61 research outputs found

    CoRoT-22 b: a validated 4.9 RE exoplanet in 10-day orbit

    Get PDF
    The CoRoT satellite has provided high-precision photometric light curves for more than 163,000 stars and found several hundreds of transiting systems compatible with a planetary scenario. If ground-based velocimetric observations are the best way to identify the actual planets among many possible configurations of eclipsing binary systems, recent transit surveys have shown that it is not always within reach of the radial-velocity detection limits. In this paper, we present a transiting exoplanet candidate discovered by CoRoT whose nature cannot be established from ground-based observations, and where extensive analyses are used to validate the planet scenario. They are based on observing constraints from radial-velocity spectroscopy, adaptive optics imaging and the CoRoT transit shape, as well as from priors on stellar populations, planet and multiple stellar systems frequency. We use the fully Bayesian approach developed in the PASTIS analysis software, and conclude that the planet scenario is at least 1400 times more probable than any other false positive scenario. The primary star is a metallic solar-like dwarf, with Ms = 1.099+-0.049 Msun and Rs = 1.136 (+0.038,-0.090) Rsun . The validated planet has a radius of Rp = 4.88 (+0.17,-0.39) RE and mass less than 49 ME. Its mean density is smaller than 2.56 g/cm^3 and orbital period is 9.7566+-0.0012 days. This object, called CoRoT-22 b, adds to a large number of validated Kepler planets. These planets do not have a proper measurement of the mass but allow statistical characterization of the exoplanet population

    K2-280b -- a low density warm sub-Saturn around a mildly evolved star

    Get PDF
    We present an independent discovery and detailed characterisation of K2-280b, a transiting low density warm sub-Saturn in a 19.9-day moderately eccentric orbit (e = 0.35_{-0.04}^{+0.05}) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280b has a radius of R_b = 7.50 +/- 0.44 R_Earth and a mass of M_b = 37.1 +/- 5.6 M_Earth, yielding a mean density of 0.48_{-0.10}^{+0.13} g/cm^3. The host star is a mildly evolved G7 star with an effective temperature of T_{eff} = 5500 +/- 100 K, a surface gravity of log(g) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M_star = 1.03 +/- 0.03 M_sun and a radius of R_star = 1.28 +/- 0.07 R_sun. We discuss the importance of K2-280b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar System

    Hepatic arterial chemotherapy for primary and metastatic liver cancers

    Full text link
    Hepatic arterial chemotherapy represents a means of selectively exposing hepatic tumor to cytotoxic agents. Although 5-fluoro-2â€Č-deoxyuridine has been shown to generate a higher response rate in the treatment of colorectal liver metastases than that achieved by intravenous infusion, responses are largely incomplete and rarely of long duration. This review describes the rationale for the use of the thymidine analogs 5-bromo-2â€Č-deoxyuridine and 5-iodo-2â€Č-deoxyuridine in hepatic arterial infusions and indicates how combination therapy adding radiotherapy, specifically with hepatic arterially administered yttrium-90 microspheres, might generate a new, more efficient and effective therapeutic approach.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46919/1/280_2004_Article_BF00647244.pd

    The planetary system around HD 190622 (TOI-1054): Measuring the gas content of low-mass planets orbiting F-stars

    Get PDF
    Context. Giant planets are known to dominate the long-term stability of planetary systems due to their prevailing gravitational interactions, but they are also thought to play an important role in planet formation. Observational constraints improve our understanding of planetary formation processes such as the delivery of volatile-rich planetesimals from beyond the ice line into the inner planetary system. Additional constraints may come from studies of the atmosphere, but almost all such studies of the atmosphere investigate the detection of certain species, and abundances are not routinely quantitatively measured. Aims. Accurate measurements of planetary bulk parameters-that is, mass and density-provide constraints on the inner structure and chemical composition of transiting planets. This information provides insight into properties such as the amounts of volatile species, which in turn can be related to formation and evolution processes. Methods. The Transiting Exoplanet Survey Satellite (TESS) reported a planetary candidate around HD 190622 (TOI-1054), which was subsequently validated and found to merit further characterization with photometric and spectroscopic facilities. The KESPRINT collaboration used data from the High Accuracy Radial Velocity Planet Searcher (HARPS) to independently confirm the planetary candidate, securing its mass, and revealing the presence of an outer giant planet in the system. The CHEOPS consortium invested telescope time in the transiting target in order to reduce the uncertainty on the radius, improving the characterization of the planet. Results. We present the discovery and characterization of the planetary system around HD 190622 (TOI-1054). This system hosts one transiting planet, which is smaller than Neptune (3.087-0.053+0.058REarth, 7.7 ± 1.0 MEarth) but has a similar bulk density (1.43 ± 0.21 g cm-3) and an orbital period of 16 days; and a giant planet, not known to be transiting, with a minimum mass of 227.0 ± 6.7 MEarth in an orbit with a period of 315 days. Conclusions. Our measurements constrain the structure and composition of the transiting planet. HD 190622b has singular properties among the known population of transiting planets, which we discuss in detail. Among the sub-Neptune-sized planets known today, this planet stands out because of its large gas content

    The Multiplanet System TOI-421*: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary*

    Get PDF
    We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations—comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed EchellĂ© Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Échelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements—and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of Pb = 5.19672 ± 0.00049 days, a mass of Mb = 7.17 ± 0.66 M⊕, and a radius of Rb = 2.68−0.18+0.19{2.68}_{-0.18}^{+0.19} R⊕, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of Mc = 16.42−1.04+1.06{16.42}_{-1.04}^{+1.06} M⊕, a radius of Rc = 5.09−0.15+0.16{5.09}_{-0.15}^{+0.16} R⊕, and a density of ρc = 0.685−0.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3. With its characteristics, the outer planet (ρc = 0.685−0.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed

    International trends in public perceptions of climate change over the past quarter century

    Get PDF
    Public perceptions of climate change are known to differ between nations, and to have fluctuated over time. Numerous plausible characterisations of these variations, and explanations for them, are to be found in the literature. However, a clear picture has not yet emerged as to the principal trends and patterns that have occurred over the past quarter-century, or the factors behind these changes. This systematic review considers previous empirical research which has addressed the temporal aspects to public perceptions. We address findings which have been obtained since the 1980’s, and using a range of methodologies. In the review we consider early, seminal work examining public perceptions; survey studies carried out over long timescales and at an international scale; detailed statistical analyses of the drivers of changing perceptions; and qualitative research featuring a longitudinal component. Studies point to growing scepticism in the latter 2000’s in some developed countries, underpinned by economic and sociopolitical factors. Even so, in many parts of the world, there has been growing concern about climate change in recent years. We conclude that the imbalance in the literature towards polling data, and towards studies of public perceptions in Western nations (particularly the US), leaves much unknown about the progression of public understanding of climate change worldwide. More research is required that uses inferential statistical procedures to understand the reasons behind trends in public perceptions. The application of qualitative longitudinal methodologies also offers the potential for better appreciation of the cultural contexts in which climate change perceptions are evolving

    A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with CHEOPS

    Get PDF
    We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine T-eff,T-* = 4734 +/- 67 K, R-* = 0.726 +/- 0.007 R-circle dot, and M-* = 0.748 +/- 0.032 M-circle dot. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of P-b = 6.44387 +/- 0.00003 d, a radius of R-b = 2.59 +/- 0.04 R-circle plus, and a mass of M-b = 13.5(-1.8)(+1.7) M-circle plus, whilst TOI-1064 c has an orbital period of P-c = 12.22657(-0.0)(0004)(+0.00005) d, a radius of R-c = 2.65 +/- 0.04 R-circle plus, and a 3 sigma upper mass limit of 8.5 M-circle plus. From the high-precision photometry we obtain radius uncertainties of similar to 1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass-radius space, and it allow us to identify a trend in bulk density-stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets
    • 

    corecore