446 research outputs found

    The Establishment of Employer Based Car Sharing Schemes in West Yorkshire.

    Get PDF
    This paper describes the initial findings of an SSRC sponsored project to establish and monitor organised car sharing schemes in West Yorkshire. It follows from an earlier project funded by the TRRL, which aimed to predict the likely outcome of such schemes using micro-simulation methods. The removal of most of the legal obstacles to car sharing in November 1978 made it possible to establish and monitor the effectiveness of actual schemes and to check upon the validity of the earlier models. With the help of West Yorkshire County Council, three major employers were approached and agreed to co-operate. Following initial surveys aimed at describing existing commuting patterns, all employees were circulated with application forms affording them the opportunity to give lifts to, receive lifts from, or to pool cars with fellow- commuters. Compatible applicants were matched by manual means and informed of prospective partners. At all three sites, discounts on automotive products were offered as an inducement to carsharers and at one, free reserved car parking spaces were also made available. Applications to join the schemes were received from less than 7% of the workforces and less than 2% of the workforces actually became carsharers as a result of the scheme. About two thirds of the arrangements involved simple lift giving, with the same person driving at all times and receiving payments from passengers to cover costs. The remainder were carpools in which people took turns to drive. There appears to be evidence that this form of arrangement is adopted primarily to release the car for use at home rather than to save costs. The net effect of the scheme is an insignificant (<0.5%) reduction in work journey car mileage and a somewhat larger, though still marginal abstraction of public transport patronage. These findings broadly correspond to those of the earlier microsimulation models. Though detailed deviations occur, the experiments bear out the model's predictions that the effects of this type of carsharing scheme are likely to be extremely modest and the communitx benefits are unlikely to justify the costs of administration unless the impacts can be magnified or localised. The experience gained in running these experiments may prove useful to others contemplating the establishment of schemes elsewhere

    What Makes a Car Sharer? - A Motivational Investigation.

    Get PDF
    Information from various sources, but most specifically from the YORKSHARE car sharing schemes, is brought together in an analysis of public reaction to and participation in a car sharing scheme with centralised matching of applicants. The importance of various attributes of the sites, of the individuals and of the scheme organisation are assessed and conclusions drawn. The motivation of individual participants is analysed and is seen to vary from one person to another depending to some extent on their circumstances but the universal importance of some features, notably cost savings, is revealed. This report is one of several describing the findings of the YORKSHARE project

    Test for entanglement using physically observable witness operators and positive maps

    Full text link
    Motivated by the Peres-Horodecki criterion and the realignment criterion we develop a more powerful method to identify entangled states for any bipartite system through a universal construction of the witness operator. The method also gives a new family of positive but non-completely positive maps of arbitrary high dimensions which provide a much better test than the witness operators themselves. Moreover, we find there are two types of positive maps that can detect 2xN and 4xN bound entangled states. Since entanglement witnesses are physical observables and may be measured locally our construction could be of great significance for future experiments.Comment: 6 pages, 1 figure, revtex4 styl

    Tunneling spectra of submicron Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions: evolution from superconducting gap to pseudogap

    Full text link
    Tunneling spectra of near optimally doped, submicron Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions are presented, and examined in the region where the superconducting gap evolves into pseudogap. The spectra are analyzed using a self-energy model, proposed by Norman {\it et al.}, in which both quasiparticle scattering rate Γ\Gamma and pair decay rate ΓΔ\Gamma_{\Delta} are considered. The density of states derived from the model has the familiar Dynes' form with a simple replacement of Γ\Gamma by γ+\gamma_+ = (Γ\Gamma + ΓΔ\Gamma_{\Delta})/2. The γ+\gamma_+ parameter obtained from fitting the experimental spectra shows a roughly linear temperature dependence, which puts a strong constraint on the relation between Γ\Gamma and ΓΔ\Gamma_{\Delta}. We discuss and compare the Fermi arc behavior in the pseudogap phase from the tunneling and angle-resolved photoemission spectroscopy experiments. Our results indicate an excellent agreement between the two experiments, which is in favor of the precursor pairing view of the pseudogap.Comment: 7 pages, 6 figure

    Measurements of ψ(2S)\psi(2S) decays into Vector- Tensor final states

    Full text link
    Decays of the ψ(2S)\psi(2S) into vector plus tensor meson final states have been studied with 14 million ψ(2S)\psi(2S) events collected with the BESII detector. Branching fractions of \psi(2S) \rt \omega f_{2}(1270), ρa2(1320)\rho a_2(1320), K(892)0Kˉ2(1430)0+c.c.K^*(892)^0\bar{K}^*_2(1430)^0+c.c. and ϕf2(1525)\phi f_2^{\prime}(1525) are determined. They improve upon previous BESI results and confirm the violation of the "12%" rule for ψ(2S)\psi(2S) decays to VT channels with higher precision.Comment: 7 pages, 7 figures and 2 table

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators

    Get PDF
    We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT)-incorporated photo-cross-linkable gelatin methacrylate (GelMA) hydrogels. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework are the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell–cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity.United States. Army Research Office. Institute for Soldier NanotechnologiesNational Institutes of Health (U.S.) (HL092836)National Institutes of Health (U.S.) (EB02597)National Institutes of Health (U.S.) (AR057837)National Institutes of Health (U.S.) (HL099073)National Science Foundation (U.S.) (DMR0847287)United States. Office of Naval Research (ONR PECASE Award)United States. Office of Naval Research (Young Investigator award)National Research Foundation of Korea (grant (NRF-2010-220-D00014)
    corecore