266 research outputs found

    MicroRNAs Modulate Pathogenesis Resulting from Chlamydial Infection in Mice

    Get PDF
    Not all women infected with chlamydiae develop upper genital tract disease, but the reason(s) for this remains undefined. Host genetics and hormonal changes associated with the menstrual cycle are possible explanations for variable infection outcomes. It is also possible that disease severity depends on the virulence of the chlamydial inoculum. It is likely that the inoculum contains multiple genetic variants, differing in virulence. If the virulent variants dominate, then the individual is more likely to develop severe disease. Based on our previous studies, we hypothesized that the relative degree of virulence of a chlamydial population dictates the microRNA (miRNA) expression profile of the host, which, in turn, through regulation of the host inflammatory response, determines disease severity. Thus, we infected C57BL/6 mice with two populations of Chlamydia muridarum, each comprised of multiple genetic variants and differing in virulence: an attenuated strain (NiggA) and a virulent strain (NiggV). NiggA and NiggV elicited upper tract pathology in 54% and 91% of mice, respectively. miRNA expression analysis in NiggV-infected mice showed significant downregulation of miRNAs involved in dampening fibrosis (miR-200b, miR-200b-5p, and 200b-3p miR-200a-3p) and in transcriptional regulation of cytokine responses (miR-148a-3p, miR-152-3p, miR-132, and miR-212) and upregulation of profibrotic miRNAs (miR-142, and miR-147). Downregulated miRNAs were associated with increased expression of interleukin 8 (IL-8), CXCL2, IL-1β, tumor necrosis factor alpha (TNF-α), and IL-6. Infection with NiggV but not NiggA led to decreased expression of Dicer and Ago 2, suggesting that NiggV interaction with host cells inhibits expression of the miRNA biogenesis machinery, leading to increased cytokine expression and pathology

    Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications

    Get PDF
    Abstract. In this research, we consider monthly series from the M4 competition to study the relative performance of top-down and bottom-up strategies by means of implementing forecast automation of state space and ARIMA models. For the bottomup strategy, the forecast for each series is developed individually and then these are combined to produce a cumulative forecast of the aggregated series. For the top-down strategy, the series or components values are first combined and then a single forecast is determined for the aggregated series. Based on our implementation, state space models showed a higher forecast performance when a top-down strategy is applied. ARIMA models had a higher forecast performance for the bottom-up strategy. For state space models the top-down strategy reduced the overall error significantly. ARIMA models showed to be more accurate when forecasts are first determined individually. As part of the development we also proposed an approach to improve the forecasting procedure of aggregation strategies

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model

    Get PDF
    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon\u27s (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits

    Optimization Applications in the Airline Industry

    Full text link
    corecore