14 research outputs found

    Significant Depletion of CD4+ T Cells Occurs in the Oral Mucosa during Simian Immunodeficiency Virus Infection with the Infected CD4+ T Cell Reservoir Continuing to Persist in the Oral Mucosa during Antiretroviral Therapy

    No full text
    Human and simian immunodeficiency virus (HIV and SIV) infections are characterized by manifestation of numerous opportunistic infections and inflammatory conditions in the oral mucosa. The loss of CD4+ T cells that play a critical role in maintaining mucosal immunity likely contributes to this process. Here we show that CD4+ T cells constitute a minor population of T cells in the oral mucosa and display a predominantly central memory phenotype mirroring other mucosal sites such as the rectal mucosa. Chronic SIV infection was associated with a near total depletion of CD4+ T cells in the oral mucosa that appear to repopulate during antiretroviral therapy (ART). Repopulating CD4+ T cells harbored a large fraction of Th17 cells suggesting that ART potentially reconstitutes oral mucosal immunity. However, a minor fraction of repopulating CD4+ T cells harbored SIV DNA suggesting that the viral reservoir continues to persist in the oral mucosa during ART. Therapeutic approaches aimed at obtaining sustainable CD4+ T cell repopulation in combination with strategies that can eradicate the latent viral reservoir in the oral mucosa are essential for better oral health and long-term outcome in HIV infected patients

    Gold drug auranofin restricts the viral reservoir in the monkey AIDS model and induces containment of viral load following ART suspension

    No full text
    Objectives: A small pool of long-lived memory CD4 T cells harboring the retroviral genome is one main obstacle to HIV eradication. We tested the impact of the gold compound, auranofin, on phenotype and viability of CD4 + T cells in vitro, and on persistence of lentiviral reservoir cells in vivo. Design: In-vitro and in-vivo study. The pro-differentiating effect of auranofin was investigated in human primary CD4 + T cells, and its capacity to deplete the viral DNA (vDNA) reservoir was tested in a pilot study involving six SIVmac251-infected macaques with viral loads stably suppressed by antiretroviral therapy (ART) (tenofovir/emtricitabine/raltegravir). The study was then amplified by intensifying ART using darunavir/r and including controls under intensified ART alone. All therapies were eventually suspended and viro-immunological parameters were monitored over time. METHODS:: Cell subpopulations were quantitated by flow cytometry following proper hematological analyses. Viral load and cell-associated vDNA were quantitated by Taqman real-time PCR. Results: In naïve, central memory and transitional memory CD4 + T cells, auranofin induced both phenotype changes and cell death which were more pronounced in the memory compartment. In the pilot study in vivo, auranofin transiently decreased the cell-associated vDNA reservoir in peripheral blood. When ART was intensified, a sustained decrease in vDNA was observed only in auranofin-treated monkeys but not in controls treated with intensified ART alone. After therapy suspension, only monkeys that had received auranofin showed a deferred and subsequently blunted viral load rebound. Conclusion: These findings represent a first step towards a remission of primate lentiviral infections. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Investigational treatment suspension and enhanced cell-mediated immunity at rebound followed by drug-free remission of simian AIDS

    Get PDF
    BACKGROUND: HIV infection persists despite antiretroviral treatment (ART) and is reignited as soon as therapies are suspended. This vicious cycle is fueled by the persistence of viral reservoirs that are invulnerable to standard ART protocols, and thus therapeutic agents able to target these reservoirs are needed. One such agent, auranofin, has recently been shown to decrease the memory T-cell reservoir in chronically SIVmac251-infected macaques. Moreover, auranofin could synergize with a fully suppressive ART protocol and induce a drug-free post-therapy containment of viremia. RESULTS: We administered buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis currently in clinical trials for cancer, in combination with auranofin to chronically SIVmac251-infected macaques under highly-intensified ART (H-iART). The ART/auranofin/BSO therapeutic protocol was followed, after therapy suspension, by a significant decrease of viral RNA and DNA in peripheral blood as compared to pre-therapy levels. Drug-free post-therapy control of the infection was achieved in animals with pre-therapy viral loads ranging from values comparable to average human set points to levels largely higher. This control was dependent on the presence CD8(+) cells and associated with enhanced levels of cell-mediated immune responses. CONCLUSIONS: The level of post-therapy viral set point reduction achieved in this study is the largest reported so far in chronically SIVmac251-infected macaques and may represent a promising strategy to improve over the current “ART for life” plight

    Gold drug auranofin restricts the viral reservoir in the monkey AIDS model and induces containment of viral load following ART suspension

    No full text
    A small pool of long-lived memory CD4 T cells harboring the retroviral genome is one main obstacle to HIV eradication. We tested the impact of the gold compound, auranofin, on phenotype and viability of CD4 T cells in vitro, and on persistence of lentiviral reservoir cells in vivo

    Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution

    Get PDF
    3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3 mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable gamma -ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array (ALMA), at an angular resolution of similar to 20 mu as (at a redshift of z=0.536 this corresponds to similar to 0.13 pc similar to 1700 Schwarzschild radii with a black hole mass M-BH=8x10(8) M-circle dot). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation. We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across different imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet. We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of similar to 15 c and similar to 20 c (similar to 1.3 and similar to 1.7 mu as day(-1), respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3 mm core and the outer jet. The intrinsic brightness temperature of the jet components are less than or similar to 10(10) K, a magnitude or more lower than typical values seen at >= 7 mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths
    corecore