2,535 research outputs found

    Entanglement and Spontaneous Symmetry Breaking in Quantum Spin Models

    Full text link
    It is shown that spontaneous symmetry breaking does not modify the ground-state entanglement of two spins, as defined by the concurrence, in the XXZ- and the transverse field Ising-chain. Correlation function inequalities, valid in any dimensions for these models, are presented outlining the regimes where entanglement is unaffected by spontaneous symmetry breaking

    Domain Wall Resistance in Perpendicular (Ga,Mn)As: dependence on pinning

    Full text link
    We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.Comment: 9 pages, 3 figure

    A Framework to Synergize Partial Order Reduction with State Interpolation

    Full text link
    We address the problem of reasoning about interleavings in safety verification of concurrent programs. In the literature, there are two prominent techniques for pruning the search space. First, there are well-investigated trace-based methods, collectively known as "Partial Order Reduction (POR)", which operate by weakening the concept of a trace by abstracting the total order of its transitions into a partial order. Second, there is state-based interpolation where a collection of formulas can be generalized by taking into account the property to be verified. Our main contribution is a framework that synergistically combines POR with state interpolation so that the sum is more than its parts

    Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain

    Get PDF
    The perpendicular magnetic anisotropy Keff, magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85–1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. Keff, measured by the extraordinary Hall effect, is reduced by 10 kJ/m3 by tensile strain out-of-plane ez5931024, independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2–4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity

    Spin-Peierls transition in an anisotropic two-dimensional XY model

    Full text link
    The two-dimensional Jordan-Wigner transformation is used to investigate the zero temperature spin-Peierls transition for an anisotropic two-dimensional XY model in adiabatic limit. The phase diagram between the dimerized (D) state and uniform (U) state is shown in the parameter space of dimensionless interchain coupling hh (=J/J)(=J_{\perp}/J) and spin-lattice coupling η\eta. It is found that the spin-lattice coupling η\eta must exceed some critical value ηc\eta_c in order to reach the D phase for any finite hh. The dependence of ηc\eta_c on hh is given by 1/lnh-1/\ln h for h0h\to 0 and the transition between U and D phase is of first-order for at least h>103h>10^{-3}.Comment: 2 eps figures, considerable revisions were mad

    Liquid-gas phase transition and Coulomb instability of asymmetric nuclear systems

    Get PDF
    We use a chiral SU(3) quark mean field model to study the properties of nuclear systems at finite temperature. The liquid-gas phase transition of symmetric and asymmetric nuclear matter is discussed. For two formulations of the model the critical temperature, TcT_c, for symmetric nuclear matter is found to be 15.8 MeV and 17.9 MeV. These values are consistent with those derived from recent experiments. The limiting temperatures for finite nuclei are in good agreement with the experimental points.Comment: 14 pages, 6 figure

    Liquid-gas phase transition and Coulomb instability of asymmetric nuclear systems

    Get PDF
    We use a chiral SU(3) quark mean field model to study the properties of nuclear systems at finite temperature. The liquid-gas phase transition of symmetric and asymmetric nuclear matter is discussed. For two formulations of the model the critical temperature, TcT_c, for symmetric nuclear matter is found to be 15.8 MeV and 17.9 MeV. These values are consistent with those derived from recent experiments. The limiting temperatures for finite nuclei are in good agreement with the experimental points.Comment: 14 pages, 6 figure

    New treatment of the chiral SU(3) quark mean field model

    Get PDF
    We perform a study of infinite hadronic matter, finite nuclei and hypernuclei with an improved method of calculating the effective baryon mass. A detailed study of the predictions of the model is made in comparison with the available data and the level of agreement is generally very good. Comparison with an earlier treatment shows relatively minor differences at or below normal nuclear matter density, while at high density the improved calculation is quite different. In particular, we find no phase transition corresponding to chiral symmetry restoration in high density nuclear matter.Comment: 19 pages, 11 figure

    Challenges for Optimization of Reverse Shoulder Arthroplasty Part I: External Rotation, Extension and Internal Rotation.

    Get PDF
    A detailed overview of the basic science and clinical literature reporting on the challenges for the optimization of reverse shoulder arthroplasty (RSA) is presented in two review articles. Part I looks at (I) external rotation and extension, (II) internal rotation and the analysis and discussion of the interplay of different factors influencing these challenges. In part II, we focus on (III) the conservation of sufficient subacromial and coracohumeral space, (IV) scapular posture and (V) moment arms and muscle tensioning. There is a need to define the criteria and algorithms for planning and execution of optimized, balanced RSA to improve the range of motion, function and longevity whilst minimizing complications. For an optimized RSA with the highest function, it is important not to overlook any of these challenges. This summary may be used as an aide memoire for RSA planning

    Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking

    Get PDF
    Background & Aims Positive-sense RNA viruses remodel intracellular membranes to generate specialized membrane compartments for viral replication. Several RNA viruses, including poliovirus and hepatitis C virus (HCV), require phosphatidylinositol (PI) 4-kinases for their replication. However, it is not known how PI 4-kinases and their product, PI(4)P, facilitate host membrane reorganization and viral replication. In addition, although the HCV replication compartment, known as the membranous web, is believed to be cholesterol enriched, the mechanisms by which this occurs have not been elucidated. We aimed to identify and characterize a PI 4-kinase effector in HCV replication. Methods We used a combination of microscopic and biochemical methods to study HCV replication, web morphology, the distribution of intracellular protein and PI(4)P, along with cholesterol trafficking in HCV-infected cells. PI 4-kinase and oxysterol-binding protein (OSBP) were inhibited using RNA interference or small molecules in cells expressing a full-length genotype 1b replicon or infected with the JFH-1 strain of HCV. Results OSBP was required for HCV replication and membranous web integrity. OSBP was recruited to membranous webs in a PI 4-kinase-dependent manner, and both these factors were found to regulate cholesterol trafficking to the web. We also found OSBP to be required for poliovirus infection but dispensable for dengue virus. Conclusions OSBP is a PI 4-kinase effector in HCV infection, and contributes to the integrity and cholesterol enrichment of the membranous web. OSBP might also be a PI 4-kinase effector in poliovirus infection and could be involved in replication of other viruses that require PI 4-kinases
    corecore