215 research outputs found

    Measurements of Scintillation Efficiency and Pulse-Shape for Low Energy Recoils in Liquid Xenon

    Get PDF
    Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV < Eee < 30 keV nuclear recoil events is equal to 21.0 ns +/- 0.5 ns. It is observed that for electron recoils T0 rises slowly with energy, having a value ~ 30 ns at Eee ~ 15 keV. Electron and nuclear recoil pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.Comment: 11 pages, including 5 encapsulated postscript figure

    Supermassive black holes in scalar field galaxy halos

    Get PDF
    Ultra-light scalar fields provide an interesting alternative to WIMPS as halo dark matter. In this paper we consider the effect of embedding a supermassive black hole within such a halo, and estimate the absorption probability and the accretion rate of dark matter onto the black hole. We show that the accretion rate would be small over the lifetime of a typical halo, and hence that supermassive central black holes can coexist with scalar field halos.Comment: 5 pages RevTex4, no figures. Updated file to match published versio

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Molecular and Historical Aspects of Corn Belt Dent Diversity

    Get PDF
    Tens-of-thousands of open-pollinated cultivars of corn (Zea mays L.) are being maintained in germplasm banks. Knowledge of the amount and distribution of genetic variation within and among accessions can aid end users in choosing among them. We estimated molecular genetic variation and looked for influences of pedigree, adaptation, and migration in the genetic makeup of conserved Corn-Belt Dent-related germplasm. Plants sampled from 57 accessions representing Corn-Belt Dents, Northern Flints, Southern Dents, plus 12 public inbreds, were genotyped at 20 simple sequence repeat (SSR) loci. For 47 of the accessions, between 5 and 23 plants per accession were genotyped (mean = 9.3). Mean number of alleles per locus was 6.5 overall, 3.17 within accessions, and 3.20 within pooled inbreds. Mean gene diversity was 0.53 within accessions and 0.61 within pooled inbreds. Open-pollinated accessions showed a tendency toward inbreeding (FIS = 0.09), and 85% of genetic variation was shared among them. A Fitch-Margoliash tree strongly supported the distinctiveness of flint from dent germplasm but did not otherwise reveal evidence of genetic structure. Mantel tests revealed significant correlations between genetic distance and geographical (r = 0.54, P= 0.04) or maturity zone (r = 0.33, P = 0.03) distance only if flint germplasm was included in the analyses. A significant correlation (r = 0.76, P \u3c 0.01) was found between days to pollen shed and maturity zone of accession origin. Pedigree, rather than migration or selection, has most influenced the genetic structure of the extant representatives of the open-pollinated cultivars at these SSR loci

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature

    Get PDF
    Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD.'' All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.Genetics of disease, diagnosis and treatmen
    corecore