25 research outputs found

    Inflammation and Cardiovascular Disease: The Future

    Get PDF
    Despite considerable advances in reducing the global burden of atherosclerotic cardiovascular disease by targeting conventional risk factors, significant residual risk remains, with low-grade inflammation being one of the strongest risk modifiers. Inflammatory processes within the arterial wall or systemic circulation, which are driven in a large part by modified lipoproteins but subsequently trigger a hypercoagulable state, are a hallmark of atherosclerotic cardiovascular disease and, in particular, its clinical complications. Extending conventional guideline-based clinical risk stratification algorithms by adding biomarkers of inflammation may refine phenotypic screening, improve risk stratification and guide treatment eligibility in cardiovascular disease prevention. The integration of interventions aimed at lowering the inflammatory burden, alone or in combination with aggressive lipid-modifying or even antithrombotic agents, for those at high cardiovascular risk may hold the potential to reduce the still substantial burden of cardiometabolic disease. This review provides perspectives on future clinical research in atherosclerosis addressing the tight interplay between inflammation, lipid metabolism and thrombosis, and its translation into clinical practice

    Genome-Wide Association Analysis for Severity of Coronary Artery Disease Using the Gensini Scoring System

    Get PDF
    Coronary artery disease (CAD) has a complex etiology involving numerous environmental and genetic factors of disease risk. To date, the genetic 9p21 locus represents the most robust genetic finding for prevalent and incident CAD. However, limited information is available on the genetic background of the severity and distribution of CAD. CAD manifests itself as stable CAD or acute coronary syndrome. The Gensini score quantifies the extent CAD but requires coronary angiography. Here, we aimed to identify novel genetic variants associated with Gensini score severity and distribution of CAD. A two-stage approach including a discovery and a replication stage was used to assess genetic variants. In the discovery phase, a meta-analysis of genome-wide association data of 4,930 CAD-subjects assessed by the Gensini score was performed. Selected single nucleotide polymorphisms (SNPs) were replicated in 2,283 CAD-subjects by de novo genotyping. We identified genetic loci located on chromosome 2 and 9 to be associated with Gensini score severity and distribution of CAD in the discovery stage. Although the loci on chromosome 2 could not be replicated in the second stage, the known CAD-locus on chromosome 9p21, represented by rs133349, was identified and, thus, was confirmed as risk locus for CAD severity

    Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study

    Get PDF
    Background: Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear. Methods: We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts. Findings: The median follow-up was 9·9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1·44, 95% CI 1·14–1·83) and the presence of either LPA SNP (1·88, 1·40–2·53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0·95, 0·81–1·11 and either LPA SNP 1·10, 0·92–1·31) or cardiovascular mortality (0·99, 0·81–1·2 and 1·13, 0·90–1·40, respectively) or in the validation studies. Interpretation: In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established. Funding: Seventh Framework Programme for Research and Technical Development (AtheroRemo and RiskyCAD), INTERREG IV Oberrhein Programme, Deutsche Nierenstiftung, Else-Kroener Fresenius Foundation, Deutsche Stiftung für Herzforschung, Deutsche Forschungsgemeinschaft, Saarland University, German Federal Ministry of Education and Research, Willy Robert Pitzer Foundation, and Waldburg-Zeil Clinics Isny

    Genome-Wide Association Analysis for Severity of Coronary Artery Disease Using the Gensini Scoring System

    Get PDF
    Coronary artery disease (CAD) has a complex etiology involving numerous environmental and genetic factors of disease risk. To date, the genetic 9p21 locus represents the most robust genetic finding for prevalent and incident CAD. However, limited information is available on the genetic background of the severity and distribution of CAD. CAD manifests itself as stable CAD or acute coronary syndrome. The Gensini score quantifies the extent CAD but requires coronary angiography. Here, we aimed to identify novel genetic variants associated with Gensini score severity and distribution of CAD. A two-stage approach including a discovery and a replication stage was used to assess genetic variants. In the discovery phase, a meta-analysis of genome-wide association data of 4,930 CAD-subjects assessed by the Gensini score was performed. Selected single nucleotide polymorphisms (SNPs) were replicated in 2,283 CAD-subjects by de novo genotyping. We identified genetic loci located on chromosome 2 and 9 to be associated with Gensini score severity and distribution of CAD in the discovery stage. Although the loci on chromosome 2 could not be replicated in the second stage, the known CAD-locus on chromosome 9p21, represented by rs133349, was identified and, thus, was confirmed as risk locus for CAD severity

    Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium.

    Get PDF
    BACKGROUND: The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment. METHODS: In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol. FINDINGS: Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7-59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0-20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0-1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6-2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0-1·3 to 2·3, 2·0-2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced. INTERPRETATION: Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician-patient communication about primary prevention strategies. FUNDING: EU Framework Programme, UK Medical Research Council, and German Centre for Cardiovascular Research

    Spontaneous spondylodiscitis and endocarditis: interdisciplinary experience from a tertiary institutional case series and proposal of a treatment algorithm

    No full text
    Previously, the simultaneous presence of endocarditis (IE) has been reported in 3-30% of spondylodiscitis cases. The specific implications on therapy and outcome of a simultaneous presence of both diseases are not yet fully evaluated. Therefore, the aim of this study was to investigate the influence of a simultaneously present endocarditis on the course of therapy and outcome of spondylodiscitis. A prospective database analysis of 328 patients diagnosed with spontaneous spondylodiscitis (S) using statistical analysis with propensity score matching was conducted. Thirty-six patients (11.0%) were diagnosed with concurrent endocarditis (SIE) by means of transoesophageal echocardiography. In our cohort, the average age was 65.82 ± 4.12 years and 64.9% of patients were male. The incidence of prior cardiac or renal disease was significantly higher in the SIE group (coronary heart disease SIE n = 13/36 vs. S n = 57/292, p &amp;lt; 0.05 and chronic heart failure n = 11/36 vs. S n = 41/292, p &amp;lt; 0.05, chronic renal failure SIE n = 14/36 vs. S n = 55/292, p &amp;lt; 0.05). Complex interdisciplinary coordination and diagnostics lead to a significant delay in surgical intervention (S = 4.5 ± 4.5 days vs. SIE = 8.9 ± 9.5 days, p &amp;lt; 0.05). Mortality did not show statistically significant differences: S (13.4%) and SIE (19.1%). Time to diagnosis and treatment is a key to efficient treatment and patient safety. In order to counteract delayed therapy, we developed a novel therapy algorithm based on the analysis of treatment processes of the SIE group. We propose a clear therapy pathway to avoid frequently observed pitfalls and delays in diagnosis to improve patient care and outcome

    Intrinsic Iron Release Is Associated with Lower Mortality in Patients with Stable Coronary Artery Disease—First Report on the Prospective Relevance of Intrinsic Iron Release

    No full text
    Intrinsic iron release is discussed to have favorable effects in coronary artery disease (CAD). The aim of this study was to evaluate the prognostic relevance of intrinsic iron release in patients with CAD. Intrinsic iron release was based on a definition including hepcidin and soluble transferrin receptor (sTfR). In a cohort of 811 patients with angiographically documented CAD levels of hepcidin and sTfR were measured at baseline. Systemic body iron release was defined as low levels of hepcidin (&lt;24 ng/mL) and high levels of sTfR (&ge;2 mg/L). A commercially available ELISA (DRG) was used for measurements of serum hepcidin. Serum sTfR was determined by using an automated immunoassay (). Cardiovascular mortality was the main outcome measure. The criteria of intrinsic iron release were fulfilled in 32.6% of all patients. Significantly lower cardiovascular mortality rates were observed in CAD patients with systemic iron release. After adjustment for body mass index, smoking status, hypertension, diabetes, dyslipidemia, sex, and age, the hazard ratio for future cardiovascular death was 0.41. After an additional adjustment for surrogates of the size of myocardial necrosis (troponin I), anemia (hemoglobin), and cardiac function and heart failure severity (N-terminal pro B-type natriuretic peptide), this association did not change (Hazard ratio 0.37 (95% confidence interval 0.14&ndash;0.99), p = 0.047). In conclusion, significantly lower cardiovascular mortality rates were observed in CAD patients with intrinsic iron release shown during follow-up

    Prognostic Value of Iron-Homeostasis Regulating Peptide Hepcidin in Coronary Heart Disease—Evidence from the Large AtheroGene Study

    No full text
    Iron is essential in terms of oxygen utilization and mitochondrial function. The liver-derived peptide hepcidin has been recognized as a key regulator of iron homeostasis. Since iron metabolism is crucially linked to cardiovascular health, and low hepcidin was proposed as potential new marker of iron metabolism, we aimed to evaluate the prognostic value of hepcidin in a large cohort of patients with coronary heart disease (CHD). Serum levels of hepcidin were determined at baseline in patients with angiographically documented CHD. The main outcome measure was non-fatal myocardial infarction (MI) or cardiovascular death. During a median follow-up of 4.1 years, 10.3% experienced an endpoint. In Cox regression analyses for hepcidin the hazard ratio for future cardiovascular death or MI was 1.03 (95% confidence interval (CI) 0.91&ndash;1.18, p = 0.63) after adjustment for sex and age. This association virtually did not change after additional adjustment for body mass index (BMI), smoking status, hypertension, diabetes, dyslipidemia, and surrogates of cardiac function (NT-proBNP), size of myocardial necrosis (troponin I), and anemia (hemoglobin). In this study, by far the largest evaluating the predictive value of hepcidin, hepcidin levels were not associated with future MI or cardiovascular death. This implicates a limited, if any, role for hepcidin in secondary cardiovascular risk prediction

    Adverse Outcome Prediction of Iron Deficiency in Patients with Acute Coronary Syndrome

    No full text
    Acute myocardial infarction remains a leading cause of morbidity and mortality. While iron deficient heart failure patients are at increased risk of future cardiovascular events and see improvement with intravenous supplementation, the clinical relevance of iron deficiency in acute coronary syndrome remains unclear. We aimed to evaluate the prognostic value of iron deficiency in the acute coronary syndrome (ACS). Levels of ferritin, iron, and transferrin were measured at baseline in 836 patients with ACS. A total of 29.1% was categorized as iron deficient. The prevalence of iron deficiency was clearly higher in women (42.8%), and in patients with anemia (42.5%). During a median follow-up of 4.0 years, 111 subjects (13.3%) experienced non-fatal myocardial infarction (MI) and cardiovascular mortality as combined endpoint. Iron deficiency strongly predicted non-fatal MI and cardiovascular mortality with a hazard ratio (HR) of 1.52 (95% confidence interval (CI) 1.03-2.26; p = 0.037) adjusted for age, sex, hypertension, smoking status, diabetes, hyperlipidemia, body-mass-index (BMI) This association remained significant (HR 1.73 (95% CI 1.07&ndash;2.81; p = 0.026)) after an additional adjustment for surrogates of cardiac function and heart failure severity (N-terminal pro B-type natriuretic peptide, NT-proBNP), for the size of myocardial necrosis (troponin), and for anemia (hemoglobin). Survival analyses for cardiovascular mortality and MI provided further evidence for the prognostic relevance of iron deficiency (HR 1.50 (95% CI 1.02&ndash;2.20)). Our data showed that iron deficiency is strongly associated with adverse outcome in acute coronary syndrome

    Diagnosis of myocardial infarction using a high-sensitivity Troponin I 1-hour algorithm

    No full text
    Importance  Rapid and accurate diagnosis of acute myocardial infarction (AMI) currently constitutes an unmet need.Objective  To test a 1-hour diagnostic algorithm to diagnose AMI using a high-sensitivity troponin I assay with a new cutoff level of 6 ng/L.Design, Setting, and Participants  The Biomarkers in Acute Cardiac Care study is a prospective study that investigated the application of the troponin I assay for the diagnosis of AMI in 1040 patients presenting to the emergency department with acute chest pain from July 19, 2013, to December 31, 2014. Results were validated in 2 independent cohorts of 4009 patients. Final follow-up was completed on July 1, 2015, and data were assessed from July 2 to December 15, 2015.Exposure  Acute chest pain suggestive of AMI.Main Outcomes and Measures  Accurate diagnosis or exclusion of AMI and 12-month mortality in patients with acute chest pain.Results  Of the 1040 patients included from the study cohort, 673 (64.7%) were male and had a median age of 65 (interquartile range, 52-75) years. With application of a low troponin I cutoff value of 6 ng/L, the rule-out algorithm showed a high negative predictive value of 99.8% (95% CI, 98.6%-100.0%) after 1 hour for non–ST-segment elevation MI type 1. The 1-hour approach was comparable to a 3-hour approach. Similarly, a rule-in algorithm based on troponin I levels provided a high positive predictive value with 82.8% (95% CI, 73.2%-90.0%). Moreover, application of the cutoff of 6 ng/L resulted in lower follow-up mortality (1.0%) compared with the routinely used 99th percentile (3.7%) for this assay. Two independent cohorts further validated the performance of this algorithm with high negative and positive predictive values.Conclusions and Relevance  Patients with possible AMI can be triaged within 1 hour after admission with no loss of safety compared with a 3-hour approach, when a low and sensitive cutoff is applied. This concept enables safe discharge or rapid treatment initiation after 1 hour.</p
    corecore