79 research outputs found

    A SVM and k-NN Restricted Stacking to Improve Land Use and Land Cover Classification

    Get PDF
    Land use and land cover (LULC) maps are remote sensing products that are used to classify areas into different landscapes. The newest techniques have been applied to improve the final LULC classification and most of them are based on SVM classifiers. In this paper, a new method based on a multiple classifiers ensemble to improve LULC map accuracy is shown. The method builds a statistical raster from LIDAR and image fusion data following a pixel-oriented strategy. Then, the pixels from a training area are used to build a SVM and k-NN restricted stacking taking into account the special characteristics of spatial data. A comparison between a SVM and the restricted stacking is carried out. The results of the tests show that our approach improves the results in the context of the real data from a riparian area of Huelva (Spain)

    Magnetic heat conductivity in CaCu2O3\rm\bf CaCu_2O_3: linear temperature dependence

    Full text link
    We present experimental results for the thermal conductivity κ\kappa of the pseudo 2-leg ladder material CaCu2O3\rm CaCu_2O_3. The strong buckling of the ladder rungs renders this material a good approximation to a S=1/2S=1/2 Heisenberg-chain. Despite a strong suppression of the thermal conductivity of this material in all crystal directions due to inherent disorder, we find a dominant magnetic contribution κmag\kappa_\mathrm{mag} along the chain direction. κmag\kappa_\mathrm{mag} is \textit{linear} in temperature, resembling the low-temperature limit of the thermal Drude weight DthD_\mathrm{th} of the S=1/2S=1/2 Heisenberg chain. The comparison of κmag\kappa_\mathrm{mag} and DthD_\mathrm{th} yields a magnetic mean free path of lmag22±5l_\mathrm{mag}\approx 22 \pm 5 \AA, in good agreement with magnetic measurements.Comment: appears in PR

    Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    Get PDF
    We report a detailed single crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the 111 M reflection due to ferrimagnetic ordering, which sets in below TN 48.6 and 41 K for Co2TiO4 and Co2SnO4, respectively. An additional low intensity magnetic reflection 200 M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single crystal neutron data of Co2TiO4, we noticed a significant broadening of the magnetic 111 M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4. On the other hand, from our single crystal neutron diffraction data of Co2TiO4, we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 and Co3 , the 2tg levels split into a lower dxy level yielding a higher twofold degenerate dxz dyz level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c a lt; 1, which we could not significantly detect in the present wor

    Can I trust my one-class classification?

    Get PDF
    Contrary to binary and multi-class classifiers, the purpose of a one-class classifier for remote sensing applications is to map only one specific land use/land cover class of interest. Training these classifiers exclusively requires reference data for the class of interest, while training data for other classes is not required. Thus, the acquisition of reference data can be significantly reduced. However, one-class classification is fraught with uncertainty and full automatization is difficult, due to the limited reference information that is available for classifier training. Thus, a user-oriented one-class classification strategy is proposed, which is based among others on the visualization and interpretation of the one-class classifier outcomes during the data processing. Careful interpretation of the diagnostic plots fosters the understanding of the classification outcome, e.g., the class separability and suitability of a particular threshold. In the absence of complete and representative validation data, which is the fact in the context of a real one-class classification application, such information is valuable for evaluation and improving the classification. The potential of the proposed strategy is demonstrated by classifying different crop types with hyperspectral data from Hyperion

    Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions

    No full text
    Land use and land cover maps can support our understanding of coupled human-environment systems and provide important information for environmental modeling and water resource management. Satellite data are a valuable source for land use and land cover mapping. However, cloud-free or weather independent data are necessary to map cloud-prone regions. This particularly applies to monsoon regions such as the Chennai basin, located in the north of Tamil Nadu and the south of Andhra Pradesh, India, which is influenced by the South Asian Monsoon and has abundant cloud cover, throughout the monsoon season. The Basin is characterized by small-scale agriculture with multiple cropping seasons and the rapidly developing metropolitan area of Chennai. This study aims to generate a land use and land cover map of the Chennai Basin for the cropping season of Rabi 2015/16 and to assess the influence of combining the new ESA Copernicus satellites Sentinel-1 and -2 on classification accuracies. A Random Forest based wrapper approach was applied to select the most relevant radar (Sentinel-1) images for the combination with the optical (Sentinel-2) data. Area proportion weighted accuracy with 95% confidence interval were estimated for the Random Forest models, which differentiated 13 land cover classes. The highest overall accuracy of 91.53% ± 0.89 pp was achieved with a combination of 1 Sentinel-2 and 8 Sentinel-1 scenes. This is an improvement of 5.68 pp over a classification with Sentinel-2 data only. An addition of further Sentinel-1 scenes showed no improvement in overall accuracy. The strongest improvement in class-specific accuracy was achieved for paddy fields. This study shows for the first time how land use and land cover classifications in cloud-prone monsoon regions with small-scale agriculture and multiple cropping patterns can be improved by combining Sentinel-1 and Sentinel-2 data
    corecore