138 research outputs found

    Synchronisation in the prefrontal-striatal circuit tracks behavioural choice in a go no-go task in rats

    Get PDF
    Rodent striatum is involved in sensory-motor transformations and reward-related learning. Lesion studies suggest dorsolateral striatum, dorsomedial striatum, and nucleus accumbens underlie stimulus-response transformations, goal-directed behaviour and reward expectation respectively. In addition, prefrontal inputs likely control these functions. Here we set out to study how reward-driven behaviour is mediated by the coordinated activity of these structures in the intact brain. We implemented a discrimination task requiring rats to either respond or suppress responding on a lever after the presentation of auditory cues in order to obtain rewards. Single unit activity in the striatal subregions and prelimbic cortex was recorded using tetrode arrays. Striatal units showed strong onset responses to auditory cues paired with an opportunity to obtain reward. Cue onset responses in both striatum and cortex were significantly modulated by previous errors suggesting a role of these structures in maintaining appropriate motivation or action selection during ongoing behaviour. Furthermore, failure to respond to the reward-paired tones was associated with higher pre-trial coherence among striatal subregions and between cortex and striatum suggesting a task-negative corticostriatal network whose activity may be suppressed to enable processing of reward-predictive cues. Our findings highlight that coordinated activity in a distributed network including both prelimbic cortex and multiple striatal regions underlies reward-related decisions

    Interactions of Bacillus Mojavensis and Fusarium Verticillioides With a Benzoxazolinone (Boa) and Its Transformation Product, Apo

    Get PDF
    En:Journal of Chemical Ecology (2007, vol. 33, n. 10, p. 1885-1897)The benzoxazolinones, specifically benzoxazolin-2(3H)-one (BOA), are important transformation products of the benzoxazinones that can serve as allelochemicals providing resistance to maize from pathogenic bacteria, fungi, and insects. However, maize pathogens such as Fusarium verticillioides are capable of detoxifying the benzoxazolinones to 2-aminophenol (AP), which is converted to the less toxic N-(2-hydroxyphenyl) malonamic acid (HPMA) and 2-acetamidophenol (HPAA). As biocontrol strategies that utilize a species of endophytic bacterium, Bacillus mojavensis, are considered efficacious as a control of this Fusarium species, the in vitro transformation and effects of BOA on growth of this bacterium was examined relative to its interaction with strains of F. verticillioides. The results showed that a red pigment was produced and accumulated only on BOA-amended media when wild type and the progeny of genetic crosses of F. verticillioides are cultured in the presence of the bacterium. The pigment was identified as 2-amino-3H-phenoxazin-3-one (APO), which is a stable product. The results indicate that the bacterium interacts with the fungus preventing the usual transformation of AP to the nontoxic HPMA, resulting in the accumulation of higher amounts of APO than when the fungus is cultured alone. APO is highly toxic to F. verticillioides and other organisms. Thus, an enhanced biocontrol is suggested by this in vitro study. =580 $aEn:Journal of Chemical Ecolog

    The Effect of Keyboard-Based Word Processing on Students With Different Working Memory Capacity During the Process of Academic Writing

    Get PDF
    This study addresses the current debate about the beneficial effects of text processing software on students with different working memory (WM) during the process of academic writing, especially with regard to the ability to display higher-level conceptual thinking. A total of 54 graduate students (15 male, 39 female) wrote one essay by hand and one by keyboard. Our results show a beneficial effect of text processing software, in terms of both the qualitative and quantitative writing output. A hierarchical cluster analysis was used to detect distinct performance groups in the sample. These performance groups mapped onto three differing working memory profiles. The groups with higher mean WM scores manifested superior writing complexity using a keyboard, in contrast to the cluster with the lowest mean WM. The results also point out that more revision during the writing process itself does not inevitably reduce the quality of the final output

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model

    Get PDF
    Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches

    Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    Get PDF
    Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes 40% smaller than controls. Conclusions These data collectively demonstrate that NFκB signaling is important for medulloblastoma tumor growth, and that inhibition can reduce tumor size and viability in vivo. We discuss the implications of NFκB signaling on the approach to managing patients with medulloblastoma in order to improve clinical outcomes.</p

    Carcinoma Matrix Controls Resistance to Cisplatin through Talin Regulation of NF-kB

    Get PDF
    Extracellular matrix factors within the tumor microenvironment that control resistance to chemotherapeutics are poorly understood. This study focused on understanding matrix adhesion pathways that control the oral carcinoma response to cisplatin. Our studies revealed that adhesion of HN12 and JHU012 oral carcinomas to carcinoma matrix supported tumor cell proliferation in response to treatment with cisplatin. Proliferation in response to 30 µM cisplatin was not observed in HN12 cells adherent to other purified extracellular matrices such as Matrigel, collagen I, fibronectin or laminin I. Integrin β1 was important for adhesion to carcinoma matrix to trigger proliferation after treatment with cisplatin. Disruption of talin expression in HN12 cells adherent to carcinoma matrix increased cisplatin induced proliferation. Pharmacological inhibitors were used to determine signaling events required for talin deficiency to regulate cisplatin induced proliferation. Pharmacological inhibition of NF-kB reduced proliferation of talin-deficient HN12 cells treated with 30 µM cisplatin. Nuclear NF-kB activity was assayed in HN12 cells using a luciferase reporter of NF-kB transcriptional activity. Nuclear NF-kB activity was similar in HN12 cells adherent to carcinoma matrix and collagen I when treated with vehicle DMSO. Following treatment with 30 µM cisplatin, NF-kB activity is maintained in cells adherent to carcinoma matrix whereas NF-kB activity is reduced in collagen I adherent cells. Expression of talin was sufficient to trigger proliferation of HN12 cells adherent to collagen I following treatment with 1 and 30 µM cisplatin. Talin overexpression was sufficient to trigger NF-kB activity following treatment with cisplatin in carcinoma matrix adherent HN12 cells in a process disrupted by FAK siRNA. Thus, adhesions within the carcinoma matrix create a matrix environment in which exposure to cisplatin induces proliferation through the function of integrin β1, talin and FAK pathways that regulate NF-kB nuclear activity
    corecore