32 research outputs found

    Spontaneous Magnetization in Heterometallic NiFe-MOF-74 Microporous Magnets by Controlled Iron Doping

    Get PDF
    We report the direct synthesis of mixed-metal NiFe-MOF-74 solids that display combination of porosity with ferrimagnetic ordering. Compared to the undoped Ni phase, controlled doping with Fe enables to modify intra and interchain magnetic interactions for the onset of spontaneous magnetization at temperatures fixed by the doping level. Synthesis of porous magnets remains somewhat elusive due to the difficulties in isolating foreseeable metal-organic architectures that combine small bridging linkers, for strong magnetic coupling, with polyaromatic connectors responsible for porosity. In turn, we demonstrate that metal doping is better fitted to modify the magnetism of Metal-Organic Frameworks already available simply by suitable choice of their nature and relative ratio in isostructural solid solutions

    Chemistry of volcanic soils used for agriculture in Brava Island (Cape Verde) envisaging a sustainable management

    Get PDF
    In order to acquire a better knowledge of iron forms, clay minerals and the content and distribution of trace elements in soils mostly used for agriculture in the semi-arid Brava Island (Cape Verde), iron speciation, mineralogy and chemical contents in the clay-size fraction (<2 μm) of incipient soils developed on sediments and phonolitic pyroclasts was performed by Mössbauer spectroscopy, X-ray diffraction and neutron activation analysis. In contrast with the whole samples in the clay-size fraction of all the studied soils only Fe(III) was detected. Iron and chromium are depleted suggesting their occurrence as ferromagnesian and oxide minerals present in coarser particles. Rare earth elements are concentrated in the clay-size fraction, and significant differences are found in their distribution which may be partially due to oxidation, since Ce anomalies were observed. Among the other chemical elements studied, high concentrations of arsenic, bromine, and particularly antimony were found in the clay-size fraction of soils where all the Fe oxides are nano-sized, confirming the predominant adsorption of these elements on the nano-particles surface. The existence of significant amounts of these elements as well as of vitreous phases in fine particles of these soils may contribute to their mobility and accumulation in groundwater and in plants, both by absorption and by dust deposition onto the plant leaves.publishe

    The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength

    Get PDF
    UIDB/04378/2020 LA/P/0140/2020 UID/Multi/04349/2019 LISBOA-01-0145-FEDER-022096 PTDC/BIA-PRO/111485/2009 PTDC/QUI/64248/2006 PD/00193/2012—UCIBIO (UIDB/04378/2020), UIDB/00068/2020 PD/BD/135476/2017 COVID/BD/152497/2022 PD/BD/135477/2017 COVID/BD/152498/2022 Grant Agreement 730872DNA-binding proteins from starved cells (Dps) are homododecameric nanocages, with N-and C-terminal tail extensions of variable length and amino acid composition. They accumulate iron in the form of a ferrihydrite mineral core and are capable of binding to and compacting DNA, forming low-and high-order condensates. This dual activity is designed to protect DNA from oxidative stress, resulting from Fenton chemistry or radiation exposure. In most Dps proteins, the DNA-binding properties stem from the N-terminal tail extensions. We explored the structural characteristics of a Dps from Deinococcus grandis that exhibits an atypically long N-terminal tail composed of 52 residues and probed the impact of the ionic strength on protein conformation using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism and small-angle X-ray scattering. A novel high-spin ferrous iron-binding site was identified in the N-terminal tails, using Mössbauer spectroscopy. Our data reveals that the N-terminal tails are structurally dynamic and alter between compact and extended conformations, depending on the ionic strength of the buffer. This prompts the search for other physiologically relevant modulators of tail conformation and hints that the DNA-binding properties of Dps proteins may be affected by external factors.publishersversionpublishe

    Geochemistry and Fe speciation in active volcanic environments – the case of Fogo Island, Cape Verde

    Get PDF
    Topsoils developed in different geological formations/ages, and the top layer of the lava flow from the most recent eruption (2014/2015) of Fogo Island (Cape Verde archipelago), were studied. The specific objectives of this work are: i) to estimate the REE contents and patterns in the whole sample of topsoils developed on different geological formations/ages and their correlation with the iron speciation; and ii) to study the top layer of a lava flow from the most recent eruption after two years of exposure. REE contents are in general higher in the topsoils of the pre-caldera than in those developed on the post-caldera formation, particularly the light REE probably due to their incorporation into hematite. Positive Eu anomalies found in recent topsoils suggest the existence of hydrothermal processes with intrusion of hot fluids with higher concentration of Eu2+. In the top layer of the lava flow of the most recent eruption, Fe is incorporated in pyroxenes and iron oxides (magnetite and/or maghemite). This study can be a benchmark for further knowledge of the chemical evolution and weathering rate in semi-arid climate of Fogo Island.The authors would like to thank the financial support by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the projects UID/GEO/04035/2013 and UID/Multi/04349/2013

    Incommensurate crystal structure, thermal expansion study and magnetic properties of (dimethylimidazolium)2[Fe2Cl6(μ-O)]

    Get PDF
    A thorough characterization of the title compound, (dimim)(2)[Fe2Cl6(mu-O)], consisting of a (mu-oxido)-bridged binuclear iron(III) complex and 1,3-dimethylimiazolium (dimim) cation, has been performed using a wide range of techniques. The room temperature disordered crystal structure of this compound transits to an incommensurately modulated crystal structure at 100 K; to our knowledge, the first one found for an imidazolium halometallate complex. The crystal structure was solved in the superspace group P (1) over bar(/alpha/beta/gamma)0 with modulation vector q = 0.1370(10) 0.0982(10) 0.326(2) at 100 K. Variable temperature synchrotron powder x-ray diffraction showed the presence of satellite peaks in addition to the main diffraction peaks up to 208 K. Furthermore, a thermal expansion study was performed with this technique from 100 to 383 K (near of its melting point) adressing questions about the nature and consequences of the ion self-assembly of this (mu-oxido)-bridged binuclear iron(III) complex, as well as the molecular motion of the imidazolium cation within the crystalline structure as a response to the temperature effect. Finally, we present a deep magnetic study based on magnetic susceptibility, magnetization and Mossbauer measurements, where the strong antiferromagnetic exchange coupling detected is due to the occurrence of a mu-oxido bridge between the Fe(III), giving rise to an intra-dimeric antiferromagnetic exchange coupling of -308 cm(-1).Financial support from Universidad de Cantabria (Proyecto Puente convocatoria 2018 funded by SODERCAN_FEDER), Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (GIU17/50 and PPG17/37) and Ministerio de Economia y Competividad (MAT2017-89239-C2-(1,2)-P). The authors gratefully acknowledge Technical and human support provided by SGIKer (UPV/EHU, MINECO, GV/EJ, ERDF, and ESF). Dr. Israel Cano thanks financial support from the European Community through a Marie Skodowska-Curie Individual Fellowship (IF-EF; Programme/Call: H2020-MSCA-IF-2015; Proposal No: 704710-Sdchirnanocat). C2TN authors acknowledge the FCT (Portugal) support through the UID/Multi/04FeCl49/2013 project. The paper is (partly) based on results of experiments carried out at the ALBA Synchrotron Light Source in Barcelona

    Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity

    Get PDF
    The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations

    Mossbauer spectroscopy study of the "mysterious" magnetic transition in lambda-(BETS)2FeCl4

    Full text link
    The compound lambda-(BETS)2FeCl4 provides an effective demonstration of the interaction of pi-conduction electron and d-electron localized moment systems in molecular crystalline materials where antiferromagnetic insulating and magnetic field induced superconducting states can be realized. The metal-insulator transition has been thought to be cooperative, involving both the itinerant pi- electron and localized d-electron spins where antiferromagnetic order appears in both systems simultaneously. However, recent specific heat data has indicated otherwise [Akiba et al., J. Phys. Soc. Japan 78,033601(2009)]: although the pi-electron system orders antiferromagnetically and produces a metal-insulator transition, a "mysterious" paramagnetic d-electron state remains. We report 57Fe Mossbauer measurements that support the paramagnetic model, provided the d-electron spins remain in a fast relaxation state below the transition. From the measured hyperfine fields, we also determine the temperature dependence of the pi-d electron exchange field.Comment: 10 pages, 3 figures, 1 tabl

    Metal mobility and bioaccessibility from cyanide leaching heaps in a historical mine site

    Get PDF
    Unlike acidic sulfide mine wastes, where metal/loid mobility and bioaccessibility has been widely studied, less attention has been paid to alkaline cyanide heap leaching wastes. Thus, the main goal of this study is to evaluate the mobility and bioaccessibility of metal/loids in Fe-rich (up to 55%) mine wastes resulting from historical cyanide leaching activities. Wastes are mainly composed of oxides/oxyhydroxides (i.e. goethite and hematite), oxyhydroxisulfates (i.e. jarosite), sulfates (i.e., gypsum, evaporitic sulfate salts), carbonates (i.e., calcite, siderite) and quartz, with noticeable concentrations of metal/loids (e.g., 1453–6943 mg/kg of As, 5216–15,672 mg/kg; of Pb, 308–1094 mg/kg of Sb, 181–1174 mg/kg of Cu, or 97–1517 mg/kg of Zn). The wastes displayed a high reactivity upon rainfall contact associated to the dissolution of secondary minerals such as carbonates, gypsum, and other sulfates, exceeding the threshold values for hazardous wastes in some heap levels for Se, Cu, Zn, As, and sulfate leading to potential significant risks for aquatic life. High concentrations of Fe, Pb, and Al were released during the simulation of digestive ingestion of waste particles, with average values of 4825 mg/kg of Fe, 1672 mg/kg of Pb, and 807 mg/kg of Al. Mineralogy may control the mobility and bioaccessibility of metal/loids under rainfall events. However, in the case of the bioaccessible fractions different associations may be observed: i) the dissolution of gypsum, jarosite and hematite would mainly release Fe, As, Pb, Cu, Se, Sb and Tl; ii) the dissolution of an un-identified mineral (e.g., aluminosilicate or Mn oxide) would lead to the release of Ni, Co, Al and Mn and iii) the acid attack of silicate materials and goethite would enhance the bioaccessibility of V and Cr. This study highlights the hazardousness of wastes from cyanide heap leaching, and the need to adopt restoration measures in historical mine sites.This work was supported by the Spanish Ministry of Economic and Competitiveness through the projects TRAMPA (PID2020–119196RBC21) and by H2020 European Institute of Innovation and Technology (EIT RawMaterials) through the project Modular recovery process services for hydrometallurgy and water treatment (MORECOVERY). This work was partially supported by FCT (Portugal) through contract UID/ Multi/04349/2019. C.R C´anovas thanks the Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference RYC2019–027949-I. M.D. Basallote thanks the Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference IJC 2018–035056-I. The authors would also like to thank to Prof. Edward D. Burton, Ph.D (Editor) and three anonymous reviewers for the support and comments that notably improved the quality of the original paper

    Fundamental Insights into the Covalent Silane Functionalization of NiFe Layered Double Hydroxides

    Get PDF
    Layered double hydroxides (LDHs) are a class of 2D anionic materials exhibiting wide chemical versatility and promising applications in different fields ranging from catalysis to energy storage and conversion. However, the covalent chemistry of this kind of 2D materials is still barely explored. Herein, we report the covalent functionalization with silanes of a magnetic NiFe-LDH. The synthetic route consists of a topochemical approach followed by the anion exchange reaction of a surfactant molecules prior to the covalent functionalization with the (3- aminopropyl)triethoxysilane (APTES) molecules. The functionalized NiFe-APTES was fully characterized using X-ray diffraction, infrared spectroscopy, electron microscopy, thermogravimetric analysis coupled with mass spectrometry and 29Si solid state nuclear magnetic resonance, among others. The effect on the electronic properties of the functionalized LDH was studied by a magnetic study in combination with Mössbauer spectroscopy. Moreover, the reversibility of the silane-functionalization at basic pH was demonstrated, and the quality of the resulting LDH proved by studying the electrochemical performance in the oxygen evolution reaction in basic media. Furthermore, the anion exchange capability for the NiFe-APTES was tested employing Cr(VI), resulting in an increase of 200 % of the anion retention. This report allows a new level in the tunability of LDHs opening the door to the synthesis of new hybrid materials and architectures

    Conducting Anilate-Based Mixed-Valence Fe(II)Fe(III) Coordination Polymer: Small-polaron Hopping Model for Oxalate-Type Fe(II)Fe(III) 2D Networks

    Get PDF
    The mixed-valence FeIIFeIII 2D coordination polymer formulated as [TAG][FeIIFeIII(ClCNAn)3]·(solvate) 1 (TAG = tris(amino)-guanidinium, ClCNAn2− = chlorocyanoanilate dianionic ligand) crystallized in the polar trigonal space group P3. In the solid-state structure, determined both at 150 and at 10 K, anionic 2D honeycomb layers [FeIIFeIII(ClCNAn)3]− establish in the ab plane, with an intralayer metal−metal distance of 7.860 Å, alternating with cationic layers of TAG. The similar Fe−O distances suggest electron delocalization and an average oxidation state of +2.5 for each Fe center. The cation imposes its C3 symmetry to the structure and engages in intermolecular N−H···Cl hydrogen bonding with the ligand. Magnetic susceptibility characterization indicates magnetic ordering below 4 K and the presence of a hysteresis loop at 2 K with a coercive field of 60 Oe. Mössbauer measurements are in agreement with the existence of Fe(+2.5) ions at RT and statistic charge localization at 10 K. The compound shows semiconducting behavior with the in-plane conductivity of 2 × 10−3 S/cm, 3 orders of magnitude higher than the perpendicular one. A small-polaron hopping model has been applied to a series of oxalate-type FeIIFeIII 2D coordination polymers, providing a clear explanation on the much higher conductivity of the anilate-based systems than the oxalate ones
    corecore