290 research outputs found

    What are we measuring? A critique of range of motion methods currently in use for Dupuytren's disease and recommendations for practice

    Get PDF
    Background: Range of motion is the most frequently reported measure used in practice to evaluate outcomes. A goniometer is the most reliable tool to assess range of motion yet, the lack of consistency in reporting prevents comparison between studies. The aim of this study is to identify how range of motion is currently assessed and reported in Dupuytren’s disease literature. Following analysis recommendations for practice will be made to enable consistency in future studies for comparability. This paper highlights the variation in range of motion reporting in Dupuytren’s disease. Methods: A Participants, Intervention, Comparison, Outcomes and Study design format was used for the search strategy and search terms. Surgery, needle fasciotomy or collagenase injection for primary or recurrent Dupuytren’s disease in adults were included if outcomes were monitored using range of motion to record change. A literature search was performed in May 2013 using subject heading and free-text terms to also capture electronic publications ahead of print. In total 638 publications were identified and following screening 90 articles met the inclusion criteria. Data was extracted and entered onto a spreadsheet for analysis. A thematic analysis was carried out to establish any duplication, resulting in the final range of motion measures identified. Results: Range of motion measurement lacked clarity, with goniometry reportedly used in only 43 of the 90 studies, 16 stated the use of a range of motion protocol. A total of 24 different descriptors were identified describing range of motion in the 90 studies. While some studies reported active range of motion, others reported passive or were unclear. Eight of the 24 categories were identified through thematic analysis as possibly describing the same measure, ‘lack of joint extension’ and accounted for the most frequently used. Conclusions: Published studies lacked clarity in reporting range of motion, preventing data comparison and meta-analysis. Percentage change lacks context and without access to raw data, does not allow direct comparison of baseline characteristics. A clear description of what is being measured within each study was required. It is recommended that range of motion measuring and reporting for Dupuytren’s disease requires consistency to address issues that fall into 3 main categories:- Definition of terms Protocol statement Outcome reportin

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the β<sub>2</sub>-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with μ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling.</p> <p>Results</p> <p>C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface.</p> <p>Conclusions</p> <p>We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer.</p

    Early transcriptional response in the jejunum of germ-free piglets after oral infection with virulent rotavirus

    Get PDF
    Germ-free piglets were orally infected with virulent rotavirus to collect jejunal mucosal scrapings at 12 and 18 hours post infection (two piglets per time point). IFN-gamma mRNA expression was stimulated in the mucosa of all four infected piglets, indicating that they all responded to the rotavirus infection. RNA pools prepared from two infected piglets were used to compare whole mucosal gene expression at 12 and 18 hpi to expression in uninfected germ-free piglets (n = 3) using a porcine intestinal cDNA microarray. Microarray analysis identified 13 down-regulated and 17 up-regulated genes. Northern blot analysis of a selected group of genes confirmed the data of the microarray. Genes were functionally clustered in interferon-regulated genes, proliferation/differentiation genes, apoptosis genes, cytoskeleton genes, signal transduction genes, and enterocyte digestive, absorptive, and transport genes. Down-regulation of the transport gene cluster reflected in part the loss of rotavirus-infected enterocytes from the villous tips. Data mining suggested that several genes were regulated in lower- or mid-villus immature enterocytes and goblet cells, probably to support repair of the damaged epithelial cell layer at the villous tips. Furthermore, up-regulation was observed for IFN-γ induced guanylate binding protein 2, a protein that effectively inhibited VSV and EMCV replication in vitro (Arch Virol 150:1213–1220, 2005). This protein may play a role in the small intestine’s innate defense against enteric viruses like rotavirus

    African tropical rainforest net carbon dioxide fluxes in the twentieth century

    Get PDF
    The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (−0.02 kg C m−2 yr−1 or −0.04 Pg C yr−1, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m−2 yr−1), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m−2 yr−1). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century

    Targeting IL-1β and IL-17A driven inflammation during influenza-induced exacerbations of chronic lung inflammation.

    Get PDF
    For patients with chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), exacerbations are life-threatening events causing acute respiratory distress that can even lead to hospitalization and death. Although a great deal of effort has been put into research of exacerbations and potential treatment options, the exact underlying mechanisms are yet to be deciphered and no therapy that effectively targets the excessive inflammation is available. In this study, we report that interleukin-1β (IL-1β) and interleukin-17A (IL-17A) are key mediators of neutrophilic inflammation in influenza-induced exacerbations of chronic lung inflammation. Using a mouse model of disease, our data shows a role for IL-1β in mediating lung dysfunction, and in driving neutrophilic inflammation during the whole phase of viral infection. We further report a role for IL-17A as a mediator of IL-1β induced neutrophilia at early time points during influenza-induced exacerbations. Blocking of IL-17A or IL-1 resulted in a significant abrogation of neutrophil recruitment to the airways in the initial phase of infection or at the peak of viral replication, respectively. Therefore, IL-17A and IL-1β are potential targets for therapeutic treatment of viral exacerbations of chronic lung inflammation

    Viruses exacerbating chronic pulmonary disease: the role of immune modulation

    Get PDF
    Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications

    Risk of chronic kidney disease after cancer nephrectomy.

    Get PDF
    The incidence of early stage renal cell carcinoma (RCC) is increasing and observational studies have shown equivalent oncological outcomes of partial versus radical nephrectomy for stage I tumours. Population studies suggest that compared with radical nephrectomy, partial nephrectomy is associated with decreased mortality and a lower rate of postoperative decline in kidney function. However, rates of chronic kidney disease (CKD) in patients who have undergone nephrectomy might be higher than in the general population. The risks of new-onset or accelerated CKD and worsened survival after nephrectomy might be linked, as kidney insufficiency is a risk factor for cardiovascular disease and mortality. Nephron-sparing approaches have, therefore, been proposed as the standard of care for patients with type 1a tumours and as a viable option for those with type 1b tumours. However, prospective data on the incidence of de novo and accelerated CKD after cancer nephrectomy is lacking, and the only randomized trial to date was closed prematurely. Intrinsic abnormalities in non-neoplastic kidney parenchyma and comorbid conditions (including diabetes mellitus and hypertension) might increase the risks of CKD and RCC. More research is needed to better understand the risk of CKD post-nephrectomy, to develop and validate predictive scores for risk-stratification, and to optimize patient management
    corecore