51 research outputs found

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Venture capital-backed firms, unavoidable value-destroying trade sales, and fair value protections

    Get PDF
    This paper investigates the implications of the fair value protections contemplated by the standard corporate contract (i.e., the standard contract form for which corporate law provides) for the entrepreneur–venture capitalist relationship, focusing, in particular, on unavoidable value-destroying trade sales. First, it demonstrates that the typical entrepreneur–venture capitalist contract does institutionalize the venture capitalist’s liquidity needs, allowing, under some circumstances, for counterintuitive instances of contractually-compliant value destruction. Unavoidable value-destroying trade sales are the most tangible example. Next, it argues that fair value protections can prevent the entrepreneur and venture capitalist from allocating the value that these transactions generate as they would want. Then, it shows that the reality of venture capital-backed firms calls for a process of adaptation of the standard corporate contract that has one major step in the deactivation or re-shaping of fair value protections. Finally, it argues that a standard corporate contract aiming to promote social welfare through venture capital should feature flexible fair value protections.info:eu-repo/semantics/publishedVersio

    Concentration-Dependent, Size-Independent Toxicity of Citrate Capped AuNPs in Drosophila melanogaster

    Get PDF
    The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs) of different sizes (5, 15, 40, and 80 nm) in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES), while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN). We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size

    After the Crisis: The Regulation of Hedge Funds and Private Equity in the EU

    No full text

    Acetylator phenotypes: Effect of age

    No full text
    • …
    corecore