40 research outputs found

    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts

    Get PDF
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging

    A study into the collision-induced dissociation (CID) behavior of cross-linked peptides

    Get PDF
    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)- cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique crosslinked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotopelabeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary crosslinked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers

    Proteomic changes in cerebrospinal fluid from primary central nervous system lymphoma patients are associated with protein ectodomain shedding

    No full text
    Primary central nervous system lymphomas (PCNSLs) are mature B-cell lymphomas confined to the central nervous system (CNS). Blood-brain barrier (BBB) dysfunction drastically alters the cerebrospinal fluid (CSF) proteome in PCNSL patients. To reveal the interaction of PCNSL tumors with CNS structures and the vasculature, we conducted a whole-proteome analysis of CSF from PCNSL patients (n = 17 at initial diagnosis) and tumor-free controls (n = 10) using label-free quantitative mass spectrometry. We identified 601 proteins in the CSF proteome using a one-step approach without further prefractionation, and quantified 438 proteins in detail using the Hi-N method. An immunoassay revealed that 70% of the patients in our unselected PCNSL patient cohort had BBB dysfunction. Correlation analysis indicated that 127 (30%) of the quantified proteins were likely increased in PCSNL patients due to BBB dysfunction. After the exclusion of these proteins, 66 were found to differ in abundance (fold-change > 2.0, p < 0.05) between PCNSL and control CSF proteomes, and most of those were associated with the CNS. These data also provide the first evidence that proteomic changes in CSF from PCNSL patients are mainly associated with protein ectodomain shedding, and that shedding of human leukocyte antigen class 2 proteins is a mechanism of tumor-cell immune evasion
    corecore