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Abstract

BACKGROUND & AIMS—Positive-sense RNA viruses remodel intracellular membranes to

generate specialized membrane compartments for viral replication. Several RNA viruses,

including poliovirus and hepatitis C virus (HCV), require phosphatidylinositol (PI) 4-kinases for

their replication. However, it is not known how PI 4-kinases and their product, PI(4)P, facilitate

host membrane reorganization and viral replication. Furthermore, although the HCV replication

compartment, known as the membranous web, is believed to be cholesterol-enriched, the

mechanisms by which this occurs have not been elucidated. We aimed to identify and characterize

a PI 4-kinase effector in HCV replication.

METHODS—We used a combination of microscopic and biochemical methods to study HCV

replication, web morphology, the distribution of intracellular protein and PI(4)P, along with
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cholesterol trafficking in HCV-infected cells. PI 4-kinase and oxysterol-binding protein (OSBP)

were inhibited using RNA interference or small molecules in cells expressing a full-length

genotype 1b replicon or infected with the JFH-1 strain of HCV.

RESULTS—OSBP was required for HCV replication and membranous web integrity. OSBP was

recruited to membranous webs in a PI 4-kinase-dependent manner, and both these factors were

found to regulate cholesterol trafficking to the web. We also found OSBP to be required for

poliovirus infection but dispensable for dengue virus.

CONCLUSIONS—OSBP is a PI 4-kinase effector in HCV infection, and contributes to the

integrity and cholesterol enrichment of the membranous web. OSBP might also be a PI 4-kinase

effector in poliovirus infection and could be involved in replication of other viruses that require PI

4-kinases.
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INTRODUCTION

Positive-sense single-stranded RNA viruses remodel intracellular membranes to generate

specialized membrane compartments for viral replication1, which might facilitate genome

replication and packaging by restricting diffusion, and may shield viral components from

host innate immunity. Hepatitis C virus (HCV) is a positive-sense RNA virus in the family

Flaviviridae. While its genome is initially translated at the host endoplasmic reticulum, RNA

replication occurs in association with virus-induced intracellular membranes termed the

“membranous web”2,3. Although the HCV membranous web is thought to be enriched in

cholesterol4–6, the molecular mechanisms by which this occurs are unknown.

The host phosphatidylinositol 4-kinase PI4KA and its product phosphatidylinositol 4-

phosphate (PI(4)P) are essential for HCV replication7–13 and membranous web

integrity8,9,14–16. Although the related PI 4-kinase PI4KB is essential for the replication of

several other positive-sense RNA viruses17,18, evidence for its importance in HCV infection

is mixed10,11,15. PI4KA requires lipid kinase activity to support HCV replication, suggesting

that PI(4)P is also essential for HCV replication9,15. PI4KA is recruited to the HCV

membranous web by a direct interaction with NS5A, and HCV infection is associated with

increased intracellular PI(4)P levels and enrichment of PI(4)P at the membranous web.

A crucial and as yet unanswered question is how PI 4-kinases and PI(4)P facilitate RNA

virus replication and HCV web integrity. One possibility is that PI(4)P recruits

phosphoinositide-binding proteins to viral replication compartments. In particular,

oxysterol-binding protein (OSBP) is a plausible candidate PI4KA effector in the HCV life

cycle for several reasons. First, OSBP interacts with HCV NS5A, and its silencing inhibits

both infectious particle secretion and replication19,20. Second, OSBP binds to PI(4)P via a

pleckstrin homology (PH) domain at its N-terminus21. Third, OSBP encodes a sterol-

binding domain22 and can mediate PI(4)P-dependent cholesterol transfer between liposomes

in vitro23. However, there has been controversy regarding the role of OSBP-related proteins
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(ORPs) in sterol trafficking in yeast24,25, and there has been little direct evidence that OSBP

or ORPs regulate sterol trafficking in mammalian cells.

Herein, we focus on the role of OSBP as a possible effector of PI4KA and PI(4)P in

supporting HCV replication. OSBP is essential not only for the replication of HCV, but also

for the integrity of the HCV membranous web. OSBP is recruited to the membranous web in

HCV-infected cells in a PI(4)P-dependent manner. In addition, we find that OSBP and

PI4KA regulate the transport of cholesterol to the membranous web. Finally, the dependence

of poliovirus and dengue virus replication on OSBP correlates with their PI 4-kinase

dependence, suggesting that OSBP may be a PI 4-kinase effector for multiple RNA viruses.

This study sheds light on how viruses modulate host lipid membrane compositions to their

own benefit by exploiting host phosphoinositide signaling pathways.

Results

OSBP is relevant to HCV replication

To test the role of OSBP in HCV replication, OR6 cells containing a full-length genotype 1b

HCV replicon expressing a Renilla luciferase reporter gene26 were transduced with five

independent shRNA lentiviral vectors targeting OSBP. The magnitude of HCV replication

inhibition correlated with the degree of OSBP silencing (Supplementary Figure 1A). Two

shRNAs that efficiently silenced OSBP significantly inhibited HCV replication and reduced

HCV NS5A protein levels without detectable cytotoxicity in OR6 cells (Figure 1A) as well

as in the genotype 2a JFH-1 infectious HCV system (Figure 1B), indicating that the

dependency of HCV on OSBP is not genotype-specific.

Using an orthogonal pharmacologic approach, we found that the compound OSW-1, which

inhibits OSBP by binding as well as through proteasomal degradation27, inhibited OR6

replication and JFH-1 infection in a dose-dependent manner (IC50 1.37 ± 0.07 nM) with

cytotoxicity only at the highest tested doses (Figure 1C and Supplementary Figure 1B).

To further exclude the possibility that OSBP shRNAs inhibit HCV replication by off-target

effects and to assess the domains of OSBP necessary for HCV replication, we conducted a

rescue assay. OR6 cells stably expressing an shRNA targeting the 3′UTR of the endogenous

OSBP mRNA were transduced with lentiviral vectors encoding OSBP or OSBP mutant

constructs lacking the OSBP 3′UTR. We generated three OSBP mutants: deletion of the

PI(4)P-binding PH domain (ΔPH), a F359A/F360A substitution in the FFAT (two

phenylalanines in an acidic tract) motif that interacts with ER proteins called Vesicle-

Associated Membrane Protein-Associated Proteins (VAPs), and deletion of the steroid-

binding domain (ΔSBD). The inhibition of HCV by knockdown of endogenous OSBP could

be rescued by expression of wild-type OSBP but not by the mutant constructs (Figure 1D),

indicating that the PH domain, FFAT motif, and SBD are all required for OSBP function.

OSBP localizes to NS5A-positive structures in HCV-infected cells

Since OSBP is essential for HCV replication, we hypothesized that OSBP might associate

with HCV membranous webs. In HCV-infected cells, most of the endogenous OSBP was in

a paranuclear distribution consistent with Golgi localization. However, we also observed
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colocalization of viral NS5A with some endogenous OSBP (Figure 2A, Manders’

coefficient M1=0.60 (fraction of NS5A overlapping OSBP); see also Supplementary Figure

2A), suggesting that some OSBP localizes to the membranous web. We used Manders’

coefficients here because they more accurately quantitate partial overlap between two

channels. OSBP-ΔPH, however, no longer appeared to localize to Golgi or NS5A-positive

membranes (Supplementary Figure 2B). In contrast, the OSBP F359A/F360A and OSBP

ΔSBD mutants still showed partial colocalization with NS5A (Supplementary Figure 2B),

suggesting that OSBP localization to NS5A-positive membranes requires the PH domain but

not the FFAT motif or the SBD.

Membrane-associated HCV replicase components are resistant to extraction with cold

NP-40 detergent and exhibit low buoyant densities on density gradient centrifugation4,5,

which are properties of cholesterol-enriched “lipid raft” microdomains. As expected, NS5A

cofractionated with the DRM marker flotilin-1 (Figure 2B). HCV infection was associated

with an increase in DRM-associated OSBP, consistent with our hypothesis that OSBP

associates with membranous webs in HCV-infected cells.

The membranous structure of the HCV replication complex can protect viral and cellular

components from exogenous proteases and nucleases in vitro1,4. We found that a fraction of

NS5A was resistant to proteinase K digestion in the absence of detergent, while NS5A was

completely digested after detergent treatment (Figure 2C). Consistent with our model, HCV

infection was associated with increased amounts of protease-resistant OSBP in the absence

of detergent (Figure 2C).

OSBP is required for membranous web integrity

Silencing or pharmacologic inhibition of PI4KA induces the accumulation of membrane

“clusters” containing HCV NS5A and other viral replication components8,9,14–16, indicating

that PI4KA and its product PI(4)P are required for membranous web integrity. Either PI4KA

or OSBP silencing induced the formation of NS5A-positive membrane clusters in HCV-

infected cells (Figure 3A). Although the efficiency of HCV infection was markedly reduced

by PI4KA or OSBP silencing, a low percentage of stably silenced cells could be infected

with HCV, likely reflecting heterogeneous knockdown. The pharmacologic OSBP inhibitor

OSW-1 also induced membrane cluster formation in JFH-1 infected cells (Figure 3B). To

exclude the possibility that this effect was dependent on inhibition of HCV RNA replication,

we expressed the NS3-5B polyprotein in Huh7.5.1 cells using T7 RNA polymerase that

renders viral protein expression independent of viral replication15, and found similar

membrane clusters in OSBP-silenced cells (Supplementary Figure 3A).

Next, we examined the ultrastructure of the altered membranous webs induced by OSBP and

PI4KA inhibition using electron microscopy. In mock treated cells, JFH-1 infection induced

the formation of double membrane vesicles (DMVs) of somewhat heterogeneous size (mean

diameter 166 ± 49 nm) and morphology, as well as multi-membrane vesicles (MMVs)

(Figure 3C, upper panels), consistent with previous reports28. These DMVs and MMVs

were typically found in the vicinity of lipid droplets (LDs) and were not seen in uninfected

cells (Supplementary Figure 3B). In contrast, DMVs were smaller and more homogeneous

in size (average diameter 76 ± 16 nm) in HCV-infected cells treated with the PI4KA
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inhibitor AL-914. These small DMVs were often aggregated in clusters (Figure 3C and

Supplementary Figure 3B) but were also occasionally dispersed (Supplementary Figure 3B).

These clusters of small DMVs seen by TEM likely correspond to the NS5A-positive clusters

seen by immunofluorescence (Supplementary Figure 3C and 9). Similarly, OSW-1 treatment

was associated with clusters of small, homogenous DMVs with diameters (86±17nm)

(Figure 3C, lower panels) similar to those of AL-9 treated cells, as well as individual small

DMVs adjacent to LDs (Supplementary Figure 3B). In contrast, the NS5B polymerase

inhibitor 2′CMeA did not reduce mean DMV diameter or induce DMV clustering

(Supplementary Figure 3B), indicating that the observed effect of PI4KA/OSBP inhibition

was not a nonspecific result of inhibiting HCV replication.

Collectively, these results indicate that OSBP, like PI4KA, is required for HCV

membranous web integrity. The similar phenotypes of the membrane alterations induced by

OSBP or PI4KA inhibition support the hypothesis that these two host factors function along

the same pathway.

HCV induced PI(4)P increase does not require OSBP and is not sufficient for membranous
web integrity

Intracellular PI(4)P levels are increased by HCV infection both in vitro and in vivo in a

PI4KA-dependent manner9,14,16. We assessed the relative effects of PI4KA or OSBP

silencing on PI(4)P levels in HCV-expressing cells. To avoid confounding effects of PI4KA

and OSBP silencing on HCV replication, this experiment was conducted with Huh7/T7 cells

expressing the NS3-5B/GFP polyprotein described above. PI(4)P was elevated in NS3-

NS5B/GFP expressing cells transduced with a nontargeting shRNA by approximately 3.5-

fold (Figure 4B) as compared to HCV-nonexpressing cells (Figure 4A). As expected, PI4KA

silencing blocked the upregulation of intracellular PI(4)P levels by HCV polyprotein

expression and was also associated with the appearance of NS5A-positive membrane

clusters. In contrast, OSBP silencing did not block the upregulation of intracellular PI(4)P

levels in HCV-expressing cells despite the formation of membrane clusters (Figures 4A and

B), consistent with OSBP functioning downstream of PI4KA and PI(4)P.

HCV expression is associated not only with increased total levels of intracellular PI(4)P but

also with PI(4)P enrichment at the membranous web15–17. In HCV-infected control cells

expressing a nontargeting shRNA, there was substantial NS5A-PI(4)P colocalization (Figure

4C, Pearson’s correlation Pr=0.75). As expected, in PI4KA-silenced cells, we observed less

total intracellular PI(4)P and little colocalization between PI(4)P and NS5A at membrane

clusters (Pr=0.42). In contrast, in OSBP-silenced cells, there was prominent PI(4)P staining

at membrane clusters (Figure 4C; Pr=0.78 and 0.75 for shOSBP-A and shOSBP-B,

respectively).

We conclude from these results that although OSBP is required for membranous web

integrity, PI4KA-mediated PI(4)P accumulation does not require OSBP, and that PI(4)P

upregulation is not sufficient for normal membranous web morphology. These results

suggest that OSBP functions downstream of PI4KA and PI(4)P in membranous web

formation.
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OSBP localization to NS5A-positive structures requires PI4KA activity

Targeting of OSBP to membranes requires its PI(4)P-binding PH domain (21 and

Supplementary Figure 2B). We asked whether OSBP association with NS5A-positive

structures requires PI4KA and PI(4)P. OSBP-NS5A colocalization could be observed in

NS3-NS5B/GFP expressing Huh7/T7 cells transduced with a nontargeting shRNA (Figure

5A), as we had observed in HCV-infected cells (Figure 2A). However, PI4KA silencing

(Figure 5A) or pharmacologic inhibition (Figure 5B) led to the loss of OSBP colocalization

with membrane clusters, indicating that PI4KA and its lipid kinase activity are required for

OSBP recruitment to the membranous web.

PI4KA and OSBP are required for cholesterol trafficking to NS5A-positive, detergent-
resistant membranes

The HCV membranous web is cholesterol-enriched4–6, and cholesterol biosynthesis

inhibitors hamper HCV replication4. To test directly whether cholesterol is required for

HCV replication, OR6 replicon cells were treated with methyl-β-cyclodextrin (MβCD),

which binds to and depletes cholesterol from membranes. MβCD caused a dose-dependent

decrease in replication (Figure 6A, left panel) with little cytotoxicity (Supplementary Figure

4A). This decrease was partially reversed if MβCD was presaturated with cholesterol

(MβCD/CH; Figure 6A, left panel), indicating that MβCD inhibits HCV replication

primarily by cholesterol removal rather than by nonspecific effects. Immunoblotting also

demonstrated a dose-dependent reduction of NS5A expression by MβCD treatment that was

partially reversed by cholesterol presaturation (Figure 6A, right panel). MβCD and MβCD-

cholesterol complexes had the expected effects on cellular cholesterol content (Figure 6A,

middle panel).

OSBP binds to cholesterol in vitro22 and can catalyze the PI(4)P-dependent transfer of

cholesterol between synthetic liposomes23. To test whether cholesterol is transported to

NS5A-positive HCV membranous webs and if so, whether this process requires OSBP, we

labeled JFH-1 infected Huh7.5.1 cells with TopFluor-cholesterol (TF-cholesterol), a

fluorescent cholesterol analog that closely mimics the membrane partitioning and trafficking

of native cholesterol29. TF-cholesterol colocalized extensively with NS5A in nontargeting

shRNA-expressing cells (Figure 6B), suggesting that TF-cholesterol is transported to the

membranous web. In contrast, there was little colocalization between TF-cholesterol and

NS5A in cells silenced for either PI4KA or OSBP, indicating that cholesterol trafficking to

NS5A-positive structures requires both PI4KA and OSBP.

To exclude possible artifacts from cell fixation, we also examined TF-cholesterol transport

to membranous webs in living cells harboring a subgenomic HCV replicon with mCherry-

tagged NS5A. In control cells, TF-cholesterol colocalized extensively with NS5A-positive

membranes (Figure 6C, D). In contrast, treatment with the PI4K inhibitor AL-9 (Figure 6C)

and the OSBP inhibitor OSW-1 (Figure 6D) inhibited transport of cholesterol to NS5A-

positive membrane clusters.

The requirement of PI4KA and OSBP for cholesterol transport to the membranous web was

further tested by a biochemical assay. HCV-infected cells labeled with TF-cholesterol were
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treated with AL-9 or OSW-1 to inhibit PI4KA or OSBP, respectively, and we quantitated

the amount of incorporated TF-cholesterol fluorescence in isolated DRM fractions and in

detergent-soluble membranes. In HCV-infected control cells, an increased proportion of TF-

cholesterol was detected in DRM fractions compared to uninfected cells (Figure 6E, upper

panel), while AL-9 or OSW-1 treatment reduced the proportion of TF-cholesterol found in

DRMs (Figure 6E, lower panel). Brief AL-9 or OSW-1 treatment did not lower the total

amount of NS5A protein (Figure 6E, lower panel inset), and silencing of PI4KA or OSBP

did not significantly block TF-cholesterol cellular uptake (Supplementary Figure 4B). These

results collectively suggest a specific requirement of PI4KA and OSBP for cholesterol

trafficking to DRMs in HCV-infected cells.

OSBP and its yeast homolog, Osh4p, can exchange sterols for PI(4)P between lipid

bilayers30,31. Although Osh4p lacks a PH domain, it interacts with PI(4)P at a binding site

that overlaps with the sterol-binding domain (SBD)30. Several residues at the entrance of the

SBD (including H143/H144 and K336 in Osh4p) form essential contacts with PI(4)P but are

dispensable for sterol binding and transfer activity30, and we mapped the corresponding

residues in OSBP to H522/H523 and K736 (Supplementary Figure 4C). To test whether

these PI(4)P-interacting residues at the OSBP SBD are essential for its ability to support

HCV replication, we conducted a rescue assay. HCV inhibition caused by shRNA targeting

the OSBP 3′UTR could be rescued by exogenous expression of wild type OSBP but not by

the OSBP mutants H522A/H523A or K736A (Figure 6F). Immunostaining showed that

these two OSBP mutants colocalize with NS5A, but fail to transport TF-cholesterol to

NS5A-positive structures (Supplementary Figure 4D and 4E), consistent with our previous

finding that the SBD is not required for OSBP colocalization with NS5A.

The dependence of RNA viruses on OSBP correlates with their dependence on PI 4-
kinases

Like HCV, Dengue virus (DENV) is also a flavivirus, but its replication does not require

PI4KA32. Silencing of PI4KA, PI4KB, or OSBP failed to substantially inhibit replication of

a DENV replicon (Figure 7A). Consistent with these results, the PI4KA inhibitor AL-9 and

the OSBP inhibitor OSW-1 had only minor effects on DENV replication (Figure 7B) at

concentrations that strongly inhibit HCV replication (Figure 1C and Supplementary Figure

5). These results suggest that DENV replication is not dependent on PI4KA, PI4KB, or

OSBP.

Conversely, poliovirus (PV) is a positive-sense RNA virus that exploits the PI 4-kinase

PI4KB for its replication17. Three independent OSBP shRNAs inhibited PV infection in

HeLa cells (Figure 7C). We conclude that the dependence of three RNA viruses on OSBP

correlates with their dependence on PI 4-kinases, supporting a link between PI 4-kinases and

OSBP in RNA virus infection.

DISCUSSION

Although PI 4-kinases and PI(4)P have been implicated in positive sense RNA virus-

induced remodeling of intracellular membranes8,9,14,16,17, their effectors in this process have

not been defined. In this study, we identify OSBP as a PI4KA effector in the formation of
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the HCV membranous web. While HCV exploits PI4KA for its replication, several

picornaviruses instead depend on the related PI 4-kinase PI4KB17,18,33. The utilization of

two different PI 4-kinases by RNA viruses suggests a common requirement for PI(4)P, and

possibly also for common cellular PI(4)P effectors. Consistent with this hypothesis, we find

that OSBP appears to be a cofactor for poliovirus replication, even though PV exploits

PI4KB rather than PI4KA. Conversely, DENV does not require PI4KA, PI4KB, or OSBP

for its replication. If these findings are extended to other RNA viruses, then inhibition of PI

4-kinase effectors may be a potential broadly antiviral strategy.

Non-vesicular intracellular cholesterol trafficking in mammalian cells has been proposed to

be regulated by lipid transfer proteins such as OSBP. However, there has been little

evidence that OSBP can regulate cholesterol trafficking in mammalian cells. Here we find

that cholesterol trafficking to the HCV membranous web is regulated by OSBP and that it

functions downstream of PI4KA. We propose that recruitment of PI4KA to the membranous

web and its activation by HCV NS5A9 leads to the local accumulation of PI(4)P. OSBP

recruitment to the web by PI(4)P and possibly also by VAPs, which are also enriched at

webs and interact with HCV NS5A34,35, then stimulates the delivery of cholesterol to the

web, possibly by exchanging cholesterol with PI(4)P30,31. This is consistent with the

requirement of the PH domain, the FFAT domain, the sterol-binding domain, and PI(4)P-

interacting residues within the SBD for OSBP to support HCV replication. Although intact

membranous webs have not been isolated from HCV-infected cells at sufficient purity to

permit direct measurement of their lipid composition, a recent study has shown that affinity-

purified NS4B-enriched membranes from HCV-infected cells are cholesterol-enriched, and

also found that cholesterol depletion could inhibit HCV replication6.

In addition to cholesterol transport, OSBP regulates sphingomyelin synthesis at the Golgi by

stimulating the recruitment of ceramide transfer protein36. Lipid raft membranes are also

enriched in sphingomyelin and glycophingolipids, and inhibitors of sphingolipid synthesis

suppress HCV replication37. Our results do not exclude the possibility that PI4KA and

OSBP also regulate the accumulation of sphingolipids at the membranous web, although we

have not observed efficient trafficking of fluorescent sphingolipids to webs (not shown).

We do not know why HCV replication might be dependent on cholesterol and/or

sphingolipid enrichment at the membranous web. Possibilities include alteration of

membrane fluidity or curvature, recruitment of cellular or viral factors necessary for viral

replication, and direct stimulation of viral enzymatic activity by binding to sterols and/or

sphingolipids38. The development of systems to reconstitute HCV genome replication in

vitro from purified components would greatly facilitate our ability to discriminate among

these alternatives.

Materials and Methods

Additional methods are described in Supplementary Material.

WANG et al. Page 8

Gastroenterology. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Viruses and viral replicons

The genotype 2a HCV strain JFH-1 was produced and propagated as described in 39. A

subgenomic replicon expressing mCherry-tagged NS5A based on the JFH-1 genotype 2a

sequence, termed here as pSGR-JFH1(NS5A/mCherry) and a dengue virus replicon based

on the DENV-2 16681 strain with a Renilla luciferase reporter gene are described in

Supplemental information. Poliovirus (PV) used in this study is type 1 Mahoney.

Immunofluorescence staining

Immunofluorescent staining was performed as described in 15. PI(4)P staining of

intracellular membranes was performed exactly as described in 40. A Nikon A1 laser

scanning confocal microscope was used with sequential scanning mode to limit crosstalk

between fluorochromes. PI(4)P fluorescence intensity was quantified using ImageJ software

from multiple random fields obtained with identical acquisition settings.

Subcellular fractionation

Huh7.5.1 cells were infected with JFH-1 (MOI = 0.1) and cells were harvested at 5 days

postinfection. For AL-9 or OSW-1 treatment, Huh7.5.1 cells were infected 4 days prior to

drug treatment for 4 hr before harvesting. DRM isolation was performed as described

previously41, and described further in Supplementary Material.

TopFluor-cholesterol cell labeling

Huh7.5.1 cells stably transduced with nontargeting, PI4KA, or OSBP shRNA were infected

with JFH-1 (MOI = 0.1). 4 days later, TopFluor-Cholesterol (TF-cholesterol; Avanti Polar

Lipids, Alabaster, AL) was added to the culture medium to a final concentration of 2 μM for

2 hr before they were immunolabeled for NS5A. Drug treatment with OSW-1 or AL-9 was

performed before the addition of TF-Cholesterol. TF-cholesterol labeled replicon cells

underwent live-cell imaging, while HCV-infected cells underwent subcellular fractionation.

The fluorescence intensity of TF-cholesterol in the collected fractions was measured with a

Synergy2 plate reader equipped with 485±20 nm excitation and 520±25 nm emission filters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations used in this paper

DMV double-membrane vesicle

DRM detergent-resistant membrane

FFAT two phenylalanines in an acidic tract

HCV hepatitis C virus

MMV multi-membrane vesicle

ORP OSBP-related protein

OSBP oxysterol-binding protein

PH pleckstrin homology

PI phosphatidylinositol

PI(4)P phosphatidylinositol 4-phosphate

SBD sterol-binding domain

TF TopFluor

VAP vesicle-associated membrane protein-associated protein
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Figure 1. OSBP is relevant to HCV replication
(A) OR6 replicon cells were transduced with the indicated shRNAs. 72 hr later, replication

and cell viability were assessed by Renilla luciferase activity and cellular ATP content,

respectively (left panel). Right panel, immunoblotting of cell lysates. Values (means ± SEM,

three independent experiments) are normalized to a nontargeting shRNA. **, P<.001 versus

nontargeting control.

(B) Huh7.5.1 cells were transduced with the indicated shRNAs 72 hr before infection with

the JFH-1 strain of HCV (MOI = 0.1). HCV and OSBP mRNA were quantified by qRT-

PCR at 48 hr postinfection (left panel). Right panel, immunoblotting of cell lysates. Values
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(means ± SD, three independent experiments) are normalized to nontargeting shRNA. *, P<.

005 versus nontargeting control.

(C) OR6 cells were treated with OSW-1 for 24 hr prior to measurement of HCV replication

and cell viability (left panel). Right panel, immunoblotting of cell lysates. Values are means

± SEM, three independent experiments.

(D) OR6 cells stably expressing a nontargeting shRNA or an OSBP shRNA targeting the

3′UTR were transduced with lentiviral vectors encoding the indicated HA-tagged OSBP

constructs lacking the 3′UTR. Luciferase activity was measured 4 days later (left panel).

Right panel, immunoblotting of cell lysates. Values are mean ± SEM of three independent

experiments and are normalized to nontargeting control. **, P<.001 versus nontargeting

control.
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Figure 2. OSBP localizes to membranous webs
(A) Immunostaining of JFH-1 infected cells for NS5A (green) and endogenous OSBP (red)

with DAPI nuclear counterstaining (blue). Manders’ coefficients: M1=0.60 (fraction of

NS5A overlapping OSBP); M2=0.07 (fraction of OSBP overlapping NS5A). Bar, 10 μm.

(B) Uninfected or HCV-infected Huh7.5.1 cell homogenates (H) were centrifuged to prepare

a crude membrane pellet and a “water soluble” supernatant (WS). The pellet was treated

with cold 1% NP-40 and spun again; the “detergent soluble” (DS) fraction was removed and

detergent-resistant membranes were fractionated on a density gradient. Fractions (numbered

in order from light to heavy) were analyzed by immunoblotting for the indicated proteins.

(C) Immunoblots of homogenates from uninfected or HCV-infected Huh7.5.1 cells, treated

with or without cold 1% NP-40 followed by treatment with or without proteinase K (PK).
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Figure 3. OSBP or PI4KA inhibition alters membranous web morphology
(A) HCV-infected Huh7.5.1 cells stably transduced by nontargeting, PI4KA, or OSBP

shRNA were immunostained for HCV NS5A (green) with DAPI nuclear counterstaining

(blue).

(B) HCV-infected cells were treated with 0.1% DMSO or 30 nM OSW-1 for 24 hr before

NS5A immunostaining. Bar, 10 μm.

(C) HCV-infected cells were treated with 0.1% DMSO, 4 μM AL-9, or 20 nM OSW-1 for

18 hr before preparation for EM. Enlargements of the boxed areas are shown in the right

panels; values are DMV mean diameter ± SD. Arrowheads: double-membrane vesicles

(DMVs); Arrows: multi-membrane vesicles (MMVs); LD: lipid droplets; ER: endoplasmic

reticulum; mt: mitochondria; N, nucleus.
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Figure 4. OSBP inhibition alters web morphology without blocking HCV-induced PI(4)P
accumulation
(A) Nonreplicative expression of the NS3-5B(NS5A/GFP) polyprotein in Huh7.5.1/T7 cells

stably expressing T7 RNA polymerase and the indicated shRNAs. 48 hr post-transfection,

cells were immunostained for PI(4)P (red) and GFP (green) with DAPI nuclear

counterstaining (blue). Arrowheads indicate cells expressing the NS3-5B/GFP polyprotein.

Bar, 20 μm.

(B) Quantitation of PI(4)P fluorescence from HCV-expressing cells (open symbols) versus

HCV-nonexpressing cells (closed symbols). Each point denotes the integrated fluorescence

signal from a single cell with the mean fluorescence indicated by the black lines.

(C) Immunostaining of JFH-1 infected Huh7.5.1 cells stably expressing the indicated

shRNAs for PI(4)P (red) and GFP (green) with DAPI nuclear counterstaining (blue). Pr,

Pearson’s correlation coefficients; bar, 10 μm.
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Figure 5. OSBP localization to membranous web requires PI4KA activity
(A) The NS3-5B(NS5A/GFP) polyprotein was expressed in Huh7.5.1/T7 cells stably

expressing a nontargeting or a PI4KA shRNA. 48 hr post-transfection, cells were

immunostained for OSBP (red) and NS5A (green) with DAPI nuclear counterstaining

(blue). M1 and M2, Manders’ coefficients; M1 represents the fraction of NS5A overlapping

OSBP. Bar, 10 μm.

(B) The NS3-NS5B(NS5A/GFP) polyprotein was expressed in Huh7.5.1/T7 cells. 48 hr

later, cells were treated with 0.1% DMSO or 4 μM AL-9 for 24 hr, and then immunostained

for NS5A (green) and endogenous OSBP (red) with DAPI nuclear counterstaining (blue).

M1 and M2, Manders’ coefficients; M1 represents the fraction of NS5A overlapping OSBP.

Bar, 10 μm.
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Figure 6. Cholesterol depletion inhibits HCV replication, and cholesterol trafficking to
membranous webs requires PI4KA and OSBP
(A) OR6 cells were treated with the indicated concentrations of MβCD or MβCD-

cholesterol complexes for 4 hr, washed, and then incubated for 24 hr prior to measurement

of luciferase activity (left panel), cellular cholesterol content (middle panel), and

immunoblotting (right panel). Values (means ± SEM, three independent experiments) are

normalized to control. **, P<.001 versus control.

(B) HCV-infected Huh 7.5.1 cells stably expressing the indicated shRNAs were labeled with

2 μM TopFluor-cholesterol (green) for 2 hr followed by immunostaining for NS5A (red)

with DAPI nuclear counterstaining (blue). Pr, Pearson’s correlation coefficients; bar, 10 μm.
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(C, D) Live-cell imaging of cells stably expressing a subgenomic replicon with mCherry-

tagged NS5A (red) treated with 0.1% DMSO (left panels), 4 μM AL-9 (C, right panels), or

30 nM OSW-1 (D, right panels) for 8 hr before labeling with 2 μM TF-cholesterol (green)

for another 16 hr. Pr, Pearson’s correlation coefficients; bar, 10 μm.

(E) Upper panel: Uninfected (solid line) or HCV-infected (dotted line) cells were labeled

with 2 μM TF-cholesterol for 4 hr; Lower panel: JFH-1 infected cells were treated with

0.1% DMSO (red), 5 μM AL-9 (green), or 50 nM OSW-1 (blue) for 4 hr in the presence of 2

μM TF-cholesterol. Cell homogenates were then fractionated as in Figure 2B. Fluorescence

intensity of TF-cholesterol was measured from each fraction and represented as a percentage

of the total TF-cholesterol fluorescence in all fractions. Values are mean ± SEM, four

independent experiments. Inset, immunoblotting of total cell homogenates.

(F) OR6 cells stably expressing the indicated shRNAs were transduced with lentiviral

vectors encoding HA-OSBP constructs lacking the 3′UTR, followed 4 days later by

luciferase activity measurement (upper panel) and immunoblotting (lower panel). Values

(mean ± SEM, four independent experiments) are normalized to nontargeting control. **,

P<.001 versus nontargeting control.
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Figure 7. The dependence of RNA viruses on OSBP correlates with their dependence on PI 4-
kinases
(A) Huh7.5.1 cells containing a subgenomic DENV replicon expressing a Renilla luciferase

reporter were transduced with the indicated shRNAs for 72 hr prior to luciferase activity

measurement (left panel) and immunoblotting (right panel). Values (means ± SD, two

independent experiments) are normalized to control cells

(B) DENV replicon cells were treated with the indicated concentrations of OSW-1 (left

panel) or AL-9 (right panel) for 24 hr before luciferase activity measurement. Values are

means ± SD, two independent experiments.

(C) HeLa cells stably expressing a nontargeting shRNA or three independent OSBP shRNAs

were infected with poliovirus (MOI 0.1) 24 hr before measurement of viral titers (left panel),

and immunoblotting (right panel). *, P = .004 and **, P< .001 versus nontargeting shRNA.
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