1,189 research outputs found

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Winding up superfluid in a torus via Bose Einstein condensation

    Get PDF
    Phase transitions are usually treated as equilibrium phenomena, which yields telltale universality classes with scaling behavior of relaxation time and healing length. However, in second-order phase transitions relaxation time diverges near the critical point (“critical slowing down”). Therefore, every such transition traversed at a finite rate is a non-equilibrium process. Kibble-Zurek mechanism (KZM) captures this basic physics, predicting sizes of domains – fragments of broken symmetry – and the density of topological defects, long-lived relics of symmetry breaking that can survive long after the transition. To test KZM we simulate Bose-Einstein condensation in a ring using stochastic Gross-Pitaevskii equation and show that BEC formation can spontaneously generate quantized circulation of the newborn condensate. The magnitude of the resulting winding numbers and the time-lag of BEC density growth – both experimentally measurable – follow scalings predicted by KZM. Our results may also facilitate measuring the dynamical critical exponent for the BEC transition

    Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage

    Get PDF
    A fast-charging battery that supplies maximum energy is a key element for vehicle electrification. High-capacity silicon anodes offer a viable alternative to carbonaceous materials, but they are vulnerable to fracture due to large volumetric changes during charge???discharge cycles. The low ionic and electronic transport across the silicon particles limits the charging rate of batteries. Here, as a three-in-one solution for the above issues, we show that small amounts of sulfur doping (<1 at%) render quasi-metallic silicon microparticles by substitutional doping and increase lithium ion conductivity through the flexible and robust self-supporting channels as demonstrated by microscopy observation and theoretical calculations. Such unusual doping characters are enabled by the simultaneous bottom-up assembly of dopants and silicon at the seed level in molten salts medium. This sulfur-doped silicon anode shows highly stable battery cycling at a fast-charging rate with a high energy density beyond those of a commercial standard anode

    Spontaneous vortices in the formation of Bose-Einstein condensates

    Full text link
    Phase transitions are ubiquitous in nature, ranging from protein folding and denaturisation, to the superconductor-insulator quantum phase transition, to the decoupling of forces in the early universe. Remarkably, phase transitions can be arranged into universality classes, where systems having unrelated microscopic physics exhibit identical scaling behaviour near the critical point. Here we present an experimental and theoretical study of the Bose-Einstein condensation phase transition of an atomic gas, focusing on one prominent universal element of phase transition dynamics: the spontaneous formation of topological defects during a quench through the transition. While the microscopic dynamics of defect formation in phase transitions are generally difficult to investigate, particularly for superfluid phase transitions, Bose-Einstein condensates (BECs) offer unique experimental and theoretical opportunities for probing such details. Although spontaneously formed vortices in the condensation transition have been previously predicted to occur, our results encompass the first experimental observations and statistical characterisation of spontaneous vortex formation in the condensation transition. Using microscopic theories that incorporate atomic interactions and quantum and thermal fluctuations of a finite-temperature Bose gas, we simulate condensation and observe vortex formation in close quantitative agreement with our experimental results. Our studies provide further understanding of the development of coherence in superfluids, and may allow for direct investigation of universal phase-transition dynamics.Comment: 14 pages, 6 figures. Accepted for publication in Nature. Supplementary movie files are available at http://www.physics.uq.edu.au/people/mdavis/spontaneous_vortice

    Experimental Observation of Quantum Chaos in a Beam of Light

    Full text link
    The manner in which unpredictable chaotic dynamics manifests itself in quantum mechanics is a key question in the field of quantum chaos. Indeed, very distinct quantum features can appear due to underlying classical nonlinear dynamics. Here we observe signatures of quantum nonlinear dynamics through the direct measurement of the time-evolved Wigner function of the quantum-kicked harmonic oscillator, implemented in the spatial degrees of freedom of light. Our setup is decoherence-free and we can continuously tune the semiclassical and chaos parameters, so as to explore the transition from regular to essentially chaotic dynamics. Owing to its robustness and versatility, our scheme can be used to experimentally investigate a variety of nonlinear quantum phenomena. As an example, we couple this system to a quantum bit and experimentally investigate the decoherence produced by regular or chaotic dynamics.Comment: 7 pages, 5 figure

    Circulating Hepatitis B Surface Antigen Particles Carry Hepatocellular microRNAs

    Get PDF
    Hepatitis B virus (HBV) produces high quantities of subviral surface antigen particles (HBsAg) which circulate in the blood outnumbering virions of about 1\103–6 times. In individuals coinfected with the defective hepatitis Delta virus (HDV) the small HDV-RNA-genome and Delta antigen circulate as ribonucleoprotein complexes within HBsAg subviral particles. We addressed the question whether subviral HBsAg particles may carry in the same way cellular microRNAs (miRNAs) which are released into the bloodstream within different subcellular forms such as exosomes and microvescicles. Circulating HBsAg particles were isolated from sera of 11 HBsAg carriers by selective immunoprecipitation with monoclonal anti-HBs-IgG, total RNA was extracted and human miRNAs were screened by TaqMan real-time quantitative PCR Arrays. Thirty-nine human miRNAs were found to be significantly associated with the immunoprecipitated HBsAg, as determined by both comparative DDCT analysis and non-parametric tests (Mann-Whitney, p<0.05) with respect to controls. Moreover immunoprecipitated HBsAg particles contained Ago2 protein that could be revealed in ELISA only after 0.5% NP40. HBsAg associated miRNAs were liver-specific (most frequent = miR-27a, miR-30b, miR-122, miR-126 and miR-145) as well as immune regulatory (most frequent = miR-106b and miR-223). Computationally predicted target genes of HBsAg-associated miRNAs highlighted molecular pathways dealing with host-pathoge

    Gene Flow between the Korean Peninsula and Its Neighboring Countries

    Get PDF
    SNP markers provide the primary data for population structure analysis. In this study, we employed whole-genome autosomal SNPs as a marker set (54,836 SNP markers) and tested their possible effects on genetic ancestry using 320 subjects covering 24 regional groups including Northern ( = 16) and Southern ( = 3) Asians, Amerindians ( = 1), and four HapMap populations (YRI, CEU, JPT, and CHB). Additionally, we evaluated the effectiveness and robustness of 50K autosomal SNPs with various clustering methods, along with their dependencies on recombination hotspots (RH), linkage disequilibrium (LD), missing calls and regional specific markers. The RH- and LD-free multi-dimensional scaling (MDS) method showed a broad picture of human migration from Africa to North-East Asia on our genome map, supporting results from previous haploid DNA studies. Of the Asian groups, the East Asian group showed greater differentiation than the Northern and Southern Asian groups with respect to Fst statistics. By extension, the analysis of monomorphic markers implied that nine out of ten historical regions in South Korea, and Tokyo in Japan, showed signs of genetic drift caused by the later settlement of East Asia (South Korea, Japan and China), while Gyeongju in South East Korea showed signs of the earliest settlement in East Asia. In the genome map, the gene flow to the Korean Peninsula from its neighboring countries indicated that some genetic signals from Northern populations such as the Siberians and Mongolians still remain in the South East and West regions, while few signals remain from the early Southern lineages

    Activation of ERAD Pathway by Human Hepatitis B Virus Modulates Viral and Subviral Particle Production

    Get PDF
    Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. It was previously shown that HBV can induce endoplasmic reticulum (ER) stress and activate the IRE1-XBP1 pathway of the unfolded protein response (UPR), through the expression of the viral regulatory protein X (HBx). However, it remained obscure whether or not this activation had any functional consequences on the target genes of the UPR pathway. Of these targets, the ER degradation-enhancing, mannosidase-like proteins (EDEMs) are thought to play an important role in relieving the ER stress during UPR, by recognizing terminally misfolded glycoproteins and delivering them to the ER-associated degradation (ERAD). In this study, we investigated the role of EDEMs in the HBV life-cycle. We found that synthesis of EDEMs (EDEM1 and its homologues, EDEM2 and EDEM3) is significantly up-regulated in cells with persistent or transient HBV replication. Co-expression of the wild-type HBV envelope proteins with EDEM1 resulted in their massive degradation, a process reversed by EDEM1 silencing. Surprisingly, the autophagy/lysosomes, rather than the proteasome were involved in disposal of the HBV envelope proteins. Importantly, inhibition of the endogenous EDEM1 expression in HBV replicating cells significantly increased secretion of both, enveloped virus and subviral particles. This is the first report showing that HBV activates the ERAD pathway, which, in turn, reduces the amount of envelope proteins, possibly as a mechanism to control the level of virus particles in infected cells and facilitate the establishment of chronic infections

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore