23 research outputs found

    Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere

    Get PDF
    The recent decline in sea ice cover in the Arctic Ocean could affect the regional radiative forcing via changes in sea ice-atmosphere exchange of dimethyl sulfide (DMS) and biogenic aerosols formed from its atmospheric oxidation, such as methanesulfonic acid (MSA). This study examines relationships between changes in total sea ice extent north of 70 degrees N and atmospheric MSA measurement at Alert, Nunavut, during 1980-2009; at Barrow, Alaska, during 1997-2008; and at Ny-Alesund, Svalbard, for 1991-2004. During the 1980-1989 and 1990-1997 periods, summer (July-August) and June MSA concentrations at Alert decreased. In general, MSA concentrations increased at all locations since 2000 with respect to 1990 values, specifically during June and summer at Alert and in summer at Barrow and Ny-Alesund. Our results show variability in MSA at all sites is related to changes in the source strengths of DMS, possibly linked to changes in sea ice extent as well as to changes in atmospheric transport patterns. Since 2000, a late spring increase in atmospheric MSA at the three sites coincides with the northward migration of the marginal ice edge zone where high DMS emissions from ocean to atmosphere have previously been reported. Significant negative correlations are found between sea ice extent and MSA concentrations at the three sites during the spring and June. These results suggest that a decrease in seasonal ice cover influencing other mechanisms of DMS production could lead to higher atmospheric MSA concentrations

    Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition

    Get PDF
    Detailed knowledge of the physical and chemical properties and sources of particles that form clouds is especially important in pristine areas like the Arctic, where particle concentrations are often low and observations are sparse. Here, we present in situ cloud and aerosol measurements from the central Arctic Ocean in August–September 2018 combined with air parcel source analysis. We provide direct experimental evidence that Aitken mode particles (particles with diameters ≲70 nm) significantly contribute to cloud condensation nuclei (CCN) or cloud droplet residuals, especially after the freeze-up of the sea ice in the transition toward fall. These Aitken mode particles were associated with air that spent more time over the pack ice, while size distributions dominated by accumulation mode particles (particles with diameters ≳70 nm) showed a stronger contribution of oceanic air and slightly different source regions. This was accompanied by changes in the average chemical composition of the accumulation mode aerosol with an increased relative contribution of organic material toward fall. Addition of aerosol mass due to aqueous-phase chemistry during in-cloud processing was probably small over the pack ice given the fact that we observed very similar particle size distributions in both the whole-air and cloud droplet residual data. These aerosol–cloud interaction observations provide valuable insight into the origin and physical and chemical properties of CCN over the pristine central Arctic Ocean

    The global aerosol synthesis and science project (GASSP): Measurements and modeling to reduce uncertainty

    Get PDF
    This is the final version of the article. Available from American Meteorological Society via the DOI in this record.The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.GASSP was funded by the Natural Environment Research Council (NERC) under Grants NE/J024252/1, NE/J022624/1, and NE/J023515/1; ACID-PRUF under Grants NE/I020059/1 and NE/I020148/1; the European Union BACCHUS project under Grant 603445-BACCHUS; ACTRIS under Grants 262254 and 654109; and by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. We made use of the N8 HPC facility funded from the N8 consortium and an Engineering and Physical Sciences Research Council Grant to use ARCHER (EP/K000225/1) and the JASMIN facility (www.jasmin.ac.uk/) via the Centre for Environmental Data Analysis funded by NERC and the UK Space Agency and delivered by the Science and Technology Facilities Council. We acknowledge the following additional funding: the Royal Society Wolfson Merit Award (Carslaw); a doctoral training grant from the Natural Environment Research Council and a CASE studentship with the Met Office Hadley Centre (Regayre); the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement FP7-280025 (Stier); the Department of Energy under DE-SC0007178 (Zhang); the U.S. National Science Foundation under ATM-745986 (Snider); the NOAA Global Change Program (Nenes); NASA Global Tropospheric Experiment Program, the NASA Tropospheric Composition Program, the NASA Radiation Sciences Program, and the NASA Earth Venture Suborbital Project (Anderson); the NOAA Climate Program Office (Quinn); NSF Atmospheric Chemistry Program, the NASA Global Tropospheric Experiment, and NASA Earth Science Project Office (Clarke); German Federal Ministry of Education and Research (BMBF) CLOUD12 project Grant 01LK1222B (Kristensen); Swedish Research Council (VR), the Knut and Alice Wallenberg Foundation and the Swedish Polar Research Secretariat (SPRS) for access to the icebreaker Oden and logistical support (Leck); the Department of Energy (DE-SC0007178) and the Max Planck Society (Andreae, Poeschl); the global environment research fund of the Ministry of the Environment in Japan (2-1403), the Arctic Challenge for Sustainability (ArCS) project of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in Japan, and the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants JP16H01770, JP26701004, and JP26241003) (Kondo, Oshima); Lufthansa for enabling CARIBIC and the German Federal Ministry of Education and Research (BMBF) for financing the CARIBIC instruments operation as part of the Joint Project IAGOS-D (Hermann); the Collaborative Innovation Center of Climate Change supported by the Jiangsu provincial government and the JirLATEST supported by the Ministry of Education, China (Ding and Chi); the Max Planck Institute for Chemistry, Mainz, Germany (Schmale); the NOAA Atmospheric Composition and Climate Program, the NASA Radiation Sciences Program, and the NASA Upper Atmosphere Research Program supporting the NOAA SP2 BC data acquisition and analysis (Schwarz); DOE (BER/ASR) DE-SC0016559 and EPA STAR 83587701-0 (the EPA has not reviewed this manuscript and no endorsement should be inferred) (Jimenez); and Environment and Climate Change Canada (Leaitch)

    Understanding global secondary organic aerosol amount and size-resolved condensational behavior

    Get PDF
    Recent research has shown that secondary organic aerosols (SOA) are major contributors to ultrafine particle growth to climatically relevant sizes, increasing global cloud condensation nuclei (CCN) concentrations within the continental boundary layer (BL). However, there are three recent developments regarding the condensation of SOA that lead to uncertainties in the contribution of SOA to particle growth and CCN concentrations: (1) while many global models contain only biogenic sources of SOA (with annual production rates generally 10-30 Tg yr-1), recent studies have shown that an additional source of SOA around 100 Tg yr-1 correlated with anthropogenic carbon monoxide (CO) emissions may be required to match measurements. (2) Many models treat SOA solely as semi-volatile, which leads to condensation of SOA proportional to the aerosol mass distribution; however, recent closure studies with field measurements show nucleation mode growth can be captured only if it is assumed that a significant fraction of SOA condenses proportional to the Fuchs-corrected aerosol surface area. This suggests a very low volatility of the condensing vapors. (3) Other recent studies of particle growth show that SOA condensation deviates from Fuchs-corrected surface-area condensation at sizes smaller than 10 nm and that size-dependent growth rate parameterizations (GRP) are needed to match measurements. We explore the significance of these three findings using GEOS-Chem-TOMAS global aerosol microphysics model and observations of aerosol size distributions around the globe. The change in the concentration of particles of size Dp > 40 nm (N40) within the BL assuming surface-area condensation compared to mass-distribution net condensation yielded a global increase of 11% but exceeded 100% in biogenically active regions. The percent change in N40 within the BL with the inclusion of the additional 100 Tg SOA yr-1 compared to the base simulation solely with biogenic SOA emissions (19 Tg yr-1) both using surface area condensation yielded a global increase of 13.7%, but exceeded 50% in regions with large CO emissions. The inclusion of two different GRPs in the additional-SOA case both yielded a global increase in N40 of < 1%, however exceeded 5% in some locations in the most extreme case. All of the model simulations were compared to measured data obtained from diverse locations around the globe and the results confirmed a decrease in the model-measurement bias and improved slope for comparing modeled to measured CCN number concentration when non-volatile SOA was assumed and the extra SOA was included
    corecore