301 research outputs found
Thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion - A case study.
Exposure to extreme cold environments is potentially life-threatening. However, the world record holder of full-body ice immersion has repeatedly demonstrated an extraordinary tolerance to extreme cold. We aimed to explore thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion. We continuously measured gastrointestinal temperature (Tgi ), skin temperature (Tskin), blood pressure, and heart rate (HR). Oxygen consumption (VO2 ) was measured at rest, and after 45 and 88 min of ice immersion, in order to calculate the metabolic heat production. Tskin dropped significantly (28-34°C to 4-15°C) and VO2 doubled (5.7-11.3 ml kg-1 min-1 ), whereas Tgi (37.6°C), HR (72 bpm), and mean arterial pressure (106 mmHg) remained stable during the first 30 min of cold exposure. During the remaining of the trial, Tskin and VO2 remained stable, while Tgi gradually declined to 37.0°C and HR and mean arterial blood pressure increased to maximum values of 101 bpm and 115 mmHg, respectively. Metabolic heat production in rest was 169 W and increased to 321 W and 314 W after 45 and 80 min of ice immersion. Eighty-eight minutes of full-body ice immersion resulted in minor changes of Tgi and cardiovascular responses, while Tskin and VO2 changed markedly. These findings may suggest that our participant can optimize his thermoregulatory, metabolic, and cardiovascular responses to challenge extreme cold exposure
Electron-ion Recombination of Fe X forming Fe IX and of Fe XI forming Fe X: Laboratory Measurements and Theoretical Calculations
We have measured electron-ion recombination for Fe forming Fe
and for Fe forming Fe using merged beams at the TSR heavy-ion
storage-ring in Heidelberg. The measured merged beams recombination rate
coefficients (MBRRC) for relative energies from 0 to 75 eV are presented,
covering all dielectronic recombination (DR) resonances associated with 3s->3p
and 3p->3d core transitions in the spectroscopic species Fe X and Fe XI,
respectively. We compare our experimental results to multi-configuration
Breit-Pauli (MCBP) calculations and find significant differences. From the
measured MBRRC we have extracted the DR contributions and transform them into
plasma recombination rate coefficients (PRRC) for astrophysical plasmas with
temperatures from 10^2 to 10^7 K. This spans across the regimes where each ion
forms in photoionized or in collisionally ionized plasmas. For both temperature
regimes the experimental uncertainties are 25% at a 90% confidence level. The
formerly recommended DR data severely underestimated the rate coefficient at
temperatures relevant for photoionized gas. At the temperatures relevant for
photoionized gas, we find agreement between our experimental results and MCBP
theory. At the higher temperatures relevant for collisionally ionized gas, the
MCBP calculations yield a Fe XI DR rate coefficent which is significantly
larger than the experimentally derived one. We present parameterized fits to
our experimentally derived DR PRRC.Comment: 44 Pages, 5 Figures. Accepted for publication in Astrophys.
Are Voluntary Agreements Better? Evidence from Baseball Arbitration
This paper empirically examines the widespread belief that voluntarily negotiated agreements produce better long-run relationships than third-party imposed settlements, such as arbitrator decisions or court judgments. Two key outcomes are analyzed – subsequent player performance and the durability of club-player relationship. Major League Baseball provides a compelling setting for these analyses because individual performance is well measured, there is the possibility of relationship breakdown, and both voluntary and imposed settlements are routinely used. While the results clearly show that a third-party imposed settlement is not better than a voluntary one, the evidence in support of the widespread belief is mixed
Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry
Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise 14C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental14C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals
Investigation of Variation in Gene Expression Profiling of Human Blood by Extended Principle Component Analysis
BACKGROUND: Human peripheral blood is a promising material for biomedical research. However, various kinds of biological and technological factors result in a large degree of variation in blood gene expression profiles. METHODOLOGY/PRINCIPAL FINDINGS: Human peripheral blood samples were drawn from healthy volunteers and analysed using the Human Genome U133Plus2 Microarray. We applied a novel approach using the Principle Component Analysis and Eigen-R(2) methods to dissect the overall variation of blood gene expression profiles with respect to the interested biological and technological factors. The results indicated that the predominating sources of the variation could be traced to the individual heterogeneity of the relative proportions of different blood cell types (leukocyte subsets and erythrocytes). The physiological factors like age, gender and BMI were demonstrated to be associated with 5.3% to 9.2% of the total variation in the blood gene expression profiles. We investigated the gene expression profiles of samples from the same donors but with different levels of RNA quality. Although the proportion of variation associated to the RNA Integrity Number was mild (2.1%), the significant impact of RNA quality on the expression of individual genes was observed. CONCLUSIONS: By characterizing the major sources of variation in blood gene expression profiles, such variability can be minimized by modifications to study designs. Increasing sample size, balancing confounding factors between study groups, using rigorous selection criteria for sample quality, and well controlled experimental processes will significantly improve the accuracy and reproducibility of blood transcriptome study
Comparative Analysis of Expressed Sequence Tag (EST) Libraries in the Seagrass Zostera marina Subjected to Temperature Stress
Global warming is associated with increasing stress and mortality on temperate seagrass beds, in particular during periods of high sea surface temperatures during summer months, adding to existing anthropogenic impacts, such as eutrophication and habitat destruction. We compare several expressed sequence tag (EST) in the ecologically important seagrass Zostera marina (eelgrass) to elucidate the molecular genetic basis of adaptation to environmental extremes. We compared the tentative unigene (TUG) frequencies of libraries derived from leaf and meristematic tissue from a control situation with two experimentally imposed temperature stress conditions and found that TUG composition is markedly different among these conditions (all P < 0.0001). Under heat stress, we find that 63 TUGs are differentially expressed (d.e.) at 25°C compared with lower, no-stress condition temperatures (4°C and 17°C). Approximately one-third of d.e. eelgrass genes were characteristic for the stress response of the terrestrial plant model Arabidopsis thaliana. The changes in gene expression suggest complex photosynthetic adjustments among light-harvesting complexes, reaction center subunits of photosystem I and II, and components of the dark reaction. Heat shock encoding proteins and reactive oxygen scavengers also were identified, but their overall frequency was too low to perform statistical tests. In all conditions, the most abundant transcript (3–15%) was a putative metallothionein gene with unknown function. We also find evidence that heat stress may translate to enhanced infection by protists. A total of 210 TUGs contain one or more microsatellites as potential candidates for gene-linked genetic markers. Data are publicly available in a user-friendly database at http://www.uni-muenster.de/Evolution/ebb/Services/zostera
- …