. 
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SCLEROTIUM BLIGHT (SOUTHERN BLIGHT) 

Southern blight or southern stem blight is caused by the fungus S. rolfsii Sacc. This fungus survives 

in the soil on organic matter, is favored by hot weather stress, and is recognized by the appearance 

of white mold on stems at the soil surface causing rotting of stems and roots. Small tan to brown, 

mustard seedlike fruiting bodies (sclerotia) are produced within the white mold growth (Figure 9.11). 

The disease is most often seen in June, July, and August during very wet periods. Southern blight 

Sclerotial blight (Sclerotium rolfsii) 

(a) 

(b) 

FIGURE 9.11  Sclerotium blight of soybean. Note the presence of fungal growth and mustard seedlike  

sclerotia on affected plant. (a) White cottony mats of mycelium of pathogen in collar region of seedlings. 

(b) Reddish-brown sclerotia of pathogen on lower portion of stem of seedling. (Courtesy of Dr. G.K. Gupta,  

ICAR-Directorate of Soybean Research, Indore, India.) 
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is very common in fields with moderate to high levels of root-knot nematode (RKN). Occurrence 

of southern blight in a field is erratic and generally only individual plants are affected. However,  

in some instances, large numbers of plants may be killed. Plants may be affected at any stage of 

growth. The first symptom is sudden wilting and subsequent death. The sclerotia are the resting 

stage of the fungus and will persist in the soil for years. The fungus occurs widely in many soils and 

is capable of persisting on almost any type of organic matter. On the basis of oxalic acid (OA) pro

duction in culture filtrates and pathogenicity on different soybean varieties (cvs. Improved Pelican, 

Lee, Hardee, and Bragg), the isolates have been grouped into 12 races. Race I is more dominant than 

other races and highly virulent to all the soybean varieties. There appears to be a positive correlation 

between OA production and the virulence of the isolates of S. rolfsii (Ansari and Agnihotri 2000). 

It  is  difficult to manage the disease. Seed treatment with some fungicides such as carboxin and 

thiram may be effective to limited extent. But integrated approach involving rotation with other 

crops such as cotton or corn and soil amendments with organic matter can be effective in reducing 

the inoculum of the pathogen. Dried powders of kudzu (Pueraria lobata), velvet bean (Mucuna 
deeringiana), and pine bark (Pinus taeda) each at the rate of 25 g/kg stimulate increases in popula

tions of antagonistic microorganism such as Trichoderma koningii and Penicillium citreonigrum and 

Penicillium  herquei and are useful in reducing the incidence of the disease (Blum and Rodriguez-

Kabana 2006b). Bacillus thuringiensis subsp. israelensis has been used to produce chitinase. The 

addition of chitinase (0.8 U/mg protein) causes increase in seed germination to 90%. B. thuringiensis 
chitinase may contribute to the biological control of S. rolfsii and other phytopathogenic fungi in 

soybean seeds in IPM programs (Reyes-Ramirez et al. 2004). 

DIAPORTHE POD  AND STEM BLIGHT/PHOMOPSIS SEED MOLD 

A complex of soybean diseases is caused by Diaporthe/Phomopsis species (D/P complex). 

D/P complex is grouped into two major taxa: Diaporthe phaseolorum var. sojae (Lehman) Wehm. 
(anamorph = Phomopsis) and Phomopsis longicolla Thomas W. Hobbs., which are described 

as soybean pathogens. The first species includes three varieties: D. phaseolorum var. sojae 
( anamorph: P. sojae), the causal agent of pod and stem blight, and D. phaseolorum var. caulivora 
and D.  phaseolorum var. meridionalis, agents of northern and southern stem canker, respectively. 

In addition to distinguishing interspecific and intraspecific variability, molecular markers allow the 

detection of differences among isolates within the same variety (Pioli et al. 2003). D. phaseolorum 
var. caulivora (northern stem canker) is the most economically important because it causes wilt 

and drying of plants during pod development and grain filling. Prematurely wilted plants yield 

50%–62% less than healthy plants. P. longicolla is the most common and most damaging agent 

of soybean seed decay. The diseases caused by parasites from this D/P complex genus were first 

observed and described on soybean in the United States. Presently, they are widespread in most 

soybean production regions around the world (Li et al. 2004, Santos et al. 2011, Vidic et al. 2011). 

Pod and stem blight is caused by the fungus D. phaseolorum var. sojae (sexual stage) also known 

as P. longicolla (asexual stage). Although plants are infected early in the season, symptoms do 

not become apparent until after midseason. The disease is identified by the numerous small, black 

fruiting bodies (pycnidia) appearing on stems and pods of infected plants. The pycnidia are arranged 

in linear rows on the stems, which is a useful diagnostic criterion to differentiate it from the brown 

spot and anthracnose diseases symptoms and signs. The pycnidia of the brown spot  fungus and 

acervuli of anthracnose fungus do not occur in rows. RAPD and PCR-RFLP showed that significant 

variability exists within the population of D. phaseolorum var. sojae. Infected harvest residues and 

soybean seeds are the main sources of pathogen inoculum. Humidity and temperature (soil and air) 

are the main factors that affect the dynamics of fruiting body formation, spore release, establishment 

of infection, and the development of disease symptoms in soybean. The fungus infects seed and 

causes them to be shriveled, moldy, and smaller than normal. Seed may be infected but appear nor

mal. Seed infection is the most serious phase of the disease. When infected seeds are planted, the 
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embryo is often killed before emergence or the seedlings are killed at an early stage. Delayed 

harvest results in an increased incidence of the disease, especially if rain or humid weather and 

warm conditions prevail. At this period of time, the pathogen is predominantly present in its asexual 

stage, P. longicolla. P. longicolla is the primary agent of seed decay and latent infections of seed, 

although the other members of this genus may cause identical symptoms (Mengistu et al. 2009b). 

It is characterized by fine cracks that usually develop near the hilum of the infected seed. A white or 

gray mold may be visible on the seed surface. The yield, grade, viability, and vigor of the seed can 

be reduced. Yield losses occur because severely infected seeds remain small and light and may be 

lost during harvest and cleaning operations. Isolation of P. longicolla from seed is negatively cor

related with percentage of seed germination in irrigated environments but not in the nonirrigated 

environment (Mengistu et al. 2009b). The fungus overwinters in seed and crop debris. Spores of 

the fungus are splashed onto developing plants early in the season. Warm, wet, and humid weather 

during pod fill favors disease development. Varieties that mature late during the cool weather in the 

growing season or varieties that are short season for an area tend to mature earlier before environ

mental conditions become warmer and more favorable for seed mold should be preferred. Pod and 

stem blight can be controlled or reduced by integrating one or more of the control practices such as 

the use of planting pathogen-free seed, planting later, crop rotation, plowing under soybean debris, 

and a well-timed harvest. 

TARGET SPOT 

Target spot is caused by the fungus, Corynespora cassiicola (Berk. & M. A. Curtis) C. T. Wei. 

It is found in most soybean-growing countries, particularly in Brazil and the United States. It is 

considered to be a disease of limited importance, although its incidence is increasing all over the 

tropical and subtropical regions. Under favorable climate conditions, it can cause serious damage to 

soybean. It has become an economically important disease in Brazil in the recent past (Teramoto 

et al. 2013) and assuming increasing importance in the southeastern United States (Koenning et al. 

2006). Symptoms consist of the development of RB leaf lesions that are round to irregular varying 

from specks to mature spots, which are a centimeter or more in diameter. A dull green or yellowish-

green halo commonly surrounds the lesions, which often become concentrically ringed at maturity, 

hence, the name target spot. Severely affected leaves fall prematurely. Microscopic examination 

of the lesions can reveal the presence of spores (conidia) typical of C. cassiicola. Conidia mostly 

three to five septate with a central hilum at the base and may range in size from 7 to 22 wide × 39 

to 520 μm long. Dark-brown specks to elongated, spindle-shaped lesions form on the petioles and 

stems. Pod lesions are round and small but may enlarge and merge to cover the entire pod during 

wet or very humid periods. The fungus may sometimes grow through the pod wall and form small, 

blackish-brown lesions on the seeds. Large lesions form on the primary roots and growth of the 

secondary roots may be retarded. The Corynespora fungus overseasons in infected soybean debris 

and seeds and can survive in fallow soil for more than 2 years. The fungus can colonize a wide 

range of plant residues in soil as well as the cysts of the SCN. Leaf infections occur when free 

moisture is present on the leaves and the relative humidity is 80% or above. Heavy rainfall associ

ated with hurricanes enhances the disease incidence during September 2004 in the southeastern 

United States (Koenning et  al. 2006). Dry weather inhibits infection and colonization in both 

leaves and roots. Stems and roots first become infected in the seedling stage. Soil temperatures 

of 15°C–18°C are optimal for infection and disease development. The pathogen has an extremely 

wide host range and infects many plant species. There is an abundance of unrecognized genetic 

diversity within the species and provides evidence for host specialization on certain hosts such as 

papaya (Dixon et al. 2009). Management practices include the use of disease-resistant cultivars, 

sanitation involving destruction of crop residues, and avoiding soybean monoculture. Fungicides 

are rarely justified economically. Among the biological control agents, T. harzianum strain RMA-6 



 

 

 

 

  

 

   

   

 

   
    

 

   

 

  

      

 

 

 
 

 

411 Soybean Diseases 

and T. pseudokoningii strain HMA-3 are reported to be the most effective and can be potentially 

useful in target spot disease management in soybean (Kaushal 2009). 

SCLEROTINIA STEM ROT 

Sclerotinia stem rot (SSR) or White mold disease caused by Sclerotinia sclerotiorum (Lib.) deBary 

is prevalent in all soybean-growing regions in the world, being most important in temperate regions 

and under cool conditions, often at intermediate altitude. Local epidemics outbreaks of the disease 

have been reported from Argentina, Brazil, Canada, Serbia, and the United States, when weather 

conditions are favorable for disease development (Vidic and Jasnic 2008b, Alvarez et al. 2012). It is 

most damaging in years with frequent and abundant rains in the summer. In some fields, more than 

50% of plants are infected, causing significant yield reductions (Peltier et al. 2012). Symptoms occur 

on all aboveground plant parts in the form of thick, white, and soft mycelia and hence the disease is 

also referred to as cottony soft rot. The infected plant parts rot and the infected plants wilt and dry up. 

S. sclerotiorum is polyphagous. The fungus survives by sclerotia, which remain vital in the soil for 

several years. They germinate and give rise to the mycelium. Alternatively, under favorable weather 

conditions (humid and cool weather), bowl-shaped fruiting bodies (apothecia) form on the sclerotia. 

Infection follow colonization of injured or senescent tissue like flowers, cotyledons, or leaves, either 

by germinated ascospores from asci from the apothecia or directly from mycelium from sclerotia. 

S. sclerotiorum secretes OA and endo-polygalacturonase (endo-PG), which are  important pathogenic 

factors in host plants (Favaron et al. 2004). Symptoms first appear as a watery-soaked lesion fol

lowed by cottony growth on the affected plant part with the formation of black irregular-shaped scle

rotia. Epidemic development of the disease is favored by temperatures less than 21°C and secondary 

spread has been shown to occur at 18°C. Continuous moisture on leaves within the canopy or on 

infected flowers for a period of 48–72 h favors infection by ascospores. There is a potential for field 

to field dispersal of S. sclerotiorum and the majority of ascospores of S. sclerotiorum are deposited 

close to the source (apothecia), where a concentrated area or point source of S. sclerotiorum inocu

lum exists (Wegulo et al. 2000). Forecasting is based on soil moisture, canopy enclosure, senescing 

leaves, air and soil temperature, and the presence and number of apothecia. 

Long-term crop rotation (corn–soybean rotations and compost amendment (Rousseau et  al. 

2007, Vidic and Jasnic 2008b)) with no soybean tillage (Gracia-Garza et al. 2002) are currently the 

major methods of controlling this disease. However, 1 year of moldboard plowing will bury sclero

tia at least 10 cm in soil and delay the production of apothecia. How this affects SSR development 

depends on the other factors involved with disease development (Mueller et al. 2002). Fungicides 

such as thiophanate methyl are another option for the control of SSR but usually recommended 

in situations where susceptible cultivars must be grown or modification of cultural practices are 

not disease control options (Muller et al. 2004). The incidence of SSR can be reduced by plant

ing partially resistant cultivars and by implementation of cultural practices that limit pathogen 

activity. BCAs such as Coniothyrium minitans CON/M/91-08 (product name: ContansReg. WG), 

Streptomyces lydicus WYEC 108 (ActinovateReg. AG), T. harzianum T-22 (PlantShieldReg. 

HC), B. subtilis QST 713 (SerenadeReg. MAX) (Zeng et al. 2012), Sporidesmium sclerotivorum 
[= Teratosperma sclerotivora] (Rio et al. 2002), Clonostachys rosea BAFC3874 (Rodriguez et al. 

2011), and B.  amyloliquefaciens strains ARP23 and MEP218 (Alvarez et al. 2012) all have been 

proved to be very effective in reducing the inoculum potential and SSR incidence in soybean. 

Few genetic sources of resistance to the pathogen are available to breeders. Therefore, farmers 

have a continuing demand for new approaches to control the disease. The QTL associated with 

resistance to S. sclerotiorum in soybean genotypes PIs 391589A and 391589B have been identi

fied (Arahana et al. 2001, Guo et al. 2008). SSR markers associated with resistance QTL mapped 

for SSR resistance may be useful for marker-assisted breeding programs in soybean (Vuong et al. 

2008). Biotechnology opens a new avenue to manage this pathogen. Several strategies, including 



 

 
 

 

 

 

 

 

 

  

 

 

  

 
  

 

412 Diseases of Edible Oilseed Crops 

detoxification, defense activation, and fungal inhibition, have potential to engineer Sclerotinia 
resistance (Lu 2003). Enzymes capable of degrading OA have been utilized to produce transgenic 

resistant plants. Transgenic soybean lines containing the decarboxylase gene (oxdc) isolated from a 

Flammulina sp. have been produced by the biolistic process. Molecular analysis reveals successful 

incorporation of the gene into the plant genome and shows that the OA decarboxylase (oxdc) gene 

has been transferred to the progeny plants (Cunha et al. 2010). An oxalate degrading enzyme, oxalate 

oxidase (OxO), in transgenic soybean has provided white mold resistance equivalent to the best com

mercial cultivars in a white mold–susceptible background (Donaldson et al. 2001, Cober et al. 2003). 

RHIZOCTONIA AERIAL/FOLIAR BLIGHT 

Rhizoctonia aerial/foliar blight of soybean is reported to occur in tropical and subtropical areas 

worldwide. It is becoming increasingly more important in Brazil (Ciampi et al. 2005, 2008), North 

Korea (Kim et al. 2005), and the southern United States particularly in Louisiana and North Carolina 

(Stetina et al. 2006) during prolonged periods of high humidity and high temperatures. This disease 

of soybean occurs with high disease severity of 50%–75% in tidal swamp land in south Kalimantan 

in Indonesia (Rahayu 2014). It has been estimated that the disease can cause about 70% losses of 

foliage and soybean pods. Extensive yield losses (40%–50%) have been reported in soybean when 

conditions favor disease development. However, Meyer et al. (2006) recorded that Rhizoctonia foliar 

blight of soybean causes higher yield reductions in the range of 60%–70%. Foliar symptoms often 

occur during late vegetative growth stages on the lower portion of the plant following canopy clo

sure. Initially, leaf symptoms appear as water-soaked, grayish green lesions that turn tan to brown 

at maturity. The pathogen may infect leaves, pods, and stems in the lower canopy. RB lesions can 

form on infected petioles, stems, pods, and petiole scars. Long strands of weblike hyphae can spread 

along affected tissue and small, dark-brown sclerotia form on diseased tissue. Weblike hyphae of 

R. solani spreading along the stem of soybean becomes evident. 

The Basidiomycete fungus R. solani Kuhn anastomosis group (AG)-1 IA (Thanatephorus
 cucumeris (Frank) Donk) is a major pathogen foliar blight of soybean all over soybean-growing 

regions in the world. But R. solani AG1-IB and AG2-3 are also reported to be the causes of foliar 

blight of soybean in Japan (Meyer et al. 2006). The pathogen overwinters as sclerotia in soil or 

plant debris from the preceding crop. During warm, wet weather, mycelium spreads extensively on 

the surface of plants, forming localized mats of webbed foliage. Spread from these localized areas 

can be rapid when conditions favor disease (high RH and 25°C–32°C). Because this pathogen also 

causes sheath blight of rice, soybean fields that follow rice with a history of sheath blight are likely 

to have high incidence of aerial blight. There is little host resistance to R. solani in soybean, but 

some cultivars are less susceptible than others. Planting the least susceptible and best adapted culti

var, rotating it with poor or nonhost crops such as corn or grain sorghum for 2 years, and avoiding 

narrow row widths and high plant populations are good management practices. When aerial blight 

is present in highly susceptible cultivars and environmental conditions are favorable for disease, 

preventive fungicide (strobulirin) applications are the most effective treatments in disease manage

ment. Several BCAs including Trichoderma species have been reported to be potentially useful 

in disease management. Nonpathogenic binucleate Rhizoctonia spp. (BNR) on the biocontrol of 

diseases caused by R. solani on many crops has been reported in the literature. BNR can induce 

resistance on soybean against the foliar blight caused by R. solani anastomosis group (AG) 1 IA 

(Basseto et al. 2008). 

POWDERY MILDEW 

Powdery mildew caused by the fungus Microsphaera diffusa Cooke & Peck (syns. Erysiphe polygoni 
DC and E. glycines F. L. Tai) is a minor but common disease of soybeans in many soybean-growing 

regions of the world particularly in Brazil (Knebel et al. 2006, Araujo et al. 2009) and the United 
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States (Grau 2006a) and under greenhouse conditions. In its early stages, powdery mildew may be 

recognized by the presence of small colonies of thin, light-gray or white fungus spreading rapidly on 

the upper surface of the leaf. Reddening of the underlying leaf tissue sometimes is evident. In time, 

the whitened areas of fungus enlarge but seldom coalesce to cover all the leaf surface. Many white, 

powdery patches form on both leaf surfaces and on the stems and pods about midseason. These 

areas may enlarge to cover much of the aboveground plant parts. Photosynthesis and transpiration 

are drastically reduced. On very susceptible cultivars, severely affected leaves may turn yellow, 

wither, and drop prematurely. Heavily infected pods usually contain shriveled, deformed, undevel

oped, and flattened seeds. However, the soybean seeds do not become infected. Soybean planted 

late for a region will lose more yield to powdery mildew than early-planted soybeans. Yield losses 

ranging up to 14% have been attributed to the disease during certain years when cooler than normal 

temperatures prevail from flowering to maturity. 

Infection occurs when microscopic asexual spores (conidia) land, germinate, and penetrate the 

epidermal cells. The conidia form several germ tubes, with the first attaching itself to the cells via 

an anchorage structure (appressorium). A thin filament (infection peg) forms under the appresso

rium and penetrates the host epidermis. This gives rise to the first feeding structure (haustorium), 

the only fungus structure found inside the host cells. The rest of the fungus body, or mycelium, 

grows superficially over the epidermal cells. Conidiophores (asexual fruiting structures) soon 

develop, giving rise to chains of conidia. Wind-borne conidia start new infections and repeat the 

disease cycle continuously until soybean plants tissues are available. Cool weather (18°C–24°C) 

favors  disease development, while temperatures above 30°C arrest the growth and reproduction of 

the fungus. During rainy periods, conidia are washed away, temporarily delaying the secondary 

spread of the fungus. Speck-sized, black fruiting bodies (cleistothecia) sometimes are produced in 

mildew colonies late in the fall. Inside the cleistothecia, yellow ascospores (sexual spores) are pro

duced in saclike structures called asci. It is believed that ascospores are released in the spring and 

serve as primary inoculum. 

The only economical management method is to plant resistant soybean varieties. Certain variet

ies are susceptible in the seedling stage and express resistance about flowering time while others are 

resistant throughout their lifetime. A single dominant gene has been identified in soybean genotype 

PI 243540 that provides season-long resistance to powdery mildew, and the powdery mildew domi

nant resistance gene in PI 243540 has been mapped with PCR-based molecular markers. The map 

position of the gene is slightly different from previously reported map positions of the only known 

Rmd locus, which is tentatively called Rmd_PI243540, near the previously known Rmd locus on 

chromosome 16. The molecular markers flanking the gene will be useful for MAS of this gene 

(Kang and Mian 2010). 

The yield increase due to fungicidal treatments such as thiophanate methyl is usually higher in 

soybean cultivars that are susceptible to powdery mildew (Hoffmann et al. 2004). Sewage sludge 

increments elicitation of phytoalexins in soybean and the severity of powdery mildew is reported 

to be reduced with an increase in the concentration of sludge in the soil and substrate (Araujo and 

Bettiol 2009). 

PHYLLOSTICTA LEAF SPOT 

Phyllosticta leaf spot or leaf blight, caused by Phyllosticta sojiecola Massai (syn. P. glycines) and 

teleomorph Pleosphaerulina sojicola Miura, is a minor disease of soybean crop, rarely spreading 

beyond the first few trifoliate leaves. This fungal disease occurs throughout the soybean-growing 

regions in the United States (Yang 2002). The irregular marginal leaf scorch symptom exhibited on 

the lower leaves has been identified as Phyllosticta leaf spot. The infection starts at the leaf margin 

and progresses inward, forming an irregular, V-shaped area. Random leaf spots may also accom

pany the marginal necrosis. Numerous small, black specks (fungus fruiting bodies, or pycnidia) 

form in older lesions. The fungus may grow from the leaf blades into the petioles and then to 
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the stipules and stem tissues at the leaf scar. Superficial, light-gray, tan, or brownish lesions with 

a narrow, brown, or purplish border may form on the petioles, stems, and pods. With cool and 

moist conditions, pods and seeds can be infected, causing seed discoloration. The fungus produces 

numerous small spores, which can spread to healthy leaves and plants, thereby causing new infec

tion. The fungus can survive on seeds and can be spread with infected seeds. If it is prevalent in 

seed fields, a seed health test may be conducted before saving the beans for seed. If disease is severe 

in a production field, consider the use of rotation and tillage to reduce infested residues for the next 

soybean crop. 

BROWN STEM ROT (Phialophora gregata  f. sp. sojae) 

BSR of soybean caused by P. gregata f. sp. sojae Kobayashi et al. occurs in many countries includ

ing Argentina, Brazil, Canada, Egypt, Japan, Mexico, the United States, and the former Yugoslavia 

(Gray and Grau 1999, Grau 2006b). Yield losses of 10%–30% are common for susceptible soy

bean varieties grown in management systems conducive for BSR development. There is no external 

evidence of the disease in the early reproductive stage and signs of early infection generally go 

unnoticed unless the stems are cut open and examined or only the mild strain of the pathogen 

is present. The onset of foliar symptoms typically occurs at growth stages R4 and R5 and foliar 

symptoms peak at R7. The pathogen causes stem and foliar symptoms that may not always occur 

together, depending upon pathotype, host genotype, and environmental conditions (Hughes et al. 

2002, Malvick et al. 2003). Pathogen pathotype I (genotype A) causes browning of stems as well 

as foliar symptoms such as interveinal chlorosis, defoliation, and wilting. Symptomatic leaves have 

a shriveled appearance but remain attached to the stem. Pathotype II (genotype B) causes only 

browning of stems. Secondary symptoms of BSR are stunting, premature death, decrease in seed 

number, reduced pod set, and decrease in seed size. 

Stem symptoms include brown discoloration of the pith and vascular tissue; foliar symptoms 

include interveinal necrosis and defoliation (Gray and Grau 1999). While all soybean genotypes may 

be susceptible to infection by the pathogen, soybean genotypes differ in expressing foliar symptoms. 

A lack of foliar symptoms is considered as resistance and has been a selection criterion in breed

ing programs for BSR resistance (Sebastian et al. 1986). Pathogen reproduces asexually by means 

of conidia inside host plants. Its sexual state has never been found. It is slow growing in culture 

and is thought to be a poor saprophytic competitor (Adee and Grau 1997). P. gregata f. sp. sojae, 

a soilborne vascular pathogen causing BSR of soybean, has been divided into two genotypes, des

ignated as A (pathotype I) and B (pathotype II). These genotypes are differentiated by an inser

tion or deletion in the intergenic spacer (IGS) region of ribosomal DNA. The two genotypes differ 

in the type and severity of symptoms they cause and have displayed preferential host colonization. 

Pathotype I and pathotype II are based on variation in the IGS region of nuclear rDNA marker (Gray 

1971, Hughes et al. 2009). The rDNA marker identifies genetically distinct populations. Pathotype I 

is the defoliating pathotype comprising population A, identifiable by the genotype A rDNA marker 

(Chen  et  al. 2000, Hughes et  al. 2002), and preferentially infecting susceptible soybean cultivars 

(Chen et  al. 2000, Malvick et  al. 2003). Pathotype II is the nondefoliating pathotype comprising 

population B, identifiable by the genotype B rDNA marker (Chen et al. 2000, Hughes et al. 2002), 

and preferentially infecting certain resistant soybean cultivars (Chen et al. 2000, Malvick et al. 2003). 

Field isolation data showed that most isolates obtained from susceptible cultivars belong to population 

A, whereas most isolates obtained from resistant cultivars belong to population B (Chen et al. 2000, 

Hughes et al. 2002, Malvick et al. 2003, Malvick and Impullitti 2007). The two populations could 

be sympatric, residing not only in the same field but also in the same plants under field conditions. 

The first controlled experimental demonstration that a differential host preference of P. gregata f. sp. 

sojae exists toward different cultivars of the same host species has been given by Meng et al. (2005). 

The P. gregata fungus produces no survival structures, but can overwinter as mycelium in decaying 

soybean residue previously colonized during the pathogen’s parasitic phase. During overwintering, 
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conidia are produced; these conidia are the inoculum for new plants in the spring. Infection occurs 

through roots by growth stage V3 and progressively colonizes stems. Stem and foliar symptoms are 

most severe when air temperatures range between 15°C and 26°C during growth stages R4 to R6. 

Air temperatures in the 32°C range will suppress foliar symptom development. BSR is most severe 

when optimal soil moisture is present at R1 to R2 followed by dry soil conditions at R5 to R6. 

The severity of BSR is greater if soils are low in phosphorus and potassium and soil pH is below 

6.5. P. gregata and H. glycines, the SCN, frequently occur together and there is evidence that the 

severity of BSR is greater in the presence of SCN. 

The disease can be managed by the use of disease-resistant cultivars, and commercial soybean 

varieties have been improved dramatically for resistance to BSR. Most soybean cultivars with 

SCN resistance tracing to PI 88788 have various degrees of resistance to BSR. However, caution 

is advised for varieties with SCN resistance derived from Peking or Hartwig, the source of SCN 

resistance technology, as these two varieties are susceptible to BSR. Successful control of BSR has 

been obtained through crop rotation, especially if 2–3 years of nonhost crops are spaced between 

soybean. Soybean is the only known host grown; extended periods of cropping to nonhosts such 

as corn or small grains or forage legumes effectively lower the inoculum of P. gregata. The rate of 

inoculum decline is directly related to the rate of soybean residue decomposition. Early-maturing 

soybean cultivars escape the yield-reducing effect of BSR. 

BACTERIAL BLIGHT 

Bacterial blight of soybean caused by Pseudomonas syringae pv. glycinea (Coerper) Youn et al.  

is the most common bacterial disease of soybeans and it occurs in all soybean-producing regions 

of the world. Although this disease is of limited importance, it is one of the first leaf spot diseases 

to appear on young plants (Jagtap et al. 2012b). Bacterial blight has been reported to cause signifi

cant yield reductions on susceptible cultivars under heavy disease pressure. In Europe, the disease 

has not caused great loss, but if the area of soybean production were to increase, losses might 

be expected on the scale seen in the United States, where in the period 1975–1977, it was by far 

the most damaging prokaryotic disease, causing an estimated annual average loss of $62 million 

(Kennedy and Alcorn 1980). In recent years, the disease has become economically important in 

Serbia in Europe (Ignjatov et al. 2007, 2008). 

Bacterial blight is primarily a leaf disease, but symptoms can occur on stems, petioles, and 

pods. Leaf lesions are at first small, annular, water-soaked, tan-colored spots, which enlarge to 

1–2 mm diameter and become dark brown to black with a dark center and a water-soaked margin 

and surrounded with a narrow yellowish halo. The halo is more noticeable on the upper leaf surface. 

Bacterial blight is easily confused with Septoria brown spot, a fungal disease that develops first 

on the lower leaves, whereas the bacterial blight leaf lesions develop first on upper young leaves. 

A simple test for bacterial blight is to hold infected leaves to the light; bacterial blight spots will be 

translucent. Lesions can coalesce to produce large irregular areas of dead tissues. The center of all 

lesions may drop resulting in shot‐holed leaves, and the leaf may show ragged and torn appearance. 

Large black lesions may develop on stem. If the growing point of seedlings is affected, the plant 

usually dies. 

The primary foci in crops derive from seed-borne infection that inhibit germination and on 

cotyledons cause marginal lesions that enlarge and become dark-brown necrotic. Often, the lesions 

are covered, particularly on their underside, with a film of a pale grayish bacterial slime that can 

dry to a thin silvery crust; less commonly, primary foci derive from overwintered infected crop 

debris. Secondary spread to infect young soybean leaves occurs by means of wind-driven rain 

and during cultivation or spraying when the foliage is wet at temperatures of 24°C–26°C. Hot, 

dry weather suppresses its development. There is evidence that the pathogen may be resident epi

phyte in buds; this could provide a continued source of inocula. Infection occurs through natural 

openings on foliage and through wounds that occur commonly on sandy soils by abrasion with 
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sand particles. The bacteria may colonize leaf surfaces without producing symptoms until conditions 

become favorable. Rain splash and wind‐driven aerosols can drive bacteria into natural leaf open

ings (stomata) causing rapid increases in disease. Psg PG4180 causing bacterial blight of soybean 

produces the phytotoxin coronatine (COR) in a temperature-dependent manner. COR consists of a 

polyketide, coronafacic acid (CFA), and an amino acid derivative, coronamic acid, and is produced 

optimally at 18°C, whereas no detectable synthesis occurs at 28°C. After spray inoculation, PG4180 

causes typical bacterial blight symptoms on soybean plants when the bacteria are grown at 18°C 

prior to inoculation but not when derived from cultures grown at 28°C (Budde and Ullrich 2000). 

Host plant resistance genes to bacterial blight in soybean germplasm and a number of physiologic 

races of P. syringae pv. glycinea (Psg) have been reported (Fett and Sequeira 1981, Zabala et al. 

2006). The interaction of compatible and incompatible races of Psg with different soybean cultivars 

has been characterized (Cross et al. 1966, Ignjatov et al. 2007). Incompatible interactions lead to 

a cascade of plant responses (hypersensitive response [HR]) triggered by the action of a resistance 

gene R and the corresponding avirulent pathogen avr gene (Zabala et al. 2006). The Rpg4 gene may 

be involved in resistance to Psg in soybean; however, it has another useful function that somehow 

contributes to soybean productivity in modern agroecosystems, and thus, plant breeders have unin

tentionally increased its frequency in cultivated germplasm (Farhatullah Stayton et al. 2010). The 

Rpg4 locus is controlling bacterial blight resistance to P. syringae pv. glycinea race 4 (Farhatullah 

Groose et al. 2010). In the incompatible interaction, Psg PG4180 elicits the HR regardless of the 

bacterial preinoculation temperature (Budde and Ullrich 2000). The complex resistance responses 

in such incompatible plant–pathogen interactions have been characterized at the molecular level to 

a larger extent in the model plant Arabidopsis thaliana (Quirino and Bent 2003). Durable resistance 

is difficult to achieve because of many races of Psg. 

There is no effective management for bacterial blight when an aggressive race, a susceptible 

cultivar, and weather favor disease development. However, resistance in susceptible soybean vari

eties can be induced by salicylic acid (SA), chitosan, beta-aminobutyric acid (BABA), and OA to 

bacterial blight disease. The concentration of 1000 μg BABA/mL induces the highest resistance 

among all the inducers. Soybean varieties and application methods all can vary the effect of induced 

resistance (Liu et al. 2008). Crop rotation to nonhosts such as corn, wheat, and other nonlegume 

species and tillage will help reduce inoculum. Comparatively narrow rotation should be sufficient 

to eliminate trash-borne infection from fields since the pathogen does not apparently survive in it 

for two seasons (Parashar and Leben 1972). Tillage where possible can also help reduce the survival 

of P. syringae–infested debris through burial and rapid breakdown of soybean debris. The epiphyte 

P. syringae pv. syringae 22d/93 (Pss22d), isolated from soybean leaves, had been characterized as 

a promising and species-specific biocontrol strain in vitro and in plant against Psg (Wensing et al. 

2010). Seeds produced in heavily infected fields are likely to carry the pathogenic bacteria; hence, 

it is recommended that seeds should never be saved for sowing from the plants from affected fields. 

Copper fungicides are labeled for bacterial blight control on soybean, but application needs to be 

conducted early in the disease cycle to be effective. 

BACTERIAL PUSTULE DISEASE 

Bacterial pustule disease (BPD) is caused by Xanthomonas axonopodis pv. glycines (Nakano) 

Dye (syns. Xanthomonas campestris pv. phaseoli Smith, Dye) and Xanthomonas phaseoli (Smith) 

Dowson var. sojensis (Hedges) Starr and Burkholder. Although this bacterium is widely known as 

X. campestris pv. glycines, following DNA–DNA hybridization analysis (Vauterin et al. 1995), the 

bacterium has been renamed as X. axonopodis pv. glycines (Xag). It is an economically significant 

disease in most areas of the world in which the soybean crop is grown. It is widespread in many 

European countries causing seed losses of up to 28%. It has also become important in India (Khare 

et al. 2003), Korea (Van et al. 2007), Serbia (Balaz and Acimovic 2008), southern United States, 

and Thailand (Kaewnum et al. 2005). Yield losses of up to 40% have been reported in certain parts 
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of the world (Prathuangwong and Amnuaykit 1987). However, generally, it is far less economically 

important than bacterial blight caused by P. syringae pv. glycinea. The disease occurs typically on 

soybean foliage and symptoms include small, pale green spots with elevated pustules, which may 

develop into large necrotic lesions. Pustules are mainly formed by hypertrophy, but hyperplasia 

may also occur. The appearance of bacterial pustule varies from minute specks to large, irregular, 

mottled brown areas that arise when smaller lesion coalesces. The spots may enlarge and coalesce, 

leading to premature defoliation (Narvel et  al. 2001). Symptoms on resistant soybean cultivars 

become visible in the form of small chlorotic spots, but not well-defined pustules or light green 

chlorosis. Those symptoms are sometimes confused with those of soybean rust. However, pustule 

lesions are characterized visually by small pustules surrounded by yellowing halos, whereas rust 

disease forms tan or brown lesion in which uredospores are formed and released through a central 

pore. The Xag is a motile, gram-negative rod (0.5–0.9 × 1.4–2.3 μm) with a single polar flagellum. 

Colonies on beef infusion agar are pale yellow, become deep yellow with age, and are small. It is 

seed borne and can also overwinter in infected host debris on the surface of soil (but less well in 

buried host debris) or in volunteer plants from infected seed. The pathogen can be transmitted from 

seed to the seedling. It enters through stomatal openings and proceeds intercellularly. Bulging of 

epidermal cells initially occurs. Infected cells become yellowish brown and later become deformed 

and disintegrated. The development of disease requires an optimum temperature of 27°C (+ or −2) 

with a minimum relative humidity of 83%. Pathogenic variations with regard to aggressiveness on 

soybean among isolates of Xag have been demonstrated (Ansari 2005, Kaewnum et al. 2005). The 

isolates differ in their ability to induce an HR on resistant varieties. Xag grows in the xylem vessels 

of the soybean plants and in the intercellular spaces of the leaves, causing pustule lesions. A major 

mechanism of this bacterium is the production of an extracellular polysaccharide or xanthan gum 

that is toxic to the plant tissues and cause them to be necrosis spots. This pathogen is not known to 

produce any extracellular toxins, degradative enzymes, or plant growth hormones. 

The disease can be managed through the use of resistant cultivars. RT-PCR data suggest six 

candidate genes that might be involved in a necrotic response to Xag in resistant genotype PI 96188 

(Van et al. 2007). A nonpathogenic mutant the M715 mutant (derived from the pathogenic wild-

type strain YR32) shows promise as an effective BCA for BPD in soybeans (Rukayadi et al. 2000). 

Similarly, B. subtilis isolate 210 should be considered as a potential antagonistic agent for BPD of 

soybean (Salerno and Sagardoy 2003). B. amyloliquefaciens strain KPS46 selected as inducer of 

systemic resistance against Xag can be of potential use. Soybean seeds are treated with KPS46, SA, 

and harpin (synthetic resistance inducer) prior to sowing and challenged with Xag, the activity of 

PAL increases, and phenolics are found to accumulate in soybean leaf tissues giving protection to 

soybean plants against BPD (Buensanteai et al. 2007). 

SOYBEAN MOSAIC DISEASE 

Soybean mosaic disease (Figure 9.12) is caused by soybean mosaic virus (SMV) and it occurs 

worldwide causing mild to severe mosaic on susceptible cultivars. SMV infection adversely affects 

seed quality, oil content, and seed germination. Yield losses due to this disease generally range from 

8% to 35%; however, losses as high as 94% have been reported. Infection in the early growth stages 

has the greatest risk of yield loss and reduced seed quality, compared to infection later in the  season. 

Dual infection with other viruses, that is, mixed infection of SMV with Alfalfa mosaic virus, a 

common situation, increases the risk of yield loss and reduces seed quality (Malapi-Nelson et al. 

2009). Tobacco streak virus and bean pod mottle virus (BPMV) have also been found in multiple 

infections (Fajolu et al. 2010). SMV and BPMV act synergistically. This means that mixed infec

tions are more severe than single infections. Symptoms on plants with both viruses are very severe 

and terminal death may occur. Yield losses associated with combined infection can be as high as 

66%–86%. The combined infection also increases the level of seed transmission of SMV. Of course, 

this combination effect is also related to the age of the plant when infection occurs. 
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FIGURE 9.12  Soybean mosaic symptoms on leaf. (Courtesy of Dr. Shrishail Navi, Iowa State University, 

Ames, IA.) 

Common leaf symptoms of the disease are a mosaic of light and dark green areas that may later 

become raised or blistered, particularly along the main veins. The youngest and most rapidly grow

ing leaves show the most symptoms, especially at cooler temperatures. Affected plants are stunted 

with rugose or crinkled leaves that become severely mottled and deformed. The trifoliate leaf blades 

become slightly narrowed and are puckered along the veins and curled downward. The mottling  

appears as light and dark green patches on individual leaves. Early-infected plants particularly are 

stunted with shortened petioles and internodes. Symptoms are more severe when temperatures have  

been cool (<24°C) and may be masked by warmer (>32°C) conditions. Affected plants produce  

fewer pods and seeds from infected plants can be mottled black or brown depending on hilum color. 

Not all infected plants produce mottled seed and seed mottling does not indicate that the virus is 

present in the seed. Seeds may show reduction in their size in comparison to seeds from healthy 

plants. Primary leaves of some cultivars may show necrotic local lesions, which merge into veinal  

necrosis followed by yellowing and leaf abscission. 

The virus belongs to the genus Potyvirus, group IV (+)ss RNA, under the family Potyviridae. 

SMV is transmitted by infected seed, and soybean aphid species (Aphis glycines) and at least 

32 aphid species, belonging to 15 different genera, transmit the SMV in a nonpersistent manner 

worldwide (Wang et al. 2006). In most varieties, seed transmission is less than 5%, but much greater 

than seed transmission for BPMV. Spread of the disease can also be done by soybean aphids, which 

can vector this virus. The timing and incidence of SMV infection depend largely upon the level of 

primary inoculum and aphid activity. SMV may be introduced into a virus-free region by planting 

infected seed. The pathogen is spread from plant to plant by aphids. The soybean aphid, A. glycines, 
the most common SMV vector, is the only aphid species that can establish colonies on soybeans. 

Once an aphid feeds on an infected soybean plant, it only takes a short time (seconds to a few 

minutes) for the insect to acquire the virus. As the virus-carrying aphids move and feed on healthy 

plants, the virus will be spread around. In the absence of soybeans, the virus can overwinter on a 

wide range of other hosts. 

SMV is a flexuous rod consisting of positive-sense, single-stranded RNA. Numerous strains of 

the virus have been identified based upon reactions on a set of differential cultivars. In the United 

States, SMV has been classified into nine strains using differential reactions on eight soybean culti

vars. The strains are currently known at G1 through G7, G7a, and C14. It is probable that additional 

strains exist, particularly in People’s Republic of China and Japan (Zheng et al. 2008). SMV is sap 

and graft transmissible also. At least 32 aphid species, belonging to 15 different genera, transmit the 
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SMV in a nonpersistent manner. Virus isolates may show some vector specificity. Infected plants 

resulting from transmission through seed play an important role in SMV epidemiology. Such plants 

are primary inoculum sources for SMV. In most cultivars, seed transmission is less than 5%, but 

no transmission occurs in some cultivars while others can have levels as high as 75%. Infection of 

soybean plants with SMV has been reported to enhance Phomopsis spp. infection, which reduces 

seed quality. The use of SMV-resistant varieties prevent/reduce SMV and Phomopsis spp. seed 

infection (Koning et al. 2002). 

Planting SMV-resistant soybean cultivars is the most economical practice to manage the  disease. 

Several resistance genes have been identified and are effective against some, but not all, virus 

strains. Based on the differential reactions on a set of soybean cultivars, SMV has been classified 

into numerous strains. In the United States, nine strains, G1G7, G7a, and C14, are currently rec

ognized. Additional strains have been identified in other countries such as Canada, China, Japan, 

and South Korea including strains that overcome all known resistance to the virus (Zheng et al. 

2005, 2008). At least three independent loci (Rsv1, Rsv3, Rsv4) have been identified for SMV 

resistance. Multiple resistance alleles have been reported for the Rsv1 and Rsv3 loci (Liao et al. 

2002, Zhen et al. 2008). The first dominant resistance gene identified in the soybean line PI 96983 

has been designated as Rsv1. Single resistance genes in other cultivars, which confer differential 

reactions to strains G1 to G7, are found to be alleles at the Rsv1 locus and have been designated as 

Rsv1y, Rsv1m, Rsv1t, Rsv1k, Rsv1s, and Rsv1n. A new mutation in SMV resulting in overcoming 

Rsv4 resistance has been reported from Iran (Ahangaran et al. 2013). Some of the most promising 

soybean genotypes that are resistant to most strains of SMV in the Arkansas state in the United 

States are Ozark, USG 5002T and USG 5601T. Similarly, SMV-resistant soybean genotypes from 

India are JS71-05, KHSb2, LSb1, MACS58, MACS124, Punjab1, and VLS2 (Sharma et al. 2014). 

Soybean genotypes identified with high levels of resistance to SMV from Nigeria with disease inci

dence of 10% or less are TGx 1440-1E, TGx 1448-E, TGx 1479-1E, TGx 1446-3E, TGx 1371-1E, 

and TGx 1445-4E, TGx 1440-1E, and TGx. 

At present, the use of SMV-free seed 1448-2E (Banwo and Adamu 2000) and avoiding late plant

ing of soybean are the best control measures to preclude loss induced by SMV. Serological seed 

indexing techniques and/or grow-out tests can be used for virus detection in seed lots. Roguing, in 

addition to being generally impractical in the field, may not be very effective because of the  tendency 

for symptoms in soybean to be masked above 30°C. Insecticides are not considered  effective in 

reducing transmission of SMV by aphids. Aphids present at spraying are killed, but the field is 

quickly recolonized by winged aphids and virus transmission can resume. Aphids that contact insec

ticide residues on the leaf surface are killed but are still capable of virus transmission prior to death. 

BEAN POD MOTTLE DISEASE (BEAN POD MOTTLE VIRUS) 

BPMV (genus Comovirus, family Comoviridae) was first identified in soybean in 1951 in Arkansas 

(Walters 1958, Ross and Butler 1985) and has caused agronomic problems since this first find

ing in all production areas in the United States. Worldwide, it is also reported to occur in Brazil 

(Anjos et al. 1999), Canada (Michelutti et al. 2002), Ecuador (Zettler et al. 1991), Iran (Shahraeen 

et al. 2005), Nigeria (Ugwuoke 2002), and Peru (Fribourg and Perez 1994). Maximum losses occur 

when plants are infected at the seedling stage. Yield losses from BPMV alone may reach 2%–20% 

depending on planting date and geographical area. Yield loss assessments on southern soybean 

germplasm have revealed reductions ranging from 3% to 52% (Ziems et al. 2007). BPMV produces 

further financial loss for soybean producers because it causes increased seed coat mottling, which 

is an irregular pattern or streaking of the hilum associated with BPMV infection. The effects on 

yield and seed coat mottling are increased when there is a dual infection of BPMV and SMV, which 

causes yield losses >80%. Symptoms on infected soybeans may vary depending on the variety. 

Foliage symptoms range from mild chlorotic mottling, leaf rugosity in the upper canopy to pucker

ing and severe mosaic in lower leaves, terminal necrosis, and death. A common symptom of BPMV 
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infection is uneven crop maturity or green stem in which stems and leaves remain green, even though 

pods have matured. Young leaves in the upper canopy often have a green-to-yellow  mottling that 

may fade and then redevelop later in the growing season. The green stems are  difficult to cut during 

harvesting. However, it has been shown recently that green stem is independent of BPMV infection 

when random plants were tested for BPMV at growth stage R6 (Hobbs et al. 2006). In severe cases, 

malformed leaves and pods may be produced. Infected leaves show reduced  turgidity resulting in 

curling. A reduction in pod set often occurs in infected plants that have undergone moisture stress 

during dry periods. Infected seed coats, similar to SMV infection, are mottled with brown or black 

streaks extending from the hilum. 

BPMV has a bipartite positive-strand RNA genome consisting of RNA1 (approximately 6.0 kb) 

and RNA2 (approximately 3.6 kb) that are separately encapsidated in isometric particles 28 nm in 

diameter (Lomonossoff and Ghabrial 2001). BPMV RNA-1 codes for five mature proteins required 

for replication, whereas RNA-2 codes for a putative cell-to-cell MP and the two coat proteins (L-CP 

and S-CP). Separation of segments can be achieved by density gradient centrifugation into three  

components: top (T), middle (M), and bottom (B). The middle component contains a single RNA1 

molecule, whereas the bottom component has RNA2 and the top particle lacks nucleic acid. BPMV is 

heat stable with a temperature inactivation point of 70°C. Its dilution end point in fresh plant extract 

is 10,000 and its longevity in vitro is 62 days at 18°C. Unlike SMV, BPMV does not spread very 

efficiently in seed. The virus is primarily transmitted by the bean leaf beetle (Cerotoma trifurcata). 

The virus has a wide host range among legumes and will be transferred to bean leaf beetles that feed 

on infected legume plants. The virus can be spread by mechanical injury, especially under wet condi

tions. The virus has been found in overwintered bean leaf beetle adults that may survive in grass, leaf 

litter, or even rocks and colonize soybeans as seedlings emerge. Because most flight events of beetles 

are limited to about 30 m, it is likely that BPMV spread is restricted within and between fields. 

The use of soybean cultivars resistant or tolerant to BPMV infection would be the most  practical 

approach. However, currently, no soybean lines have been identified with resistance to BPMV. 

Soybean cultivars with feeding deterrents against bean leaf beetle may not be sufficient to reduce 

BPMV incidence in the field. Transgenic soybean lines expressing the BPMV coat protein are resis

tant to BPMV infection. But this resistance has not been incorporated into commercial soybean 

cultivars (Reddy et al. 2001). Current management recommendations for reducing BPMV infection 

include the application of insecticides to manage bean leaf beetle populations to reduce the poten

tial for virus movement. The recommended management of BPMV has been solely based on vector 

population dynamics, and not on BPMV disease. Delayed soybean planting date has been suggested 

to manage BPMV. Delayed planting is supposed to help soybean escape the migration period of 

beetle vectors of the virus. 

ROOT-KNOT DISEASE (MELOIDOGYNE  sPECIES) 

Several genera of nematodes parasitize soybean worldwide, and the highest economic impact 

is attributed to SCNs—H. glycines (as described earlier in pages 397–405), root-knot nema

todes (Meloidogyne species), lesion nematode (Pratylenchus species), and reniform nematode 

(Rotylenchulus species). 

Root knot nematodes (RKNs) are biotrophic parasites of the genus Meloidogyne. The four most 

common species are Meloidogyne incognita (Kofoid and white) Chitwood, Meloidogyne hapla 
Chitwood, Meloidogyne javanica (Treub) Chitwood, and Meloidogyne arenaria Chitwood, but only 

M. incognita and M. hapla have been found to be important on soybeans worldwide. M. hapla, 

the northern RKN, is generally considered less damaging on soybean than the southern RKN, 

the M. incognita in the United States (Westphal and Xing 2006). Susceptible soybean plants can 

be infected at any stage of development. Infected plants are stunted and chlorotic. The interaction 

effect of the nematode (M. javanica) with other soilborne pathogens such as R. solani and M. pha
seolina causes significant decrease in soybean plant height and dried plant weight, especially when 
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nematodes are inoculated 1 week before both fungi and rate of severely damaged plants can reach to 

about 47.62% and 64.62%, respectively (Stephan et al. 2006). The aboveground symptoms of root-

knot disease can be easily confused with other soil-related plant growth–suppressing factors. To 

confirm RKN infection, it is necessary to excavate root systems and examine them for root galling. 

Nematode-induced galls consist of globular, irregular deformations within the root system. These 

swellings are easily distinguished from nodules that are a normal part of soybean root systems. 

These normal nodules result from infection by beneficial, symbiotic bacteria that fix atmospheric 

nitrogen for the plant. Beneficial nodules are nearly spherical structures about 1/4 in. in diameter 

that are attached to the outside of roots. RKN galls, on the other hand, range from 1/8 to 1 in. in 

diameter and are swellings of the root itself. RKNs are obligate parasites, but they can survive as 

eggs in the soil for several years. These eggs contain the nematodes in their infective stage: second-

stage juveniles. When soil conditions are favorable (when soil temperatures are more than 50°F) 

and a susceptible host plant is grown, juveniles hatch from the eggs and move through soil in search 

of host plant roots. When a juvenile finds a suitable root location, generally near the growing tip, it 

penetrates the root and becomes sedentary. After several molts, a juvenile develops into a mature 

female, which in turn produces an egg mass containing several hundred new nematode eggs in a 

gelatinous matrix deposited on the outside of the root. At this point, juveniles either immediately 

hatch from their eggs or remain dormant within the egg until infection conditions are favorable. The 

gelatinous matrix is thought to protect the eggs from soil organisms that might otherwise consume 

the eggs and suppress the nematode’s initial inoculum level. 

Concerning RKN management, soybean faces the same economic losses and difficulties as other 

crops. Despite the use of management strategies such as crop rotation with nonhosts and  sanitation 

practices aimed at reducing initial inoculum, sustainable and long-lasting pest management strate

gies are in high demand. One of the strategies is to deploy novel sources of RKN resistance in 

soybean breeding programs, for example, using the soybean line PI 595099 (Accession NPGS/ 

GRIN: G93-9223), which is resistant against specific strains and races of nematode species, includ

ing M. javanica, M. incognita, M. arenaria, and also the SCN. Another alternative is to introduce 

genetic modifications in soybean plants to obtain RKN resistance interactions (Bird et al. 2009, 

Beneventi et al. 2013). Increasing amount of auxin-induced reactive oxygen species (ROS) accumu

lation in cells in the nematode-inoculated soybean genotype (PI 595099) has an immediate effect on 

halting pathogenesis. The host coordinate and modulate defenses mostly by the interplay between 

auxin (Aux), gibberellin (GA), and jasmonate (JA) (Beneventi et al. 2013). 
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biological control, 69
 

chemical control, 68
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molecular characterization, 65
 

structural formulae, 64–65
 

cultural control, 68–69
 

geographical distribution and losses, 63–64
 

host plant resistance (see Host plant resistance)
 

plant extracts, 69
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Albugo–Brassica system, 161
 

Alternaria blight
 

biological control, 157
 

chemical control, 158
 

cultural control, 156–157
 

effect of plant extracts, 157
 

epidemiology and disease cycle, 153–154
 

geographical distribution and losses, 152–153
 

host plant resistance, 154–155
 

induced host resistance, 156
 

molecular breeding, 155–156
 

pathogen, 153
 

symptoms, 151–152
 

Alternaria brassicae
 
and  A. brassicicola, 155
 

airborne spores, 154
 

avirulent race, 156
 

and  B. rapa roots, 191
 

chlamydospores, 153
 

cultural conditions, 153
 

germinated spores, 154
 

physiologic specialization, 191–192
 

pycnidia, 179
 

rapeseed–mustard, 151
 

resistance, 155–156
 

spores, 193
 

Woronin, 190
 

Alternaria brassicicola
 
and  A. raphani, 153
 

crucifers, 155
 

liquid cultures, 153
 

on pods, 155
 

Alternaria carthami 
antifungal activities, 331
 

conidiophores, 329–330
 

genotypes, 330
 

isolation methods, 330
 

mycelium, 329
 

organogenesis and somatic embryogenesis, 330–331
 

Alternaria leaf blight; see also Alternaria carthami
 
antifungal activities, 331
 

cultural control, 331
 

geographical distribution, 329
 

host plant resistance, 330–331
 

isolation methods, 330
 

mefenoxam, thiram and difenoconazole, 331
 

symptoms, 329
 

yield losses, 329
 

Alternaria leaf spot; see also Alternaria sesami
 
geographical distribution, 304
 

mancozeb, 306
 

salt density, 306
 

symptoms, 303–304
 

yield losses, 304
 

Alternaria-resistant mustard transgenics, 9
 

Alternaria sesami
 
conidiophores, 304–305
 

germination, seed, 305
 

host plant resistance, 305
 

and P. fluorescens, 305
 

seed infection, 305
 

and T. viride, 305
 

Alternariaster blight 

A. helianthi, 247–248
 

antibiosis, 250
 

chemical management, 249–250
 

geographical distribution, 246–247
 

host plant resistance, 249
 

PCR-based diagnostic technique, 248
 

Pseudomonas fluorescens, 250
 

sanitation, 250
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temperature and leaf wetness, 248–249
 

yield losses, 247
 

Alternariaster helianthi 
classification, 247
 

conidiophores, 247–248
 

genetic variability, 247
 

PDA, 247–248
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Amplified fragment length polymorphism (AFLP), 
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pathogen, 365–366
 

plant extracts, 368
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seedling test, 366
 

symptoms, 363
 

445 



 

 

 

446 Index 

Asian soybean rust (ASR)
 

biological control, 382
 

chemical control, 378, 381
 

cultural control, 381–382
 

epidemiology and disease cycle
 

climatic and environmental factors, 372
 

differential hosts, 375
 

host possibilities, 372
 

microsatellite markers, 374
 

pathogen population, 375
 

rain events, 374
 

regional dynamics, 375
 

spore germination, 373
 

temperature variables, 374
 

uredinial stage, 374
 

geographical distribution and losses, 370–371
 

host plant resistance (see Host plant resistance)
 

integrated management system, 382–383
 

molecular breeding, rust resistance, 377–378
 

pathogen, 371–372
 

plant extracts, 382
 

SAR, 381
 

spore trapping and aerobiological modeling, 382
 

symptoms
 

anamorphic sori (uredo pustules), 369–370
 

crop cycle, 370
 

Phakopsora species, 368–369
 

premature defoliation, 370
 

uredia, 369
 

Aspergillus collar/crown rot
 

disease management, 46
 

epidemiology and disease cycle, 45–46
 

geographical distribution and losses, 44–45
 

pathogens, 45
 

symptoms, 44
 

ASR, see Asian soybean rust (ASR)
 

Aster yellows (AY), see Phyllody disease
 

B 

BABA, see Beta-aminobutyric acid (BABA)
 

Bacterial blight, 415–416
 

Bacterial diseases
 

mosaics
 

disease management, 199
 

epidemiology and disease cycle, 198–199
 

geographical distribution and losses, 198
 

pathogen, 198
 

symptoms, 197
 

phyllody and aster yellows (see Phyllody disease)
 

Bacterial pustule disease (BPD), 416–417
 

Bacterial stalk rot
 

biological control, 197
 

chemical control, 197
 

disease management, 195
 

epidemiology and disease cycle, 195–196
 

geographical distribution and losses, 195–196
 

host plant resistance, 196–197
 

pathogen, 195–196
 

symptoms, 195–196
 

Bacterial wilt (BW); see also Ralstonia solanacearum
 
antibiotics, 140
 

chemicals, 140
 

cultural methods, 140
 

diagnosis, 138–139 

geographical distribution, 137
 

host plant resistance, 139–140 

nematode infection, 139
 

phylotypes, 138
 

Pseudomonas fluorescens strains, 141
 

soil fumigation, 140
 

symptoms, 137
 

temperature, 139
 

yield losses, 137
 

Bean pod mottle virus (BPMV), 417–420
 

Beet western yellows virus (BWYV), 198–199
 

Benzothiadiazole (BTH), 156, 186
 

Beta-aminobutyric acid (BABA), 156, 186, 245, 416
 

Beta-1,3-glucanase, 161
 

Blackleg/stem canker
 

biological control, 187
 

chemical control, 187–188 

cultural control, 186–187 

epidemiology and disease cycle, 182–184 

geographical distribution and losses, 180
 

host plant resistance, 184–185 

induced host resistance, 186
 

molecular breeding, 186
 

pathogen, 180–182 

symptoms, 179–180 

BPD,  see Bacterial pustule disease (BPD) 

BPMV,  see Bean pod mottle virus (BPMV) 

Brassica juncea 
after infection, 151
 

Alternaria-infected, 154
 

artificially infected, 161
 

in Australia and China, 185
 

and  B. campestris var. toria, 154
 

and  B. napus, 163–164, 185
 

and  B. rapa, 166
 

carpogenic infection of  S. sclerotiorum, 172
 

endo-PGs, 161
 

genotype EC-399, 163, 301
 

haustorium forms, 161
 

host resistance, 162
 

in India, 185, 195–196 

invasion of  A. brassicae, 156
 

JM 06018 and 06006, 174
 

L. macunlans and L. biglobosa canadensis
  
isolation,  182
 

resistant cultivars, 161
 

RH 30 cultivars, 162
 

upper epidermis, 154
 

virulent Albugo-susceptible, 161
 

yellow-seeded mustard, 163
 

Brassica napus 
AC 2 of, 164
 

amphidiploid, 192
 

and  B. alba, 155
 

and  B. juncea, 163, 174, 185
 

BWYV, 199
 

cellular level, 171
 

DHP95 and DHP96 lines, 185
 

Isuzu variety, 173
 

jasmonate-mediated defense, 174
 

LepR1 resistance gene, 185
 

in  L. maculans, 181–182 

Omi nature variety, 173
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pretreatment, 186
 

rapeseed, 180
 

Rlm2 and Rlm6 resistance gene, 184
 

spring oilseed rape, 192
 

tolerance, 154–155
 

transgenic plants, 179, 186, 188
 

treatment, 186
 

white rust, 164
 

Brassica plants with BABA, 156
 

Brown leaf spot, 405
 

aureofungin, 343
 

conidial germ tubes, 343
 

copper oxychloride and mancozeb, 343
 

C. oxyacantha and C. flavescens, 343
 

geographical distribution, 342
 

Ramularia carthami, 342–343
 

symptoms, 342
 

yield losses, 342
 

Brown stem rot (BSR), 414–415
 

BTH,  see Benzothiadiazole (BTH)
 

BW,  see Bacterial wilt (BW)
 

BWYV,  see Beet western yellows virus (BWYV)
 

C 

Camalexin (C11H8N2S), 155, 181–182 

CAPS,  see Cleaved amplified polymorphic sequence  

(CAPS)
 

Cauliflower mosaic virus (CaMV), 155, 198
 

CBR,  see  Cylindrocladium black rot (CBR)
 

Cercospora leaf spot
 

and  C. carthami, 344–345
 

and  C. sesami Zimmerman, 307
 

disease cycle, 344
 

disease management, 345
 

geographical distribution, 306–307, 344
 

hot-water treatment, 307
 

plant debris, 307
 

symptoms, 306, 343–344
 

synthetic fungicides, 307
 

yield losses, 307, 344
 

Charcoal rot;  see also  Macrophomina phaseolina
 
antagonists, 300
 

biological control, 54, 393–394
 

blotter method, 298
 

capsules, 296–297
 

carbendazim, thophanate methyl and thiabendazole,
  

262, 299
 

chemical control, 53–54, 392
 

clay granules, 300
 

cultural control, 54, 262, 392–393
 

cultural management, 299
 

disease management approaches, 392
 

effect of plant extracts, 54
 

epidemiology and disease cycle, 52–53, 


390–391
 

geographical distribution and losses, 52, 260, 296–297,
  

388–389
 

hills-over-furrows method, 299
 

host plant resistance
 

factors, 299
 

genotypes, 298
 

germplasm lines and cultivars, 299
 

molecular markers, 298
 

induced systemic resistance, 392
 

inhibitory effect, sclerotial formation, 298
 

pathogens, 52, 389–390
 

plant extracts, 263, 300
 

seed coating, 262
 

soil temperature, 298
 

symptoms, 51, 259–260, 296, 388
 

yield losses, 260, 297
 

Cleaved amplified polymorphic sequence
  

(CAPS), 164
 

Club root
 

biological control, 193
 

chemical control, 194
 

cultural control, 193
 

epidemiology and disease cycle, 191–192
 

geographical distribution and losses, 190
 

host plant resistance, 192–193
 

molecular breeding, 193
 

pathogen, 190–191
 

symptoms, 189–190
 

Coat protein (CP)
 

Agrobacterium tumefaciens, 266
 

diagnosis, 265
 

PhV, 245
 

RNA-4, 264
 

Collar/crown rot, peanut seedling
 

biological control, 47–48
 

chemical control, 46–47
 

cultural control, 47
 

effect of plant extracts, 48
 

host plant resistance, 46
 

CP,  see Coat protein (CP) 

Cylindrocladium black rot (CBR), 60
 

disease management, 60
 

epidemiology and disease cycle, 59–60
 

geographical distribution and losses, 58
 

pathogens, 59
 

symptoms, 58
 

D 

Damping-off and seedling blight
 

biological control, 189
 

chemical control, 189
 

cultural control, 189
 

geographical distribution and losses, 188
 

molecular breeding, 188
 

symptoms, 188
 

Diaporthe pod and stem blight, 409–410 

Downy mildew, 405–406;  see also  Plasmopara  
halstedii 

chemical control, 168
 

cultural control, 168, 245
 

development, 243
 

effect of plant extracts, 168
 

epidemiology and disease cycle, 167
 

geographical distribution and losses, 167, 240
 

host plant resistance, 168
 

oospores, 242–243
 

pathogen, 167
 

regulatory control, 246
 

seeds and soils, 243
 

seed treatment, 244–245
 

sunflower seedlings, 243
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symptoms
 

basal root, 240
 

damping-off, 239
 

local foliar lesions, 240
 

stem galls, 240
 

systemic infection, 239–240
 

yield losses, 240
 

E 

Early and late leaf spots (ELS/LLS)
 

chemical control, 25–27
 

in cultivated Arachis hypogaea, 21–23
 

cultural control, 27–28
 

epidemiology and disease cycle, 20–21
 

genetic transformation, 24
 

geographical distribution and losses
 

cropping system, 19
 

disease assessment methods, 19
 

environmental conditions, 19
 

photosynthetic tissue and defoliation, 18
 

host plant resistance (see Host plant resistance) 

molecular breeding and transgenic peanuts, 

24–25
 

nonconventional chemicals, 27
 

pathogens
 

C. arachidicola, 19–20
 

classification, 19
 

P. personata, 20
 

peanut genotypes, 22–23
 

plant extracts, 29
 

symptoms, 16–17
 

transgenic peanuts, 24–25
 

in wild Arachis species, 23–24
 

ECD set, see European Clubroot Differential (ECD) set 

Edible oilseed plants 

annual field crops, 4–5 

chemical nature, 3–4 

crop management, 7–8 

crop productivity, 5–6 

disease problems, 8–9 

fatty acids 

abbreviated symbols, 3–4
 

common names, 3–4
 

natural configuration, 4
 

structural formulae, 3–4
 

foliage diseases, 9
 

global minimum per capita consumption, 5
 

industrial purposes, 3
 

leaf hopper vectors, 8–9
 

linola, 6–7
 

production constraints, 6–7
 

European Clubroot Differential (ECD) set, 191–192 

F 

False mildew, see Brown leaf spot 

Frogeye leaf spot (FLS)
 

additive genetic effect and dominance, 407
 

breeding of resistance, 407
 

C. sojina K. Hara, 406
 

economic impact, 406
 

genetic effects, 406–407
 

management measures, 407
 

soybean resistance and inheritance, 407
 

symptoms, 406
 

Fungal diseases 

aflatoxin causes (see Aflatoxins) 

bacterial stalk rot, 195 (see  also Bacterial stalk rot) 

in crop, peanut-growing regions, 70–71 

seed rot and seedling disease complex (see Seed rot 

and seedling disease) 

Fungicides
 

chlorothalonil and benomyl, 26
 

cost–benefit analysis, 26
 

economic benefit, 25
 

elemental sulfur, 25
 

pyrazole carboxamide fungicide 


penthiopyrad, 26
 

strobilurin fungicides, 26
 

Fusarium oxysporum f.  sesami
 
genetic factors, 302
 

macroconidia, 301
 

morphological differences, 301
 

mycelium, 301
 

seed transmission, 301
 

soil temperature, 301
 

Fusarium oxysporum f. sp. carthami
 
Bacillus subtilis, 334
 

benomyl, carbendazim and mancozeb, 334
 

captan, carboxin and thiram, 334
 

chlamydospores, 332
 

fusaric acid production, 332–333
 

inhibitory effect, R. tuberosa, 334
 

microconidia, 332
 

Pseudomonas fluorescens, 334
 

resistance, 333–334
 

Trichoderma harzianum, 334
 

Fusarium wilt; see also  Fusarium oxysporum f.  

sesami; Fusarium oxysporum f. sp. 

carthami 
balanced fertilization, 302
 

benomyl, carboxin and thiram, 302
 

Carthamus species, 333–334
 

chemicals, 334
 

chickpea, lentil, pea and wheat, 334
 

disease management, 194
 

geographical distribution, 194, 301, 332
 

Glomus spp., 303
 

host plant resistance, 302
 

insect pest control, 302
 

leaf extraction, 335
 

microbial antagonists, 303
 

mycelium and spores, 332
 

pathogen, 194
 

peppermint, 303
 

physiological races, 333
 

plant-growth-promoting rhizobacteria, 303
 

sanitation and clean cultivation, 302–303
 

symptoms, 194, 300, 331–332
 

water culture technique, 333
 

yield losses, 301, 332
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G 

Groundnut rosette virus (GRV), 103–104 

H 

Head rot, 252
 

Host plant resistance
 

aflatoxins, 66–68
 

Alternaria blight, 154–155
 

Alternaria leaf blight, 330–331
 

Alternaria sesami, 305
 

Alternariaster blight, 249
 

anthracnose, 366–367
 

ASR (see Asian soybean rust (ASR))
 

bacterial rot, 196–197
 

blackleg/stem canker, 184–185
 

BW, 139–140
 

charcoal rot, 298–299
 

club root, 192–193
 

collar/crown rot, peanut seedling, 46
 

in cultivated  Arachis species, 33–34
 

downy mildew, 168
 

ELS and LLS (see Early and late 


leaf spots (ELS/LLS))
 

Fusarium wilt, 302
 

Macrophomina phaseolina, 261–262
 

molecular breeding and transgenic peanuts, 35
 

peanut bud necrosis disease, 111–112
 

peanut clump disease, 125
 

peanut stem necrosis disease, 108
 

peanut stripe, 118–119
 

PeMoV, 122
 

Phytophthora root rot, 337
 

Plasmopara halstedii, 243–244
 

powdery mildew, 178
 

PRD, 105–106
 

rapeseed–mustard diseases, 178, 192–193
 

root-knot nematodes, 142–143
 

safflower rust, 341
 

Sclerotinia blight, 56–57
 

Sclerotinia rot, 173–174
 

SDS, 386–387
 

seed rot and seedling blight complex, 361
 

soybean cyst nematode, 401–402
 

spotted wilt, 115–116
 

SSR, 40–41
 

stem necrosis, 265–266
 

white rust, 162–164
 

in wild  Arachis species, 34–35
 

yellow mosaic disease, 397
 

Hyaloperonospora parasitica, 164
 

I 

Isothiocyanates (ITCs), 155, 175
 

K 

Katanning early maturing (KEM), 185
 

M 

Macrophomina phaseolina 
appressoria, 261
 

and B. subtilis, 300
 

carbendazim, thophanate methyl and thiabendazole, 


262, 299
 

classification, 260–261
 

genetic diversity and polymorphism, 261, 297
 

hills-over-furrows method, 299
 

host plant resistance, 261–262
 

moisture stress, 261
 

penetration, adult stem, 261
 

plant extracts and products, 263
 

seed treatment, 262
 

soil temperature, 298
 

and T. harzianum, 262
 

toxin, 261
 

and T. viride, 300
 

Macrophomina (Rhizoctonia) root rot
 

biocontrol agents, 346
 

chemical method, 346
 

cultural practices, 346
 

geographical distribution, 345
 

and M. phaseolina, 345–346
 

seed germination, 346
 

symptoms, 345
 

yield losses, 345
 

MCGs, see Mycelial compatibility groups (MCGs) 

Meloidogyne arenaria 
COAN and NemaTAM, 143
 

and Cylindrocladium parasiticum, 143
 

diagnosis, 142
 

life cycle, 142
 

peanut seed treatment, 144
 

populations, 143–144
 

resistance genes, 142–143
 

TSWV, 143
 

yield losses, 141
 

Menadione sodium bisulfite (MSB), 186
 

6-Methoxycamalexin (C12H10N2SO), 155
 

Midstalk rot, 250–251
 

Mosaic diseases
 

disease management, 199
 

epidemiology and disease cycle, 198–199
 

geographical distribution and losses, 198
 

pathogen, 198
 

symptoms, 197
 

MSB, see Menadione sodium bisulfite (MSB)
 

Mycelial compatibility groups (MCGs), 254
 

O 

Oilseed crop management, 7–8
 

Oilseed rape mosaic virus (ORMV)-Wh, 198
 

Oxalate oxidase (OXOX) gene, 256
 

P 

PAL, see Phenylalanine ammonia lyase (PAL) 

PCR amplification, see Polymerase chain reaction (PCR) 

amplification 
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PDA, see Potato-dextrose agar (PDA)
 

Peanut
 

BW (see Bacterial wilt (BW))
 

PnWB, 144–145
 

root-knot nematodes (see Root-knot nematodes)
 

virus diseases
 

bud necrosis (see Peanut bud necrosis disease)
 

clump (see Peanut clump disease)
 

PeMoV, 120–122
 

PRD (see Peanut rosette disease (PRD) complex)
 

spotted wilt (see Spotted wilt)
 

stem necrosis (see Peanut stem necrosis disease)
 

stripe (see Peanut stripe)
 

stunt, 126–127
 

Peanut bud necrosis disease
 

cultural control, 112
 

diagnosis, 111
 

disease management, 111–112
 

effect of botanicals, 112
 

epidemiology and disease cycle, 111
 

geographical distribution and losses, 109–110
 

host plant resistance, 111–112
 

pathogens, 110
 

symptoms, 109
 

transmission, 110–111
 

Peanut clump disease
 

chemical control, 125
 

cultural control, 125–126
 

diagnosis, 124
 

disease management, 125–126
 

epidemiology and disease cycle, 124–125
 

geographical distribution and losses, 


122–123
 

host plant resistance, 125
 

pathogens, 124
 

soil solarization, 126
 

symptoms, 122
 

transmission, 124–125
 

Peanut mottle virus (PeMoV)
 

causal virus, 120–121
 

chemical control, 122
 

cultural control, 122
 

diagnosis, 121
 

epidemiology and disease cycle, 121
 

geographical distribution and losses, 120
 

host plant resistance, 122
 

symptoms, 120
 

transmission, 121
 

Peanut rosette disease (PRD) complex
 

aphid transmission, 104
 

chemical control, 106
 

chlorotic rosette, 101
 

cultural control, 106
 

diagnostic techniques, 104
 

disease cycle, 105
 

electrical penetration graph studies, 105
 

epidemiology, 105
 

geographical distribution and losses, 101–102
 

green rosette, 101
 

host plant resistance, 105–106
 

pathogen, 103–104
 

peanut germplasm collection, 105
 

sap transmission, 104
 

seed treatment, 106
 

Peanut stem necrosis disease
 

chemical control, 109
 

cultural control, 109
 

diagnosis, 107
 

epidemiology and disease cycle, 108
 

geographical distribution and losses, 107
 

host plant resistance, 108
 

pathogen, 107
 

symptoms, 107
 

transmission, 107–108
 

Peanut stripe
 

chemical control, 119
 

cultural control, 119
 

diagnosis, 118
 

epidemiology and disease cycle, 118
 

geographical distribution and losses, 117
 

host plant resistance, 118–119
 

host range, 118
 

pathogens, 117
 

regulatory control, 119–120
 

symptoms, 116
 

transmission, 117
 

Peanut stunt
 

diagnosis, 127
 

disease management, 127
 

epidemiology and disease cycle, 127
 

geographical distribution and losses, 126
 

pathogens, 126–127
 

symptoms, 126
 

transmission, 127
 

Peanut witches’ broom (PnWB)
 

axillary buds, 144
 

Ca. phytoplasma asteris, 145
 

phytoplasmas, 144–145
 

RecA protein, 145
 

Peg and pod rots, 62–63
 

biological control, 63
 

chemical control, 63
 

cultural control, 63
 

disease management, 62–63
 

epidemiology and disease cycle, 62
 

geographical distribution and losses, 61
 

host resistance, 62–63
 

pathogens, 62
 

symptoms, 61
 

PeMoV, see Peanut mottle virus (PeMoV)
 

Peptidyl-prolyl cis-trans isomerase (PPIase), 161
 

PGPMC, see Plant growth–promoting microbial 


consortia (PGPMC)
 

Phenylalanine ammonia lyase (PAL), 151,
 

156–157
 

Phomopsis seed mold, 409–410
 

PhV, see Plasmopara halstedii virus (PhV)
 

Phyllody disease
 

calcium and potassium, 310–311
 

cultural control, 311
 

disease management, 200
 

epidemiology, 200
 

genotypes, 311
 

geographical distribution and losses, 199
 

green leaflike structures, 308
 

incubation period, 310
 

leaf curl virus disease, 309
 

and Metasystox®, 311
 



 

 

 

Index 451 

pathogen, 199–200
 

16 Sr taxonomic group, phytoplasma, 309–310
 

symptoms, 199, 307–308
 

tetracycline sprays, 311
 

Thimet® and Temik®, 311
 

transmission, 310
 

yield losses, 309
 

Phyllosticta leaf spot/leaf blight, 413–414 

Phytophthora blight; see also  Phytophthora parasitica
 
dithiocarbamate fungicides, 295
 

geographical distribution, 293
 

Pseudomonas, Bacillus and Streptomyces, 


295–296
 

sanitation and cultivation, 295
 

seed-borne infection, 295
 

Sesamum orientate L., 295
 

symptoms, 293–294
 

yield losses, 293
 

Phytophthora drechsleri 
Biggs safflower, 337
 

chlamydospores, 336
 

intercellular penetration, 336
 

mycelium, 336
 

oospores, 336
 

pathogenic races, 336
 

soil temperature, 337
 

VFR-1 cotyledons, 337
 

water stress conditions, 336–337
 

zoospores, 336
 

Phytophthora parasitica 
mycelium, 293
 

soil temperature, 294–295
 

zoospores, 294
 

Phytophthora root rot
 

captan, 338
 

cultural control, 338
 

geographical distribution, 335
 

host plant resistance, 337
 

Phytophthora drechsleri Tucker, 335–336
 

soil temperature, 337
 

symptoms, 335
 

yield losses, 335
 

Plant growth–promoting microbial consortia 


(PGPMC), 267
 

Plasmopara halstedii 
classification, 241
 

host plant resistance
 

defeated hypostatic genes, 244
 

hybrids, 244
 

induction, 245
 

pathogenic variability, 243–244
 

Pl genes, 243
 

selection pressure, 243–244
 

TIR–NBS–LRR genes, 244
 

oospores, 242–243
 

PhV, 245–246
 

physiological races
 

in Bulgaria, 242
 

distribution, 241
 

in France, 242
 

molecular markers, 242
 

resistance genes and host lines, 241
 

sexual reproduction, 241
 

sporangiophores, 241
 

strobilurins, 244–245 

yield losses, 240
 

Plasmopara halstedii virus (PhV), 245–246
 

PnWB, see Peanut witches’ broom (PnWB)
 

Polymerase chain reaction (PCR) amplification, 139
 

Polyphenol oxidase, 151, 155, 157
 

Potato-dextrose agar (PDA), 247–248
 

Powdery mildew, 412–413
 

biological control, 179
 

chemical control, 179
 

cultural control, 179
 

epidemiology and disease cycle, 178
 

geographical distribution and losses, 


177–178
 

host plant resistance, 178
 

molecular breeding, 179
 

pathogen, 178
 

symptoms, 177
 

PRD complex, see Peanut rosette disease (PRD) complex 

Puccinia carthami 
artificial inoculation, 340
 

breeding program, 341
 

Carthamus species, 340
 

and C. oxyacantha, resistance, 341
 

genotypes, 341
 

hypocotyls, 341
 

life cycle, 339
 

maneb, mancozeb, captafol and thiram, 342
 

oxycarboxin, 342
 

room temperature, 340
 

seed germination process, 340
 

teleutospores, 339–340
 

Puccinia helianthi 
aeciospores, 233
 

in Argentina, Turkey and India, 235
 

in Australia, 234
 

basidiospores, 233
 

classification, 232
 

fungicides, 238
 

Helianthus species, 233
 

in North America, 234
 

pathotypes, 234
 

pycniospores, 233
 

teliospores, 232–233
 

temperature, 236
 

urediniospores, 232
 

Purple seed stain, 406
 

Pustules, 158–159
 

Pycnidia, 179
 

R 

Ralstonia solanacearum
 
Bacillus amyloliquefaciens strain BZ6-1, 141
 

classification, 138
 

cultural methods, 140
 

DNA polymorphism, 140
 

genetic diversity, resistance, 139–140
 

PCR amplification, 139
 

phylotypes, 138
 

protein secretion pathways, 139
 

Pseudomonas solanacearum, 138
 

temperature, 139
 

yield losses, 137
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Ramularia carthami, 342–343
 

Random amplified polymorphic DNA (RAPD), 164, 172,
 

186, 247, 254, 261
 

Rapeseed–mustard diseases
 

Alternaria blight (see Alternaria blight)
 

bacterial (see Bacterial diseases)
 

blackleg/stem canker (see Blackleg/stem canker)
 

club root
 

biological control, 193
 

chemical control, 194
 

cultural control, 193
 

epidemiology and disease cycle, 191–192
 

geographical distribution and losses, 190
 

host plant resistance, 192–193
 

molecular breeding, 193
 

pathogen, 190–191
 

symptoms, 189–190
 

damping-off and seedling blight (see Damping-off and 


seedling blight)
 

downy mildew (see Downy mildew)
 

fungal diseases (see Fungal diseases)
 

Fusarium wilt (see Fusarium wilt)
 

powdery mildew
 

biological control, 179
 

chemical control, 179
 

cultural control, 179
 

epidemiology and disease cycle, 178
 

geographical distribution and losses, 


177–178
 

host plant resistance, 178
 

molecular breeding, 179
 

pathogen, 178
 

symptoms, 177
 

Sclerotinia rot (see Sclerotinia stem rot)
 

white rust (see White rust)
 

Restriction fragment length polymorphisms (RFLPs), 164, 


254, 261, 309–310
 

Rhizoctonia aerial/foliar blight, 412
 

Root-knot disease, 420–421
 

Root-knot nematodes; see also Meloidogyne arenaria
 
chemicals, 143
 

diagnosis, 142
 

geographical distribution, 141
 

host plant resistance, 142–143
 

Pasteuria penetrans, 144
 

populations, 143–144
 

symptoms, 141
 

Xenorhabdus species, 144
 

yield losses, 141
 

Rust disease of peanuts
 

biological control, 36
 

chemical control, 35–36
 

cultural control, 36
 

effect of plant extracts, 36–37
 

epidemiology and disease cycle
 

aerial dissemination, uredospores, 33
 

sexual stage, 31
 

spore germination, 32
 

surface contaminant, 32
 

uredospores, 31–32
 

geographical distribution and losses, 30–31
 

host plant resistance (see Host plant resistance)
 

pathogens, 31
 

symptoms, 29–30
 

S 

Safflower diseases
 

Alternaria leaf blight, 329–331
 

anthracnose, 349
 

bacterial blight/leaf spot, 349
 

brown leaf spot, 342–343
 

Cercospora leaf spot, 343–345
 

downy mildew, 349
 

Fusarium root rot, 347
 

Fusarium wilt (see  Fusarium wilt)
 

gray mold, 348
 

leaf spot, 349
 

Macrophomina (Rhizoctonia) root 


rot, 345–346
 

mosaic disease, 349
 

necrotic yellow disease, 349
 

phyllody, 350
 

Phytophthora root rot (see  Phytophthora root rot)
 

powdery mildew, 346
 

Pythium root rots, 348
 

Rhizoctonia blight, 347
 

root knot, 350
 

rust (see Safflower rust)
 

Sclerotinia wilt/rot, 347
 

stem necrosis disease, 350
 

Verticillium wilt, 348
 

Safflower rust; see also  Puccinia carthami
 
cultural practices, 342
 

geographical distribution, 338–339
 

host plant resistance, 341
 

maneb, mancozeb, captafol and thiram, 342
 

oxycarboxin, 342
 

symptoms, 338
 

yield losses, 339
 

SAR,  see Systemic acquired resistance (SAR)
 

Sclerotinia blight
 

biological control, 58
 

chemical control, 57
 

cultural control, 57–58
 

epidemiology and disease cycle, 56
 

geographical distribution and losses, 55
 

host plant resistance, 56–57
 

pathogen, 55
 

rotting, 54
 

symptoms, 54
 

Sclerotinia sclerotiorum 
acp1 gene, 255
 

aggressiveness, 254
 

antifungal protein, 259
 

ascospores, 172, 255
 

with A9Ss gene, 174
 

BnGLP3 and BnGLP12, 174
 

Brassica plants, 171
 

carpogenic infection, 172
 

classification, 253
 

cruciferous species, 171
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cultivated and wild Helianthus species, 

255–256 

cultural control
 

avoidance/escape resistance, 258
 

crop rotation, 257–258
 

microclimate, 258
 

tillage operations, 257
 

foliar infection, 257
 

fungicide-resistant strains, 176
 

germination, 254
 

inoculum, 172
 

introgression lines, 174
 

jasmonate-mediated defense, 174
 

molecular breeding, 256–257
 

morphogenic and pathogenic diversity, 172
 

morphology, 171
 

mycelial growth, 175
 

mycelium, survival of, 254
 

oxalic acid, 255
 

pathogen, 170
 

RFLPs, MCGs and RAPDs, 172, 254
 

rot of mustard, 169
 

serotonin (5-hydroxytryptamine), 254
 

S. minor and S. trifoliorum, 253
 

soil microorganisms, 258–259
 

Streptomyces longisporoflavus, 175
 

systemic and protectant fungicides, 257
 

transgenic sunflower, resistance, 256–257
 

Sclerotinia stem rot
 

biological control, 175–176
 

chemical control, 176–177
 

cultural control, 175
 

epidemiology and disease cycle, 172–173
 

geographical distribution and losses, 169–170
 

host plant resistance, 173–174
 

molecular breeding, 174
 

pathogen, 170–172
 

symptoms, 168–169
 

Sclerotinia wilt; see also  Sclerotinia sclerotiorum
 
basal stalk rot and wilt, 250–251
 

geographical distribution, 252
 

head rot, 252
 

midstalk rot, 250–251
 

symptoms, 250
 

yield losses, 252–253
 

Sclerotium blight (southern blight/stem blight), 

408–409 

Sclerotium stem rot (SSR), 411–412
 

biological control, 42–43
 

chemical control, 41–42
 

cultural control, 42
 

epidemiology and disease cycle, 39–40
 

geographical distribution and losses, 37–38
 

host plant resistance, 40–41
 

pathogens, 38–39
 

plant extracts, 44
 

symptoms, 37
 

SDS, see Sudden death syndrome (SDS) 

Seed rot and seedling blight complex
 

biological control, 362
 

causal fungi, 359–360
 

chemical control, 361
 

cultural control, 361–362
 

economic importance
 

Fusarium species, 360
 

Phytophthora species, 359
 

Pythium species, 359
 

Rhizoctonia solani, 360
 

host plant resistance, 361
 

plant extracts, 362
 

symptoms and environmental relations, 359–360
 

Seed rot and seedling disease
 

biological control, 16
 

chemical control, 15
 

cultural control, 15
 

factors affecting infection, 14
 

fungicidal seed treatment, 15
 

geographical distribution and losses, 13
 

management strategy, 15
 

pathogens, 14
 

symptoms, 13
 

Sesame diseases
 

aerial stem rot, 313
 

Alternaria leaf spot (see  Alternaria leaf spot)
 

angular leaf spot, 313
 

bacterial blight, 314
 

bacterial wilt, 314
 

brown angular leaf spot, 313
 

Cercospora leaf spot, 306–307
 

charcoal rot (see Charcoal rot)
 

Corynespora blight, 312
 

cowpea aphid–borne mosaic virus, 315
 

Fusarium wilt (see  Fusarium wilt)
 

leaf curl, 315
 

mosaic disease, 315
 

phyllody (see Phyllody disease)
 

Phytophthora blight (see  Phytophthora blight)
 

powdery mildew, 312
 

stem blight, 313
 

SLEAM,  see Sunflower leaf extract agar medium (SLEAM)
 

SND,  see Sunflower necrosis disease (SND)
 

Soybean cyst nematode
 

biological control, 404
 

chemical control, 403
 

cultural control, 403–404
 

epidemiology and disease cycle, 400–401
 

geographical distribution and losses, 398
 

host plant resistance, 401–402
 

molecular breeding, resistance, 402–403
 

pathogen, 398–399
 

plant extracts, 405
 

symptoms, 397–398
 

Soybean diseases 

anthracnose (see Anthracnose) 

ASR (see Asian soybean rust (ASR)) 

bacterial blight, 415–416 

BPD, 416–417 

BPMV, 419–420 

brown spot, 405 

BSR, 414–415 

charcoal rot (see Charcoal rot) 

diaporthe pod, 409–410 
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downy mildew, 405–406
 

FLS (see Frogeye leaf spot (FLS))
 

mosaic disease, 417–419
 

Phyllosticta leaf spot/leaf blight, 413–414
 

powdery mildew, 412–413
 

purple seed stain, 406
 

Rhizoctonia aerial/foliar blight, 412
 

root-knot disease, 420–421
 

SDS (see Sudden death syndrome (SDS))
 

seed rot and seedling blight complex (see Seed rot and 


seedling blight complex)
 

southern blight/stem blight, 408–409
 

soybean cyst nematode (see Soybean cyst nematode)
 

SSR, 411–412
 

stem blight/Phomopsis seed mold, 409–410
 

target spot, 410–411
 

white mold disease, 411–412
 

yellow mosaic disease (see Yellow mosaic disease)
 

Soybean mosaic disease, 417–419
 

SPEC,  see System for Forecasting Disease Epidemics (SPEC)
 

Spotted wilt
 

cultural control, 116
 

diagnosis, 114
 

epidemiology and disease cycle, 114–115
 

geographical distribution and losses, 113
 

host plant resistance, 115–116
 

pathogens, 113–114
 

symptoms, 112–113
 

transmission, 114–115
 

vector control, insecticides, 116
 

Stem blight/Phomopsis seed mold, 409–410
 

Stem necrosis;  see also Sunflower necrosis disease (SND);
  

Tobacco streak virus (TSV)
 

antiviral compounds, 267
 

bud formation stage, 263, 267
 

cultural control, 266
 

diagnosis, 265
 

epidemiology, 265
 

geographical distribution, 263
 

host plant resistance, 265–266
 

PGPMC, 267
 

seed treatment, 266–267
 

symptoms, 263
 

transgenic approach, 266
 

transmission
 

mechanical/sap, 264
 

seed, 264–265
 

vector, 264
 

yield losses, 263
 

Sudden death syndrome (SDS)
 

chemical seed treatment, 387
 

cultural control, 387–388
 

epidemiology and disease cycle, 385–386
 

foliar symptoms, 385–386
 

F. solani f. sp. glycines, 383
 

geographical distribution and losses, 384
 

host plant resistance, 386–387
 

pathogen, 384–385
 

at reproductive stage, 383
 

at seedling stage, 383
 

spores (macroconidia), 386
 

Sunflower diseases
 

Alternariaster blight (see  Alternariaster blight)
 

charcoal rot (see Charcoal rot)
 

downy mildew (see Downy mildew)
 

potential importance, 267–271
 

rust (see Sunflower rust)
 

Sclerotinia wilt and stem rot (see Sclerotinia stem rot;
 

Sclerotinia wilt)
 

stem necrosis, 263–267
 

Sunflower leaf extract agar medium (SLEAM), 248
 

Sunflower necrosis disease (SND)
 

chemical management, 266–267
 

Chenopodium quinoa plants, 264
 

hybrids, 266
 

Ilarvirus-like particles, 264
 

PGPMCs, 267
 

Prosopis and Bougainvillea, 267
 

sap inoculation technique, 265
 

sunflower-growing areas, 263
 

thrips population and weather parameters, 265
 

yield losses, 263
 

Sunflower rust; see also Puccinia helianthi
 
aeciospores, 235
 

in Argentina, Turkey and India, 235
 

in Australia, 234
 

cultural management, 238–239
 

environment and inoculum source, 235
 

fungicides, 238
 

host resistance
 

genes R1 and R2, 236–237
 

genes R3, R4, R5 and R6, 237
 

Helianthus, 236
 

molecular markers, 237–238
 

infection, 231
 

light intensity, 236
 

in North America, 234
 

pathotypes, 234
 

quantitative assessment, 231
 

seed quality, 231
 

symptoms, 231–232
 

teliospores, 235
 

temperature, 236
 

urediniospores, 235–236
 

variability, 233–234
 

yield losses, 231
 

Superoxide dismutase (SOD), 156, 171
 

System for Forecasting Disease Epidemics (SPEC), 183
 

Systemic acquired resistance (SAR), 156, 186, 


245, 249
 

T 

TAL, see Tyrosine ammonia lyase (TAL)
 

Target spot, 410–411
 

TIR–NBS–LRR genes, see Toll-interleukin receptor–
 

nucleotide-binding site–leucine-rich repeat
 

(TIR–NBS–LRR) genes
 

Tobacco streak virus (TSV)
 

Chenopodium quinoa, 264
 

CP gene, 266
 

electron microscopy, 264
 

epidemics and reduction, 263
 

Ilarvirus, 264
 

marigold and chrysanthemum, 266
 

Parthenium, 264–265
 

polyclonal antiserum, 265
 

seed transmission, 264–265
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Toll-interleukin receptor–nucleotide-binding site–leucine

rich repeat (TIR–NBS–LRR) genes, 244
 

Tomato spotted wilt virus (TSWV), 143
 

TSV, see Tobacco streak virus (TSV)
 

Turnip yellow mosaic virus (TYMV), 198
 

Tyrosine ammonia lyase (TAL), 151, 161
 

W 

White leaf spot, see Cercospora leaf spot 

White mold disease, 411–412 

White rust 

A. candida, 158
 

biological control, 165
 

Brassicaceae, 158
 

chemical control, 165
 

cultural control, 164
 

effect of plant extracts, 165
 

epidemiology and disease cycle, 162
 

geographical distribution and losses, 160
 

host plant resistance (see Host plant resistance)
 

induced host resistance, 164
 

molecular breeding, 164
 

pathogen, 160–162
 

symptoms, 158–160
 

Witches’ broom symptom, phyllody, 310
 

Y 

Yellow mold and aflaroot 

A. flavus, 48–50
 

disease management, 51
 

epidemiology and disease cycle, 51
 

geographical distribution and losses, 50
 

pathogens, 50
 

symptoms, 48–50
 

Yellow mosaic disease
 

epidemiology and disease cycle, 396
 

geographical distribution and losses, 


395–396
 

host plant resistance, 397
 

symptoms, 394
 

transmission, 396
 

vector control, 397
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