210 research outputs found

    Digital preparation and osteology of the skull of Lesothosaurus diagnosticus (Ornithischia: Dinosauria)

    Get PDF
    Copyright © 2015 Porro et al. Licence. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. The attached file is the published version of the article

    The Braincase of the Basal Sauropod Dinosaur Spinophorosaurus and 3D Reconstructions of the Cranial Endocast and Inner Ear

    Get PDF
    Background: Sauropod dinosaurs were the largest animals ever to walk on land, and, as a result, the evolution of their remarkable adaptations has been of great interest. The braincase is of particular interest because it houses the brain and inner ear. However, only a few studies of these structures in sauropods are available to date. Because of the phylogenetic position of Spinophorosaurus nigerensis as a basal eusauropod, the braincase has the potential to provide key evidence on the evolutionary transition relative to other dinosaurs. Methodology/Principal Findings: The only known braincase of Spinophorosaurus (‘Argiles de l'Irhazer’, Irhazer Group; Agadez region, Niger) differs significantly from those of the Jurassic sauropods examined, except potentially for Atlasaurus imelakei (Tilougguit Formation, Morocco). The basisphenoids of Spinophorosaurus and Atlasaurus bear basipterygoid processes that are comparable in being directed strongly caudally. The Spinophorosaurus specimen was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. The endocast resembles that of most other sauropods in having well-marked pontine and cerebral flexures, a large and oblong pituitary fossa, and in having the brain structure obscured by the former existence of relatively thick meninges and dural venous sinuses. The labyrinth is characterized by long and proportionally slender semicircular canals. This condition recalls, in particular, that of the basal non-sauropod sauropodomorph Massospondylus and the basal titanosauriform Giraffatitan. Conclusions/Significance: Spinophorosaurus has a moderately derived paleoneuroanatomical pattern. In contrast to what might be expected early within a lineage leading to plant-eating graviportal quadrupeds, Spinophorosaurus and other (but not all) sauropodomorphs show no reduction of the vestibular apparatus of the inner ear. This character-state is possibly a primitive retention in Spinophorosaurus, but due the scarcity of data it remains unclear whether it is also the case in the various later sauropods in which it is present or whether it has developed homoplastically in these taxa. Any interpretations remain tentative pending the more comprehensive quantitative analysis underway, but the size and morphology of the labyrinth of sauropodomorphs may be related to neck length and mobility, among other factors.The sojourns of Dr. Knoll in the Museum für Naturkunde (Berlin) were partly funded by the Alexander von Humboldt Foundation through a sponsorship of renewed research stay in Germany and by the European Community Research Infrastructure Action under the FP7 “Capacities” Program through a Synthesys grant (http://www.synthesys.info/). Dr. Knoll is currently supported by the Ramón y Cajal Program. This is a contribution to the research project CGL2009-12143, from the Ministerio de Ciencia e Innovación (Madrid), conducted by Dr. Knoll (PI), Dr. Witmer, and Dr. Schwarz-Wings. Dr. Witmer and Dr. Ridgely acknowledge funding support from the United States National Science Foundation (IBN-9601174, IBN-0343744, IOB-0517257) and the Ohio University Heritage College of Osteopathic Medicine. The Ohio Supercomputing Center also provided support.Peer reviewe

    Structural Extremes in a Cretaceous Dinosaur

    Get PDF
    Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic

    Evolution of hindlimb muscle anatomy across the tetrapod water-to-land transition, including comparisons with forelimb anatomy

    Get PDF
    Tetrapod limbs are a key innovation implicated in the evolutionary success of the clade. Although musculoskeletal evolution of the pectoral appendage across the fins‐to‐limbs transition is fairly well documented, that of the pelvic appendage is much less so. The skeletal elements of the pelvic appendage in some tetrapodomorph fish and the earliest tetrapods are relatively smaller and/or qualitatively less similar to those of crown tetrapods than those of the pectoral appendage. However, comparative and developmental works have suggested that the musculature of the tetrapod forelimb and hindlimb was initially very similar, constituting a “similarity bottleneck” at the fins‐to‐limbs transition. Here we used extant phylogenetic bracketing and phylogenetic character optimization to reconstruct pelvic appendicular muscle anatomy in several key taxa spanning the fins‐to‐limbs and water‐to‐land transitions. Our results support the hypothesis that transformation of the pelvic appendages from fin‐like to limb‐like lagged behind that of the pectoral appendages. Compared to similar reconstructions of the pectoral appendages, the pelvic appendages of the earliest tetrapods had fewer muscles, particularly in the distal limb (shank). In addition, our results suggest that the first tetrapods had a greater number of muscle‐muscle topological correspondences between the pectoral and pelvic appendages than tetrapodomorph fish had. However, ancestral crown‐group tetrapods appear to have had an even greater number of similar muscles (both in terms of number and as a percentage of the total number of muscles), indicating that the main topological similarity bottleneck between the paired appendages may have occurred at the origin of the tetrapod crown group

    A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria

    Get PDF
    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ´tongue-like´ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ´strut-like´ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ´ghost lineage´ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia Magnética Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido

    A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabre-tooth

    Get PDF
    Morphological convergence can be assessed using a variety of statistical methods. None of the methods proposed to date enable the visualization of convergence. All are based on the assumption that the phenotypes either converge, or do not. However, between species, morphologically similar regions of a larger structure may behave differently. Previous approaches do not identify these regions within the larger structures or quantify the degree to which they may contribute to overall convergence. Here, we introduce a new method to chart patterns of convergence on three-dimensional models using the R function conv.map. The convergence between pairs of models is mapped onto them to visualize and quantify the morphological convergence. We applied conv.map to a well-known case study, the sabre-tooth morphotype, which has evolved independently among distinct mammalian clades from placentals to metatherians. Although previous authors have concluded that sabre-tooths kill using a stabbing ‘bite’ to the neck, others have presented different interpretations for specific taxa, including the iconic Smilodon and Thylacosmilus. Our objective was to identify any shared morphological features among the sabre-tooths that may underpin similar killing behaviours. From a sample of 49 placental and metatherian carnivores, we found stronger convergence among sabre-tooths than for any other taxa. The morphological convergence is most apparent in the rostral and posterior parts of the cranium. The extent of this convergence suggests similarity in function among these phylogenetically distant species. In our view, this function is most likely to be the killing of relatively large prey using a stabbing bite

    Variation, variability, and the origin of the avian endocranium:Insights from the anatomy of alioramus altai (theropoda: Tyrannosauroidea)

    Get PDF
    The internal braincase anatomy of the holotype of Alioramus altai, a relatively small-bodied tyrannosauroid from the Late Cretaceous of Mongolia, was studied using high-resolution computed tomography. A number of derived characters strengthen the diagnosis of this taxon as both a tyrannosauroid and a unique, new species (e.g., endocranial position of the gasserian ganglion, internal ramification of the facial nerve). Also present are features intermediate between the basal theropod and avialan conditions that optimize as the ancestral condition for Coelurosauria--a diverse group of derived theropods that includes modern birds. The expression of several primitive theropod features as derived character states within Tyrannosauroidea establishes previously unrecognized evolutionary complexity and morphological plasticity at the base of Coelurosauria. It also demonstrates the critical role heterochrony may have played in driving patterns of endocranial variability within the group and potentially reveals stages in the evolution of neuroanatomical development that could not be inferred based solely on developmental observations of the major archosaurian crown clades. We discuss the integration of paleontology with variability studies, especially as applied to the nature of morphological transformations along the phylogenetically long branches that tend to separate the crown clades of major vertebrate groups

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Ancestral bias in the Hras1 gene and distal Chromosome 7 among inbred mice

    Get PDF
    Inbred strains of mice vary in their frequency of liver tumors initiated by a mutation in the Hras1 (H-ras) proto-oncogene. We sequenced 4.5 kb of the Hras1 gene on distal Chr 7 in a diverse set of 12 commonly used laboratory inbred strains of mice and detected no sequence variation to account for strain-specific differences in Hras1 mutation prevalence. Furthermore, the Hras1 sequence is essentially monoallelic for an ancestral gene derived from the M. m. domesticus species. To determine if the monoallelism and associated low rate of polymorphism are unique to Hras1 or representative of the general chromosomal locale, we extended the sequence analysis to 12 genes in the final 8 Mb of distal Chr 7. A region of at least 2.5 Mb that encompasses several genes, including Hras1 and the H19/Igf2 loci, demonstrates virtually no sequence variation. The 12 inbred strains share one dominant haplotype derived from the M. m. domesticus allele. Chromosomal regions flanking the monoallelic segment exhibit a significantly higher rate of variation and multiple haplotypes, a majority of which are attributed to M. m. domesticus or M. m. musculus ancestry

    Community health workers in rural India: analysing the opportunities and challenges Accredited Social Health Activists (ASHAs) face in realising their multiple roles

    Get PDF
    Background: Globally, there is increasing interest in community health worker’s (CHW) performance; however, there are gaps in the evidence with respect to CHWs’ role in community participation and empowerment. Accredited Social Health Activists (ASHAs), whose roles include social activism, are the key cadre in India’s CHW programme which is designed to improve maternal and child health. In a diverse country like India, there is a need to understand how the ASHA programme operates in different underserved Indian contexts, such as rural Manipur. Methods: We undertook qualitative research to explore stakeholders’ perceptions and experiences of the ASHA scheme in strengthening maternal health and uncover the opportunities and challenges ASHAs face in realising their multiple roles in rural Manipur, India. Data was collected through in-depth interviews (n = 18) and focus group discussions (n = 3 FGDs, 18 participants). Participants included ASHAs, key stakeholders and community members. They were purposively sampled based on remoteness of villages and primary health centres to capture diverse and relevant constituencies, as we believed experiences of ASHAs can be shaped by remoteness. Data were analysed using the thematic framework approach. Results: Findings suggested that ASHAs are mostly understood as link workers. ASHA’s ability to address the immediate needs of rural and marginalised communities meant that they were valued as service providers. The programme is perceived to be beneficial as it improves awareness and behaviour change towards maternal care. However, there are a number of challenges; the selection of ASHAs is influenced by power structures and poor community sensitisation of the ASHA programme presents a major risk to success and sustainability. The primary health centres which ASHAs link to are ill-equipped. Thus, ASHAs experience adverse consequences in their ability to inspire trust and credibility in the community. Small and irregular monetary incentives demotivate ASHAs. Finally, ASHAs had limited knowledge about their role as an ‘activist’ and how to realise this. Conclusions: ASHAs are valued for their contribution towards maternal health education and for their ability to provide basic biomedical care, but their role as social activists is much less visible as envisioned in the ASHA operational guideline. Access by ASHAs to fair monetary incentives commensurate with effort coupled with the poor functionality of the health system are critical elements limiting the role of ASHAs both within the health system and within communities in rural Manipur
    corecore