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Abstract. In this research, we consider monthly series from the M4 competition to 
study the relative performance of top-down and bottom-up strategies by means of 
implementing forecast automation of state space and ARIMA models. For the bottom-
up strategy, the forecast for each series is developed individually and then these are 
combined to produce a cumulative forecast of the aggregated series. For the top-down 
strategy, the series or components values are first combined and then a single forecast 
is determined for the aggregated series. Based on our implementation, state space 
models showed a higher forecast performance when a top-down strategy is applied. 
ARIMA models had a higher forecast performance for the bottom-up strategy. For 
state space models the top-down strategy reduced the overall error significantly. 
ARIMA models showed to be more accurate when forecasts are first determined indi-
vidually. As part of the development we also proposed an approach to improve the 
forecasting procedure of aggregation strategies.  

 
Keywords: Top-down, Bottom-up, Forecast automation, Forecast performance, 

State space models, ARIMA. 
 

1. Introduction 
 

Selecting an appropriate forecasting method for a number of time series is a major 
concern when making decisions. At the organizational level, forecasts are required as 
critical inputs to many activities in various business areas such as inventory manage-
ment, marketing, sales, finance, and accounting [1]. There is a frequent need in busi-
ness for completely automatic forecasting methods (i.e., forecast automation) that 
takes into account series characteristics and other features of the data without the need 
for human interference [2]. Literature propose various selection rules in order to en-
hance forecasting accuracy. The simplest approach for model selection when evaluat-
ing multiples series, involves the identification of a single method which is applied 
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over a combined series without taking into account the specifications of its own com-
ponents [3]. The idea behind this approach is known as aggregation, where multiple 
series are combined into a single series without considering their individual specifica-
tions such as trend and seasonality [3–5]. When series are aggregated the overall vari-
ability of the combined series is reduced, which may result on a superior forecasting 
accuracy [5, 6]. In addition, the automation for model selection is simpler with a low-
er complexity but with the cost of losing the specifications from the individual series 
[3, 7]. On the other hand, individual selection involves the identification of the best 
method for each series, but this approach is more computationally intensive [4]. The 
inquiry in this context is to determine which approach would be more effective, in 
terms of performance, since small improvements in forecast accuracy can lead to 
large reductions in inventory and increase in service levels [8–10]. 

The research about the aggregation level of a forecasting process is referred in the 
literature as Hierarchical Forecasting [5, 11].  In this setting, two forecasting strate-
gies are typically denoted: The bottom-up strategy (BU) and the top-down strategy 
(TD). In BU, the forecast is developed for each series individually and then these are 
combined to generate a cumulative forecast of the aggregated series. This is referred 
as the cumulative forecast, since it is made up by the combination of the individual 
forecasts of each series. In TD, series are first aggregated to produce a combined 
forecast, then the forecast is disaggregated and a derived forecast for each series is 
established usually by means of proportions. Research about the comparisons between 
TD and BU is available in [12–21], and the principal objective from the developments 
is to identify which strategy presents a higher forecast performance. However, the 
findings about whether TD strategies perform better than BU, or vice-versa, remain 
debatable. Therefore, improvement of forecast performance using these strategies are 
contemporary, especially if considerations about forecast automation are part of the 
analysis [4] since this is substantial when working with a large number of series.        

Forecast automation is essential when modelling several time series. Automation 
methodologies for two of the most broadly forecasting methods, autoregressive inte-
grated moving average (ARIMA) and state space models, are recognized to perform 
very well with several types of time series [2, 22–26].  More advanced or complex 
methods of forecasting include machine learning procedures such as: Bayesian neural 
networks, K-nearest neighbor regression, kernel regression, CART regression trees, 
and support vector regression [27]. The disadvantage with many machine learning 
algorithms is that often them appear as black boxes or infinite networks with limited 
and restricted insights into how the forecasts are produced and which data compo-
nents are important. These attributes of forecasting are often critical for practitioners 
[28]. State space and ARIMA models are relatively simple but robust approaches to 
forecasting that are widely used in business with great success in both academic re-
search, educational competitions, and industrial applications [23, 29, 30].  

According to Weller and Crone [31] in a survey of forecasting practices, the expo-
nential smoothing family of models is the most frequently used. Actually, it is imple-
mented almost 1/3 of times (32.1%) in detriment of more advanced forecasting tech-
niques that are only applied in 10% of cases. In general, simpler methods are used 3/4 
of times, a result that is consistent with the relative accuracy of such methods in fore-
casting competitions.  
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Currently the M-Competitions, now in its four version, have attracted great interest 
in providing objective evidence of the most appropriate way of forecasting various 
variables of interest. In this research, the objective is to evaluate performance of BU 
and TD strategies using only forecast automation of state space and ARIMA models. 
We selected a set of time series from the M4 competition with the purpose of identify 
the most accurate forecasting method when implementing state space and ARIMA 
models in combination with the application of BU and TD strategies. Machine learn-
ing methods are not considered in this analysis, since the focus of this research is the 
implementation of forecast automation of the most widely used methods but in the 
context of aggregation and cumulative forecasts. 

 
2. Forecast Automation  

 
2.1 State Space Models 

 
Since 1950, exponential smoothing methods have been applied with success to 

several types of time series [2]. The basic variations of exponential smoothing in-
clude: simple exponential smoothing, trend-corrected exponential smoothing or Holt’s 
model, additive damped trend, and Holt-Winters additive and multiplicative methods 
that might include damped trend errors [32–34]. The usual description of these meth-
ods is the component form. Component form of exponential smoothing methods 
comprise a forecast equation and a smoothing equation for the components [24].  
Hyndman et al [2] developed a statistical framework for all exponential smoothing 
methods. In this statistical structure each model, referred as state space model, con-
sists of a measurement equation that describes the evaluated data, and state or transi-
tion equations that describe how the unobserved components or states (level, trend, 
seasonal) evolve over time. For illustration, let us denote the formulation for the com-
ponent and state space form of the most common models. 

Simple exponential smoothing (1) 
Component form  

𝑦𝑦�𝑡𝑡+ℎ|𝑡𝑡 = 𝑙𝑙𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + (1 − 𝛼𝛼)𝑙𝑙𝑡𝑡−1 

State space form 
𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝛼𝛼𝑒𝑒𝑡𝑡 

Where: 𝑒𝑒𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑙𝑙𝑡𝑡−1 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡|𝑡𝑡−1 
for t=1,…., T, the one-step within-sample 
forecast error at the time t. 𝑙𝑙𝑡𝑡 is an unob-
served state.  

 

Holt´s linear trend (2) 
Component form  

𝑦𝑦�𝑡𝑡+ℎ|𝑡𝑡 = 𝑙𝑙𝑡𝑡+ℎ𝑏𝑏𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + (1 − 𝛼𝛼)(𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1) 
𝑏𝑏𝑡𝑡 = β∗(𝑙𝑙𝑡𝑡 − 𝑙𝑙𝑡𝑡−1) + (1 − β∗)𝑏𝑏𝑡𝑡−1 

State space form 
𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1 + 𝛼𝛼𝑒𝑒𝑡𝑡 

𝑏𝑏𝑡𝑡 = 𝑏𝑏𝑡𝑡−1 + 𝛽𝛽𝑒𝑒𝑡𝑡 
Where: 
𝛽𝛽 = 𝛼𝛼𝛽𝛽∗ 
𝑒𝑒𝑡𝑡 = 𝑦𝑦𝑡𝑡 − (𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1) = 𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡|𝑡𝑡−1 

 Holt-winters additive method (4) 
Component form  

𝑦𝑦�𝑡𝑡+ℎ|𝑡𝑡 = 𝑙𝑙𝑡𝑡 + ℎ𝑏𝑏𝑡𝑡 + 𝑠𝑠𝑡𝑡−𝑚𝑚+ℎ𝑚𝑚
+  

𝑙𝑙𝑡𝑡 = 𝛼𝛼(𝑦𝑦𝑡𝑡 − 𝑠𝑠𝑡𝑡−𝑚𝑚) + (1 − 𝛼𝛼)(𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1) 
𝑏𝑏𝑡𝑡 = 𝛽𝛽∗(𝑙𝑙𝑡𝑡 − 𝑙𝑙𝑡𝑡−1) + (1 − 𝛽𝛽∗)𝑏𝑏𝑡𝑡−1 

𝑠𝑠𝑡𝑡 = 𝛾𝛾(𝑦𝑦𝑡𝑡 − 𝑙𝑙𝑡𝑡−1 − 𝑏𝑏𝑡𝑡−1) + (1 − 𝛾𝛾)𝑠𝑠𝑡𝑡−𝑚𝑚, 
 
State space form 

𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1 + 𝑠𝑠𝑡𝑡−𝑚𝑚 + 𝑒𝑒𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1 + 𝛼𝛼𝑒𝑒𝑡𝑡 

𝑏𝑏𝑡𝑡 = 𝑏𝑏𝑡𝑡−1 + 𝛽𝛽𝑒𝑒𝑡𝑡 
𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡−𝑚𝑚 + 𝛾𝛾𝑒𝑒𝑡𝑡 

 

Additive damped trend (3) 
Component form  

𝑦𝑦�𝑡𝑡+ℎ|𝑡𝑡 = 𝑙𝑙𝑡𝑡 + (∅ + ∅2 + ⋯+ ∅ℎ)𝑏𝑏𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + (1 − 𝛼𝛼)(𝑙𝑙𝑡𝑡−1 + ∅𝑏𝑏𝑡𝑡−1) 
𝑏𝑏𝑡𝑡 = β∗(𝑙𝑙𝑡𝑡 − 𝑙𝑙𝑡𝑡−1) + (1 − β∗)∅𝑏𝑏𝑡𝑡−1 

State space form 
𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + ∅𝑏𝑏𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + ∅𝑏𝑏𝑡𝑡−1 + 𝛼𝛼𝑒𝑒𝑡𝑡 

𝑏𝑏𝑡𝑡 = ∅𝑏𝑏𝑡𝑡−1 + 𝛽𝛽𝑒𝑒𝑡𝑡 
Where: Damping parameter 0<∅<1.  
If ∅ = 1, indical to Holt`s linear trend 
As h→∞, 𝑦𝑦�𝑇𝑇+ℎ|𝑇𝑇→𝑙𝑙𝑡𝑡 + ∅𝑏𝑏𝑇𝑇/(1 − ∅) 
Short-run forecasts trend, long-run forecasts 
constant. 
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Where for all cases m denotes the period of seasonality, 𝑙𝑙𝑡𝑡 denotes an estimate of 

the level of the series at time t, 𝑏𝑏𝑡𝑡 denotes an estimate of the trend of the series at time 
t, 𝑠𝑠𝑡𝑡 denotes an estimate of the seasonality of the series at time t. The initial states and 
the smoothing parameters α, β, γ are estimated from the observed data. The smoothing 
parameters α, β, γ are constrained between 0 and 1 with the purpose of that the equa-
tions can be interpreted as weighted averages [35]. 

For space state models, the letters (E, T, S) denote the three forecast components: 
“Error”, “Trend” and “Seasonality”. The notation ETS refers to a three-character 
string form identifying the method used by the framework terminology. For instance, 
the first letter denotes the error type ("A", "M" or "Z"); the second letter denotes the 
trend type ("N","A","M" or "Z"); and the third letter denotes the seasonal type 
("N","A","M" or "Z"). In all cases, "N"=none, "A"=additive, "M"=multiplicative, 
"Z"=automatically selected, and "A𝑑𝑑 " denotes additive damped. Then, for example, 
"ANN" is simple exponential smoothing with additive errors, and "MAM" is multipli-
cative Holt-Winters with multiplicative errors. The letter “Z” refers to forecast auto-
mation, where for the given the data, a state space model is identified automatically to 
optimize or minimize errors.  

 
2.2 ARIMA  

 
The class of ARIMA models is broad. It can represent many different types of sto-

chastic seasonal and non-seasonal time series such as autoregressive (AR), moving 
average (MA), and mixed AR or MA processes, where the baseline might need to be 
differenced and integrated (I). Box-Jenkins et al. [36] developed a systematic and 
practical model building method. Using this process ARIMA follows three sequential 
phases; i) model identification: create and evaluate the correlograms of the series, 
their patterns enables the identification of the time series that is represented in the 
baseline, ii) model estimation: estimation of the parameter values, and iii) model di-
agnosis: development of preliminary forecasts, these forecasts are used to diagnose 
the identification and estimation stage.   

The Box-Jenkins methodology has been proved as an effective and practical time 
series modeling approach. ARIMA models considers three parameters p, d, q that are 

Holt-winters damped method (6) 
Component form  
 
𝑦𝑦�𝑡𝑡+ℎ|𝑡𝑡 = [𝑙𝑙𝑡𝑡 + (∅ + ∅2 + ⋯+ ∅ℎ)𝑏𝑏𝑡𝑡]𝑠𝑠𝑡𝑡−𝑚𝑚+ℎ𝑚𝑚

+  
𝑙𝑙𝑡𝑡 = 𝛼𝛼(𝑦𝑦𝑡𝑡/𝑠𝑠𝑡𝑡−𝑚𝑚) + (1 − 𝛼𝛼)(𝑙𝑙𝑡𝑡−1 + ∅𝑏𝑏𝑡𝑡−1) 

𝑏𝑏𝑡𝑡 = 𝛽𝛽∗(𝑙𝑙𝑡𝑡 − 𝑙𝑙𝑡𝑡−1) + (1 − 𝛽𝛽∗)∅𝑏𝑏𝑡𝑡−1 
𝑠𝑠𝑡𝑡 = 𝛾𝛾

𝑦𝑦𝑡𝑡
(𝑙𝑙𝑡𝑡−1 + ∅𝑏𝑏𝑡𝑡−1) + (1 − 𝛾𝛾)𝑠𝑠𝑡𝑡−𝑚𝑚 

State space form 
𝑦𝑦𝑡𝑡 = (𝑙𝑙𝑡𝑡−1 + ∅𝑏𝑏𝑡𝑡−1)𝑠𝑠𝑡𝑡−𝑚𝑚 + 𝑒𝑒𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + ∅𝑏𝑏𝑡𝑡−1 + 𝛼𝛼𝑒𝑒𝑡𝑡/𝑠𝑠𝑡𝑡−𝑚𝑚 

𝑏𝑏𝑡𝑡 = ∅𝑏𝑏𝑡𝑡−1 + 𝛽𝛽𝑒𝑒𝑡𝑡/𝑠𝑠𝑡𝑡−𝑚𝑚 
𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡−𝑚𝑚 + 𝛾𝛾𝑒𝑒𝑡𝑡/(𝑙𝑙𝑡𝑡−1 + ∅𝑏𝑏𝑡𝑡−1) 

 

Holt-winters multiplicative (5) 
Component form  

𝑦𝑦�𝑡𝑡+ℎ|𝑡𝑡 = (𝑙𝑙𝑡𝑡 + ℎ𝑏𝑏𝑡𝑡)𝑠𝑠𝑡𝑡−𝑚𝑚+ℎ𝑚𝑚
+  

𝑙𝑙𝑡𝑡 = 𝛼𝛼
𝑦𝑦𝑡𝑡
𝑠𝑠𝑡𝑡−𝑚𝑚

+ (1 − 𝛼𝛼)(𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1) 

𝑏𝑏𝑡𝑡 = 𝛽𝛽∗(𝑙𝑙𝑡𝑡 − 𝑙𝑙𝑡𝑡−1) + (1 − 𝛽𝛽∗)𝑏𝑏𝑡𝑡−1 
𝑠𝑠𝑡𝑡 = 𝛾𝛾

𝑦𝑦𝑡𝑡
(𝑙𝑙𝑡𝑡−1 − 𝑏𝑏𝑡𝑡−1) + (1 − 𝛾𝛾)𝑠𝑠𝑡𝑡−𝑚𝑚 

State space form 
𝑦𝑦𝑡𝑡 = (𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1)𝑠𝑠𝑡𝑡−𝑚𝑚 + 𝑒𝑒𝑡𝑡 
𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1 + 𝛼𝛼𝑒𝑒𝑡𝑡/𝑠𝑠𝑡𝑡−𝑚𝑚 

𝑏𝑏𝑡𝑡 = 𝑏𝑏𝑡𝑡−1 + 𝛽𝛽𝑒𝑒𝑡𝑡/𝑠𝑠𝑡𝑡−𝑚𝑚 
𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡−𝑚𝑚 + 𝛾𝛾𝑒𝑒𝑡𝑡/(𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1) 
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represented as: ARIMA (p,d,q) Where: p denotes the model and forecast that are 
based in part or completely on autoregression. p is the number of autoregressive pa-
rameters in the model, d is the number of times the series has been differenced to 
achieve stationarity, and q is the number of moving average parameters in the model 
that accounts for random jumps in the time series.  

For seasonal ARIMA: ARIMA(p,d,q)(P,D,Q), the uppercase letters have the same 
meaning as the lowercase letters, but these are referred to seasonal parameters. For 
illustration, let us denote the formulation for the multiplicative seasonal ARIMA 
model (p,d,q) x (P,D,Q)m  
 

∅𝑝𝑝(𝐵𝐵)∅𝑃𝑃(𝐵𝐵𝑚𝑚)(1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑚𝑚)𝐷𝐷𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜃𝜃𝑞𝑞(𝐵𝐵)𝛩𝛩𝑄𝑄(𝐵𝐵𝑚𝑚)𝜀𝜀𝑡𝑡 
Where: 
∅𝑝𝑝(𝐵𝐵) = 1 − ∅1𝐵𝐵 −⋯− ∅𝑝𝑝𝐵𝐵𝑝𝑝,∅𝑃𝑃(𝐵𝐵𝑚𝑚) = 1 − ∅1𝐵𝐵𝑚𝑚 −⋯− ∅𝑃𝑃𝐵𝐵𝑃𝑃𝑚𝑚 
𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 + 𝜃𝜃1𝐵𝐵 + ⋯+ 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞 ,𝛩𝛩𝑄𝑄(𝐵𝐵𝑚𝑚) = 1 + 𝛩𝛩1𝐵𝐵𝑚𝑚 + ⋯− 𝛩𝛩𝑄𝑄𝐵𝐵𝑄𝑄𝑚𝑚 

 

(7) 
 

With m as the seasonal frequency, B is the backward shift operator, d is the degree 
of ordinary differencing, and D is the degree of seasonal differencing, ∅𝑝𝑝(𝐵𝐵) and 
𝜃𝜃𝑞𝑞(𝐵𝐵) are the regular autoregressive and moving average polynomials of orders p and 
q, respectively, 𝛩𝛩𝑄𝑄(𝐵𝐵𝑚𝑚) and 𝛩𝛩𝑄𝑄𝐵𝐵𝑄𝑄𝑚𝑚 are the seasonal autoregressive and moving 
average polynomials of orders P and Q, respectively, 𝐶𝐶 =  µ�1 − ∅1 −⋯− ∅𝑝𝑝�� 1 −
∅1 −⋯− ∅𝑝𝑝�where µ is the mean of (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑚𝑚)𝐷𝐷𝑦𝑦𝑡𝑡 process and  𝜀𝜀𝑡𝑡 is a zero 
mean Gaussian white noise process with variance ơ2. 

For this research, the state space methods are estimated using the forecast package 
for R statistical software described in [25]. The automatic ETS function (AUTO.ETS) 
is used to estimate the state space model form parameters. The ARIMA function 
(AUTO.ARIMA) implemented in the same package is also used to identify and esti-
mate the ARIMA models. The AUTO.ARIMA function conducts a stepwise selection 
over possible models and returns the best ARIMA model. The algorithms are applica-
ble to both seasonal and non-seasonal data, these are illustrated using series from the 
M4 competition, with the forecasting strategies for TD and BU. 

  
3. Forecast Strategy Analysis 
 
3.1 Data Selection  

 
The research literature on TD versus BU strategies is generally characterized into 

two categories. The first category assumes that the statistical properties of the sub 
aggregated time series components are known perfectly. In this framework, both TD 
and BU forecasting would perform equally well, only when the components are un-
correlated and have identical stochastic structures [37, 38]. The second category, as-
sumes that the generating process is not known a priori and data is constantly updated. 
When data is constantly updated TD could be developed with a higher efficacy since 
forecasting is done simultaneously for several different components [21, 39–41]. For 
our case, the series that are part of the study do not have identical stochastic struc-



6 

tures, which is in accordance with most business processes. Since the structure for the 
series are different to each other, it is expected for the implementation a variation on 
performance when both strategies are applied to the selected series. 

 
3.2 Data Description 

 
We consider five monthly series from the M4 competition to study the relative 

forecast performance of TD and BU strategies when aggregated series are considered. 
In the BU strategy, the forecast for each series is determined individually and then a 
cumulative forecast is obtained by adding the individual components forecasts. We 
first determine the forecasts for each series individually and then we evaluate the 
errors for the cumulative forecast when compared with the aggregated series using 
AUTO.ETS and AUTO.ARIMA. In the TD strategy, the series are first combined to 
obtain the aggregated series and then a single forecast is determined from the aggre-
gated series. Forecast performance is evaluated using the combined testing sets.  

All series from the M4 competition are divided into training and testing sets. The 
selected series for this study are defined in the competition dataset as: M19, M20, 
M21, M22, and M23. The total number of observations for each of the series is equal 
to 192 months, 174 for the training and 18 for the testing set respectively. We as-
sumed an ending period for all five series equal to December 2018 (12/2018). In order 
to evaluate forecast performance for the different strategies, RMSE, MAE, and 
MAPE are calculated for the testing set. Where:                                                                                             

                                                                                                                                (8) 

RMSE = �
1

𝑛𝑛 −𝑚𝑚
� (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2
𝑛𝑛

𝑡𝑡=𝑚𝑚+1

       MAE =
1

𝑛𝑛 − 𝑚𝑚
� �𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡�  
𝑛𝑛

𝑡𝑡=𝑚𝑚+1

 

                                                                                                             
 

MAPE =
1

𝑛𝑛 −𝑚𝑚
� �

𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡
𝑦𝑦𝑡𝑡

� x100
𝑛𝑛

𝑡𝑡=𝑚𝑚+1

 

 
We used the training set to identify the best model for the series, using BU and TD 

strategies, with AUTO.ETS and AUTO.ARIMA. All evaluations of forecast perfor-
mance are implemented over the testing set. Figure 1 presents the graphical represen-
tations of the selected series. 
 
3.3 BU Strategy 
 

For the BU strategy, we developed the forecast for each of the series individually 
with the forecast accuracy calculated for each component. Then, all forecasts are 
combined and the performance is evaluated with the aggregated values from the se-
ries. Performance efficiency is calculated using the aggregated testing set. The meth-
odology is developed using AUTO.ETS and AUTO.ARIMA. 
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Figure 1: Graphical representation of selected series. 
 

ETS - BU 
We developed the forecasts for each of the series and then we combined them to eval-
uate forecast performance of the aggregated series with AUTO.ETS. Figure 2 shows 
the forecast and performance for each of the components. Figure 4 shows the forecast 
performance for the aggregated series. 

 
ARIMA - BU 
Similar to the ETS-BU approach, we developed the forecasts for each of the series 
and then we combined them to evaluate forecast performance of the aggregated series 
with AUTO.ARIMA. Figure 3 shows the forecast and performance for each of the 
components. Figure 5 shows the forecast performance for the aggregated series. 
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   ETS – BU RMSE    MAE   MAPE AUTO ETS 

M19 543.18 448.30 11.56 ETS(M, N, M) 

M20 1979.29 1567.11 42.72 ETS(M, N, M) 

M21 239.95 184.54 9.93 ETS(M, Ad, M) 

M22 267.81 200.64 15.25 ETS(M, N, M) 

M23 865.15 677.19 10.42 ETS(M, N, M) 
 

Figure 2: ETS-BU individual forecasts 
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Figure 3: ARIMA-BU individual forecasts 

 

   ARIMA – BU    RMSE   MAE    MAPE AUTO ARIMA 

M19 517.56 398.20 9.81 ARIMA(0,1,1) 

M20    1443.18 1174.38 31.29 ARIMA(1,0,0) with non-zero mean 

M21 272.69 206.89 10.55 ARIMA(1,1,1) 

M22 230.56 202.13 16.76 ARIMA(1,0,0) with non-zero mean 

M23 716.67 589.12 9.27 ARIMA(1,1,1) 
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Figure 4: ETS- BU aggregated series forecast 
 
 

 

 
 
 
 
 
 
 
 

 
Figure 5: ARIMA- BU aggregated series forecast  

 
3.4 TD Strategy 

 
For the TD strategy, the series or components values are first combined and then a 

single forecast is determined for the aggregated series. Forecast performance is evalu-
ated using the combined testing set. The methodology is developed using AUTO.ETS 
and AUTO.ARIMA.  
 
ETS - TD 
We first combined the series and then a single forecast is determined with 
AUTO.ETS. Figure 6 shows the forecast and performance for the aggregated series.  
 
ARIMA - TD 
Similar to the ETS-TD approach, we first combined the series and then single a fore-
cast is determined with AUTO.ARIMA. Figure 7 shows the forecast and performance 
for the aggregated series.  

Aggregated ETS – BU RMSE MAE MAPE 

Cumulative Forecast 2368.23 2012.99   11.06 

Aggregated ARIMA – BU  RMSE MAE MAPE 

Cumulative Forecast 1581.34 1344.11   7.66 
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Figure 6: ETS-TD aggregated series forecast  

 
 

 
 
 

 

 
 
 

 
 

Figure 7: ARIMA-TD aggregated series forecast  
 
4. Discussion and Conclusions 

 
AUTO.ETS showed a higher performance when a TD strategy is applied. On the 

other hand, AUTO.ARIMA had a greater performance for the BU strategy. For the 
ETS method, the TD strategy improved significantly the forecast when compared to 
BU. ARIMA proved to be more accurate when forecasts are determined individually. 
The best forecast for the study, given MAPE, is ETS with a TD strategy. Table 1 
shows the overall results for the strategies. 

ETS – TD  RMSE  MAE MAPE 

Aggregated Forecast  1548.71 1302.69 7.29 

AUTO ETS 

ETS(M, Ad, M) 

ARIMA – TD   RMSE MAE MAPE 

Aggregated Forecast 1662.38 1419.60   8.86 

AUTO ARIMA 
ARIMA(1,0,0)with non-zero mean 
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Table 1. Overall results for the strategies 

Strategy MAPE 
1) ETS-BU 11.06 
2) ARIMA-BU 7.66 
3) ETS-TD 7.29 
4) ARIMA-TD 8.86 

 
ETS-BU (Figure 2) forecasted significantly higher values for the periods in the 

testing set of July/2017 to Oct/2017 and July/2018 to Oct/2018 when compared with 
ARIMA-BU. This inaccuracy of the forecast in these periods increased the error sig-
nificantly for the ETS-BU strategy. It appears that the forecast strategy ETS-BU does 
not properly predict the values for this range of months. Given these results it is ex-
pected that if the conditions for the series remain constant, this undesirable perfor-
mance will continue for the following years. For this reason ETS-BU is not recom-
mended as an adequate strategy for the study. On the other hand, the ETS-TD strategy 
did not show this conduct and it was able to achieve a more accurate forecast when 
compared with the actual values in the testing set, resulting in a significant lower 
MAPE. The ETS-TD strategy is the best approach for the study. 

Certainly, the most important constrain when applying the proposed forecasting 
strategies is the arrangement of the data structure in combination with the inherent 
complexity for the BU strategy of having to calculate each forecast individually. 
Keeping track of the developed forecasts for each series might prevent researchers of 
applying the BU strategy. AUTO.ETS and AUTO.ARIMA functions are able to han-
dle as many series as necessary, but the process of aggregating forecasts and evaluat-
ing performance is time consuming and in some cases unpractical to apply. If we also 
include series with different ending and starting times the process becomes more dif-
ficult to control. To our knowledge there is not in the literature an automatic proce-
dure to apply the aggregation strategies with several series. The forecast package for 
R described in [25] details the use of AUTO.ETS and AUTO.ARIMA but before 
applying these functions with the forecast strategies, the data must be arranged with 
the appropriate structure in order to be able to perform. In this context, we developed 
two sets of algorithms presented in Figure 8, to automatically develop the arrange-
ment of the data and to keep track of the forecasts when applying the strategies.  

The first algorithm deals with the calculations in regards of different ending or 
starting periods of the series. The second algorithm evaluates the periods available for 
all series and arrange the structure for forecast calculation. We created both algo-
rithms to be applied on our developments in R. For the algorithms two data frames 
denominated master.data and dates.data are generated. The data frame master.data 
contains all the actual values of the series, arranged each one in columns (n). The 
second data frame dates.data has the same number of columns than master.data with 
two rows for each column, the first row has the information of the starting year, for 
that specific series, and the second row the information about the starting period. The 
first algorithm will automatically calculate and save the ending date given the fre-
quency, and the second algorithm will arrange the structure to run the forecasts strate-
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gies. The second algorithm evaluates if the size of a series is smaller when compared 
with the others. If that is the case only the tail values that match the size of the small-
est series should be considered to calculate the combined forecast. All series must 
have an equal starting and ending time in order to apply the strategies. 

 
 
 

 
 
 

 
 

Figure 8: Algorithms for implementation of strategies 
 
After the application of the proposed algorithms we completed the procedure with 

the implementation of the different formulations detailed in [25] including the func-
tions “ts” and “as.ts” to run the forecast automation procedure. The presented algo-
rithms in combination with the automatic forecasting functions enhance significantly 
the efficiency, coordination, and development of the strategies when several time 
series are available. We recommend the use of a similar approach to apply the fore-
casting procedure of aggregation strategies. Finally, future research might include the 
analysis of machine learning approaches but it is necessary to consider the disad-
vantages of these methods when analyzing the obtained results.  
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