230 research outputs found

    Individual bacterial cells can use spatial sensing of chemical gradients to direct chemotaxis on surfaces

    Get PDF
    Swimming bacteria navigate chemical gradients using temporal sensing to detect changes in concentration over time. Here we show that surface-attached bacteria use a fundamentally different mode of sensing during chemotaxis. We combined microfluidic experiments, massively parallel cell tracking and fluorescent reporters to study how Pseudomonas aeruginosa senses chemical gradients during pili-based ‘twitching’ chemotaxis on surfaces. Unlike swimming cells, we found that temporal changes in concentration did not induce motility changes in twitching cells. We then quantified the chemotactic behaviour of stationary cells by following changes in the sub-cellular localization of fluorescent proteins as cells are exposed to a gradient that alternates direction. These experiments revealed that P. aeruginosa cells can directly sense differences in concentration across the lengths of their bodies, even in the presence of strong temporal fluctuations. Our work thus overturns the widely held notion that bacterial cells are too small to directly sense chemical gradients in space

    Eutectic colony formation: A phase field study

    Full text link
    Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity and we investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamella grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.

    Reconfigurable microfluidic circuits for isolating and retrieving cells of interest

    Get PDF
    Microfluidic devices are widely used in many fields of biology, but a key limitation is that cells are typically surrounded by solid walls, making it hard to access those that exhibit a specific phenotype for further study. Here, we provide a general and flexible solution to this problem that exploits the remarkable properties of microfluidic circuits with fluid walls─transparent interfaces between culture media and an immiscible fluorocarbon that are easily pierced with pipets. We provide two proofs of concept in which specific cell subpopulations are isolated and recovered: (i) murine macrophages chemotaxing toward complement component 5a and (ii) bacteria (Pseudomonas aeruginosa) in developing biofilms that migrate toward antibiotics. We build circuits in minutes on standard Petri dishes, add cells, pump in laminar streams so molecular diffusion creates attractant gradients, acquire time-lapse images, and isolate desired subpopulations in real time by building fluid walls around migrating cells with an accuracy of tens of micrometers using 3D printed adaptors that convert conventional microscopes into wall-building machines. Our method allows live cells of interest to be easily extracted from microfluidic devices for downstream analyses

    The ecology of sex explains patterns of helping in arthropod societies

    Get PDF
    Authors thank the Natural Sciences and Engineering Research Council of Canada (NGD), the Clarendon Fund (NGD) and the Natural Environment Research Council (LR, NE/K009516/1; AG, NE/K009524/1) for funding.Across arthropod societies, sib-rearing (e.g. nursing or nest defence) may be provided by females, by males or by both sexes. According to Hamilton's ‘haplodiploidy hypothesis’, this diversity reflects the relatedness consequences of diploid vs. haplodiploid inheritance. However, an alternative ‘preadaptation hypothesis’ instead emphasises an interplay of ecology and the co-option of ancestral, sexually dimorphic traits for sib-rearing. The preadaptation hypothesis has recently received empirical support, but remains to be formalised. Here, we mathematically model the coevolution of sex-specific helping and sex allocation, contrasting these hypotheses. We find that ploidy per se has little effect. Rather, the ecology of sex shapes patterns of helping: sex-specific preadaptation strongly influences who helps; a freely adjustable sex ratio magnifies sex biases and promotes helping; and sib-mating, promiscuity, and reproductive autonomy also modulate the sex and abundance of helpers. An empirical survey reveals that patterns of sex-specific helping in arthropod taxa are consistent with the preadaptation hypothesis.Publisher PDFPeer reviewe

    Quantum Anti-Zeno Effect

    Get PDF
    We demonstrate that near threshold decay processes may be accelerated by repeated measurements. Examples include near threshold photodetachment of an electron from a negative ion, and spontaneous emission in a cavity close to the cutoff frequency, or in a photon band gap material.Comment: 4 pages, 3 figure

    An overview of research activities and achievement in Geotechnics from the Scottish Universities Geotechnics Network (SUGN)

    Get PDF
    ABSTRACT: Design of geotechnical systems is often challenging as it requires the understanding of complex soil behaviour and its influence on field-scale performance of geo-structures. To advance the scientific knowledge and the technological development in geotechnical engineering, a Scottish academic community, named Scottish Universities Geotechnics Network (SUGN), was established in 2001, composing of eight higher education institutions. The network gathers geotechnics researchers, including experimentalists as well as centrifuge, constitutive, and numerical modellers, to generate multiple synergies for building larger collaboration and wider research dissemination in and beyond Scotland. The paper will highlight the research excellence and leading work undertaken in SUGN emphasising some of the contribution to the geotechnical research community and some of the significant research outcomes. RÉSUMÉ: Conception de systèmes géotechniques est souvent difficile car elle nécessite la compréhension du comportement des sols complexes et son influence sur la performance échelle du champ de géo-structures. Pour faire avancer la connaissance scientifique et le développement technologique en ingénierie géotechnique, une communauté universitaire écossais, nommé écossais universités Géotechnique réseau (SUGN), a été créé en 2001, la composition des huit établissements d'enseignement supérieur. Le réseau réunit géotechnique chercheurs, y compris les expérimentateurs ainsi que centrifugeuse, constitutif, et les modélisateurs numériques, de générer des synergies multiples pour la construction de plus grande collaboration et une plus large diffusion de la recherche en Ecosse et au-delà. Le document mettra l'accent sur l'excellence de la recherche et de diriger le travail entrepris dans SUGN soulignant certains de la contribution à la communauté de recherche en géotechnique et certains des résultats importants de la recherche

    The Idea of Social Life

    Full text link
    This paper reclaims the idea that human society is a form of life, an idea once vibrant in the work of Toennies, Durkheim, Simmel, Le Bon, Kroeber, Freud, Bion, and Follett but moribund today. Despite current disparagements, this idea remains the only and best answer to our primary experience of society as vital feeling. The main obstacle to conceiving society as a life is linguistic; the logical form of life is incommensurate with the logical form of language. However, it is possible to extend our conceptual reach by appealing to alternative symbolisms more congenial to living form such as, and especially, art.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68336/2/10.1177_004839319502500201.pd

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources

    Full text link
    Measuring gaseous and particulate emissions from livestock houses has been the subject of intensive research over the past two decades. Currently, there is general agreement regarding appropriate methods to measure emissions from mechanically ventilated buildings. However, measuring emissions from naturally ventilated buildings remains an elusive target primarily because there is no reference method for measuring building ventilation rate. Ventilation rates and thus building emissions estimates for naturally ventilated buildings are likely to contain greater errors compared with those from mechanically ventilated buildings. This work reviews the origin and magnitude of errors associated with emissions from naturally ventilated buildings as compared to those typically found in mechanical ventilation. Firstly, some general concepts of error analysis are detailed. Then, typical errors found in the literature for each measurement technique are reviewed, and potential sources of relevant systematic and random errors are identified. The emission standard uncertainty in mechanical ventilation is at best 10% or more of the measured value, whereas in natural ventilation it may be considerably higher and there may also be significant unquantifiable biases. A reference method is necessary to obtain accurate emissions estimates, and for naturally ventilated structures this suggests the need for a new means of ventilation measurement. The results obtained from the analysis of information in this review will be helpful to establish research priorities, and to optimize research efforts in terms of quality of emission measurements. (C) 2012 IAgrE. Published by Elsevier Ltd. All rights reserved.Calvet Sanz, S.; Gates, RS.; Zhang, G.; Estellés, F.; Ogink, NWM.; Pedersen, S.; Berckmans, D. (2013). Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources. Biosystems Engineering. 116:221-231. doi:10.1016/j.biosystemseng.2012.11.004S22123111
    corecore