775 research outputs found
VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants.
Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology
Clues from nearby galaxies to a better theory of cosmic evolution
The great advances in the network of cosmological tests show that the
relativistic Big Bang theory is a good description of our expanding universe.
But the properties of nearby galaxies that can be observed in greatest detail
suggest a still better theory would more rapidly gather matter into galaxies
and groups of galaxies. This happens in theoretical ideas now under discussion.Comment: published in Natur
Prospective functional classification of all possible missense variants in PPARG.
Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARÎł variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (1K08DK102877-01, to A.R.M.; 1R01DK097768-01, to D.A.), NIH/Harvard Catalyst (1KL2TR001100-01, to A.R.M.), the Broad Institute (SPARC award, to A.R.M. and T.M.), and the Wellcome Trust (095564, to K.C.; 107064, to D.B.S.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.370
The effect of cigarette smoking, alcohol consumption and fruit and vegetable consumption on IVF outcomes: A review and presentation of original data
Background - Lifestyle factors including cigarette smoking, alcohol consumption and nutritional habits impact on health, wellness, and the risk of chronic diseases. In the areas of in-vitro fertilization (IVF) and pregnancy, lifestyle factors influence oocyte production, fertilization rates, pregnancy and pregnancy loss, while chronic, low-grade oxidative stress may underlie poor outcomes for some IVF cases. Methods - Here, we review the current literature and present some original, previously unpublished data, obtained from couples attending the PIVET Medical Centre in Western Australia. Results - During the study, 80 % of females and 70 % of male partners completed a 1-week diary documenting their smoking, alcohol and fruit and vegetable intake. The subsequent clinical outcomes of their IVF treatment such as quantity of oocytes collected, fertilization rates, pregnancy and pregnancy loss were submitted to multiple regression analysis, in order to investigate the relationship between patients, treatment and the recorded lifestyle factors. Of significance, it was found that male smoking caused an increased risk of pregnancy loss (pâ=â0.029), while female smoking caused an adverse effect on ovarian reserve. Both alcohol consumption (ÎČâ=â0.074, pâ<â0.001) and fruit and vegetable consumption (ÎČâ=â0.034, pâ<â0.001) had positive effects on fertilization. Conclusion - Based on our results and the current literature, there is an important impact of lifestyle factors on IVF clinical outcomes. Currently, there are conflicting results regarding other lifestyle factors such as nutritional habits and alcohol consumption, but it is apparent that chronic oxidative stress induced by lifestyle factors and poor nutritional habits associate with a lower rate of IVF success
Complementation of diverse HIV-1 Env defects through cooperative subunit interactions: a general property of the functional trimer
<p>Abstract</p> <p>Background</p> <p>The HIV-1 Env glycoprotein mediates virus entry by catalyzing direct fusion between the virion membrane and the target cell plasma membrane. Env is composed of two subunits: gp120, which binds to CD4 and the coreceptor, and gp41, which is triggered upon coreceptor binding to promote the membrane fusion reaction. Env on the surface of infected cells is a trimer consisting of three gp120/gp41 homo-dimeric protomers. An emerging question concerns cooperative interactions between the protomers in the trimer, and possible implications for Env function.</p> <p>Results</p> <p>We extended studies on cooperative subunit interactions within the HIV-1 Env trimer, using analysis of functional complementation between coexpressed inactive variants harboring different functional deficiencies. In assays of Env-mediated cell fusion, complementation was observed between variants with a wide range of defects in both the gp120 and gp41 subunits. The former included gp120 subunits mutated in the CD4 binding site or incapable of coreceptor interaction due either to mismatched specificity or V3 loop mutation. Defective gp41 variants included point mutations at different residues within the fusion peptide or heptad repeat regions, as well as constructs with modifications or deletions of the membrane proximal tryptophan-rich region or the transmembrane domain. Complementation required the defective variants to be coexpressed in the same cell. The observed complementation activities were highly dependent on the assay system. The most robust activities were obtained with a vaccinia virus-based expression and reporter gene activation assay for cell fusion. In an alternative system involving Env expression from integrated provirus, complementation was detected in cell fusion assays, but not in virus particle entry assays.</p> <p>Conclusion</p> <p>Our results indicate that Env function does not require every subunit in the trimer to be competent for all essential activities. Through cross-talk between subunits, the functional determinants on one defective protomer can cooperatively interact to trigger the functional determinants on an adjacent protomer(s) harboring a different defect, leading to fusion. Cooperative subunit interaction is a general feature of the Env trimer, based on complementation activities observed for a highly diverse range of functional defects.</p
Psychopathic leadership a case study of a corporate psychopath CEO
This longitudinal case study reports on a charity in the UK which gained a new CEO who was reported by two middle managers who worked in the charity, to embody (respectively) all or most of the ten characteristics within a measure of corporate psychopathy. The leadership of this CEO with a high corporate psychopathy score was reported to be so poor that the organisation was described as being one without leadership and as a lost organisation with no direction. This paper outlines the resultant characteristics of the ensuing aimlessness and lack of drive of the organisation involved. Comparisons are made to a previous CEO in the same organisation, who was reportedly an authentic, effective and transformational leader. Outcomes under the CEO with a high corporate psychopathy score were related to bullying, staff withdrawal and turnover as effective employees stayed away from and/or left the organisation. Outcomes also included a marked organisational decline in terms of revenue, employee commitment, creativity and organisational innovativeness. The paper makes a contribution to both leadership and to corporate psychopathy research as it appears to be the first reported study of a CEO with a high corporate psychopathy score
Molecular mechanisms and cellular functions of cGAS-STING signalling
The cGASâSTING signalling axis, comprising the synthase for the second messenger cyclic GMPâAMP (cGAS) and the cyclic GMPâAMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGASâSTING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGASâSTING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-ÎșB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquidâliquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGASâSTING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved
The trans-ancestral genomic architecture of glycemic traits
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242âloci (99 novel; Pâ<â5âĂâ10â8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution
Observation of a New Excited Beauty Strange Baryon Decaying to Îb- Ï+Ï-
The Îb-Ï+Ï- invariant mass spectrum is investigated with an event sample of proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb-1. The ground state Îb- is reconstructed via its decays to J/ÏÎ- and J/ÏÎK-. A narrow resonance, labeled Îb(6100)-, is observed at a Îb-Ï+Ï- invariant mass of 6100.3±0.2(stat)±0.1(syst)±0.6(Îb-) MeV, where the last uncertainty reflects the precision of the Îb- baryon mass. The upper limit on the Îb(6100)- natural width is determined to be 1.9 MeV at 95% confidence level. The low Îb(6100)- signal yield observed in data does not allow a measurement of the quantum numbers of the new state. However, following analogies with the established excited Îc baryon states, the new Îb(6100)- resonance and its decay sequence are consistent with the orbitally excited Îb- baryon, with spin and parity quantum numbers JP=3/2-
- âŠ