114 research outputs found

    Ein simultanes Berechnungsverfahren für Fluid-Struktur-Wechselwirkungen mit finiten Raum-Zeit-Elementen

    Get PDF
    Zur effizienten Analyse von starken, nichtlinearen Wechselwirkungen zwischen Fluid und Struktur wird ein monolithisches Berechnungsmodell entwickelt. Bei der Diskretisierung der Modellgleichungen der beiden Kontinua und der Kopplungsbedingungen wird die Raum-Zeit-Finite-Element-Methode verwendet. Mit der einheitlichen Betrachtung von Raum und Zeit ist es möglich, das Fluidgebiet den Strukturverformungen kontinuierlich anzupassen. Das Modell ermöglicht Stabilitätsanalysen des gekoppelten Systems. Anhand von ausgewählten Beispielen wird die Effizienz und Anwendbarkeit des Verfahrens dokumentiert.For efficient analyses of strong, nonlinear interactions between fluid and structure a monolithic numerical model is developed. The space-time finite element method is applied for discretisation of both continua and the coupling conditions. The uniform approach in space and time allows a continuous adaptation of the fluid domain to the structural motion. Altogether a single set of equations is derived, which allows stability analyses of coupled problems. Selected examples confirm the efficiency and versatility of the model

    A Simultaneous Solution Procedure for Fluid-Structure Interaction with Application to Civil Engineering Problems

    Get PDF
    Ein simultanes Lösungsverfahren für Fluid-Struktur-Wechselwirkungen aus dem Bereich des Bauingenieurwesens wird vorgestellt. Die Modellierung der Tragwerksdynamik erfolgt mit der geometrisch nichtlinearen Elastizitätstheorie in total Lagrangescher Formulierung. Die Strömung wird mit den inkompressiblen Navier-Stokes-Gleichungen beschrieben. Wenn Turbulenzeffekte massgeblich sind, kommen die Reynolds-Gleichungen in Verbindung mit dem k-omega-Turbulenzmodell von Wilcox zum Einsatz. Zur Beschreibung von komplexen freien Oberflächen wird die Level-Set-Methode eingesetzt. Die einheitliche Diskretisierung von Fluid und Struktur mit der Raum-Zeit-Finite-Element-Methode führt zu einem konsistenten Berechnungsmodell für das gekoppelte System. Da die isoparametrischen Raum-Zeit-Elemente ihre Geometrie in Zeitrichtung ändern können, erlaubt die Methode eine natürliche Beschreibung des infolge der Strukturbewegung zeitveränderlichen Strömungsgebiets. Die gewichtete Integralformulierung der Kopplungsbedingungen mit globalen Freiwerten für die Interface-Spannungen sichert eine konservative Kopplung von Fluid und Struktur. Ausgewählte Anwendungsbeispiele zeigen die Leistungsfähigkeit der entwickelten Methodik und belegen die guten Konvergenzeigenschaften des simultanen Lösungsverfahrens

    A Numerical Approach to Space-Time Finite Elements for the Wave Equation

    Full text link
    We study a space-time finite element approach for the nonhomogeneous wave equation using a continuous time Galerkin method. We present fully implicit examples in 1+1, 2+1, and 3+1 dimensions using linear quadrilateral, hexahedral, and tesseractic elements. Krylov solvers with additive Schwarz preconditioning are used for solving the linear system. We introduce a time decomposition strategy in preconditioning which significantly improves performance when compared with unpreconditioned cases.Comment: 9 pages, 5 figures, 5 table

    Arrhythmogenic cardiomyopathy related DSG2 mutations affect desmosomal cadherin binding kinetics

    Get PDF
    Dieding M, Debus JD, Kerkhoff R, et al. Arrhythmogenic cardiomyopathy related DSG2 mutations affect desmosomal cadherin binding kinetics. Scientific Reports. 2017;7(1): 13791.Cadherins are calcium dependent adhesion proteins that establish the intercellular mechanical contact by bridging the gap to adjacent cells. Desmoglein-2 (Dsg2) is a specific cadherin of the cell-cell contact in cardiac desmosomes. Mutations in the DSG2-gene are regarded to cause arrhythmogenic (right ventricular) cardiomyopathy (ARVC) which is a rare but severe heart muscle disease. The molecular pathomechanisms of the vast majority of DSG2 mutations, however, are unknown. Here, we investigated the homophilic binding of wildtype Dsg2 and two mutations which are associated with ARVC. Using single molecule force spectroscopy and applying Jarzynski's equality we determined the kinetics and thermodynamics of Dsg2 homophilic binding. Notably, the free energy landscape of Dsg2 dimerization exposes a high activation barrier which is in line with the proposed strand-swapping binding motif. Although the binding motif is not directly affected by the mutations the binding kinetics differ significantly from the wildtype. Furthermore, we applied a dispase based cell dissociation assay using HT1080 cell lines over expressing Dsg2 wildtype and mutants, respectively. Our molecular and cellular results consistently demonstrate that Dsg2 mutations can heavily affect homophilic Dsg2 interactions. Furthermore, the full thermodynamic and kinetic description of Dsg2 dimerization provides a consistent model of the so far discussed homophilic cadherin binding

    Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

    Get PDF
    Harder A, Dieding M, Walhorn V, et al. Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. Beilstein Journal of Nanotechnology. 2013;4:510-516.Both fluorescence imaging and atomic force microscopy (AFM) are highly versatile and extensively used in applications ranging from nanotechnology to life sciences. In fluorescence microscopy luminescent dyes serve as position markers. Moreover, they can be used as active reporters of their local vicinity. The dipolar coupling of the tip with the incident light and the fluorophore give rise to a local field and fluorescence enhancement. AFM topographic imaging allows for resolutions down to the atomic scale. It can be operated in vacuum, under ambient conditions and in liquids. This makes it ideal for the investigation of a wide range of different samples. Furthermore an illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM) enables concurrent high resolution topography and fluorescence imaging. Commonly, among the various (apertureless) SNOM approaches metallic or metallized probes are used. Here, we report on our custom-built aSNOM setup, which uses commercially available monolithic silicon AFM cantilevers. The field enhancement confined to the tip apex facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which are fluorescently labeled to a low degree. The simultaneous recording of topography and fluorescence data allows for the exact localization of distinct building blocks within the superordinate structures

    Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives

    Get PDF
    Wegener M, Ennen I, Walhorn V, Anselmetti D, Hütten A, Dietz K-J. Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives. Nanomaterials. 2019;9(4): 585.A novel technique to study protein synthesis is proposed that uses magnetic nanoparticles in combination with microfluidic devices to achieve new insights into translational regulation. Cellular protein synthesis is an energy-demanding process which is tightly controlled and is dependent on environmental and developmental requirements. Processivity and regulation of protein synthesis as part of the posttranslational nano-machinery has now moved back into the focus of cell biology, since it became apparent that multiple mechanisms are in place for fine-tuning of translation and conditional selection of transcripts. Recent methodological developments, such as ribosome foot printing, propel current research. Here we propose a strategy to open up a new field of labelling, separation, and analysis of specific polysomes using superparamagnetic particles following pharmacological arrest of translation during cell lysis and subsequent analysis. Translation occurs in polysomes, which are assemblies of specific transcripts, associated ribosomes, nascent polypeptides, and other factors. This supramolecular structure allows for unique approaches to selection of polysomes by targeting the specific transcript, ribosomes, or nascent polypeptides. Once labeled with functionalized superparamagnetic particles, such assemblies can be separated in microfluidic devices or magnetic ratchets and quantified. Insights into the dynamics of translation is obtained through quantifying large numbers of ribosomes along different locations of the polysome. Thus, an entire new concept for in vitro, ex vivo, and eventually single cell analysis will be realized and will allow for magnetic tracking of protein synthesis

    Partitioned simulation of the interaction between an elastic structure and free surface flow

    Get PDF
    Currently, the interaction between free surface flow and an elastic structure is simulated with monolithic codes which calculate the deformation of the structure and the liquid–gas flow simultaneously. In this work, this interaction is calculated in a partitioned way with a separate flow solver and a separate structural solver using the interface quasi-Newton algorithm with approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS). The interaction between an elastic beam and a sloshing liquid in a rolling tank is calculated and the results agree well with experimental data. Subsequently, the impact of both a rigid cylinder and a flexible composite cylinder on a water surface is simulated to assess the effect of slamming on the components of certain wave-energy converters. The impact pressure on the bottom of the rigid cylinder is nearly twice as high as on the flexible cylinder, which emphasizes the need for fluid–structure interaction calculations in the design process of these wave-energy converters. For both the rolling tank simulations and the impact simulations, grid refinement is performed and the IQN-ILS algorithm requires the same number of iterations on each grid. The simulations on the coarse grid are also executed using Gauss-Seidel coupling iterations with Aitken relaxation which requires significantly more coupling iterations per time step

    Unified one-fluid formulation for incompressible flexible solids and multiphase flows: Application to hydrodynamics using the immersed structural potential method (ISPM)

    Get PDF
    In this paper, we present a two-dimensional computational framework for the simulation of fluid-structure interaction problems involving incompressible flexible solids and multiphase flows, further extending the application range of classical immersed computational approaches to the context of hydrodynamics. The proposed method aims to overcome shortcomings such as the restriction of having to deal with similar density ratios among different phases or the restriction to solve single-phase flows. First, a variation of classical immersed techniques, pioneered with the immersed boundary method (IBM), is presented by rearranging the governing equations, which define the behaviour of the multiple physics involved. The formulation is compatible with the “one-fluid” formulation for two-phase flows and can deal with large density ratios with the help of an anisotropic Poisson solver. Second, immersed deformable structures and fluid phases are modelled in an identical manner except for the computation of the deviatoric stresses. The numerical technique followed in this paper builds upon the immersed structural potential method developed by the authors, by adding a level set–based method for the capturing of the fluid-fluid interfaces and an interface Lagrangian-based meshless technique for the tracking of the fluid-structure interface. The spatial discretisation is based on the standard marker-and-cell method used in conjunction with a fractional step approach for the pressure/velocity decoupling, a second-order time integrator, and a fixed-point iterative scheme. The paper presents a wide d range of two-dimensional applications involving multiphase flows interacting with immersed deformable solids, including benchmarking against both experimental and alternative numerical schemes

    Ein simultanes Berechnungsverfahren fuer Fluid-Struktur-Wechselwirkungen mit finiten Raum-Zeit-Elementen

    No full text
    SIGLEAvailable from TIB Hannover: RN 2279(2002,95) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore