477 research outputs found

    A class of elementary particle models without any adjustable real parameters

    Get PDF
    Conventional particle theories such as the Standard Model have a number of freely adjustable coupling constants and mass parameters, depending on the symmetry algebra of the local gauge group and the representations chosen for the spinor and scalar fields. There seems to be no physical principle to determine these parameters as long as they stay within certain domains dictated by the renormalization group. Here however, reasons are given to demand that, when gravity is coupled to the system, local conformal invariance should be a spontaneously broken exact symmetry. The argument has to do with the requirement that black holes obey a complementarity principle relating ingoing observers to outside observers, or equivalently, initial states to final states. This condition fixes all parameters, including masses and the cosmological constant. We suspect that only examples can be found where these are all of order one in Planck units, but the values depend on the algebra chosen. This paper combines findings reported in two previous preprints, and puts these in a clearer perspective by shifting the emphasis towards the implications for particle models.Comment: 28 pages (incl. title page), no figure

    How spiking neurons give rise to a temporal-feature map

    Get PDF
    A temporal-feature map is a topographic neuronal representation of temporal attributes of phenomena or objects that occur in the outside world. We explain the evolution of such maps by means of a spike-based Hebbian learning rule in conjunction with a presynaptically unspecific contribution in that, if a synapse changes, then all other synapses connected to the same axon change by a small fraction as well. The learning equation is solved for the case of an array of Poisson neurons. We discuss the evolution of a temporal-feature map and the synchronization of the single cells’ synaptic structures, in dependence upon the strength of presynaptic unspecific learning. We also give an upper bound for the magnitude of the presynaptic interaction by estimating its impact on the noise level of synaptic growth. Finally, we compare the results with those obtained from a learning equation for nonlinear neurons and show that synaptic structure formation may profit from the nonlinearity

    Progressive realism and the EU’s international actorness: towards a grand strategy?

    Get PDF
    The EU lacks a coherent strategy to guide its international actions.This is a problem that has been amply discussed in both academic and policy-making circles, but that remains to be fully addressed. The December 2013 European Council recognised the issue, and the EU High Representative Federica Mogherini is in charge of a strategic review that will lead to a global strategy by June 2016. Most arguments in favour of a grand strategy rely on utilitarian arguments that highlight the EU’s potential for a more efficient foreign policy. By linking a progressive realist approach to the importance of an EU grand strategy, this article intends to demonstrate the normative need for such a guiding document. As it will be argued, a grand strategy is a necessary step in the consolidation of the EU as a pluralist postnational polity that has in the fulfilment of its citizens’ interests its raison d’être

    A spatially-VSL gravity model with 1-PN limit of GRT

    Full text link
    A scalar gravity model is developed according the 'geometric conventionalist' approach introduced by Poincare (Einstein 1921, Poincare 1905, Reichenbach 1957, Gruenbaum1973). In principle this approach allows an alternative interpretation and formulation of General Relativity Theory (GRT), with distinct i) physical congruence standard, and ii) gravitation dynamics according Hamilton-Lagrange mechanics, while iii) retaining empirical indistinguishability with GRT. In this scalar model the congruence standards have been expressed as gravitationally modified Lorentz Transformations (Broekaert 2002). The first type of these transformations relate quantities observed by gravitationally 'affected' (natural geometry) and 'unaffected' (coordinate geometry) observers and explicitly reveal a spatially variable speed of light (VSL). The second type shunts the unaffected perspective and relates affected observers, recovering i) the invariance of the locally observed velocity of light, and ii) the local Minkowski metric (Broekaert 2003). In the case of a static gravitation field the model retrieves the phenomenology implied by the Schwarzschild metric. The case with proper source kinematics is now described by introduction of a 'sweep velocity' field w: The model then provides a hamiltonian description for particles and photons in full accordance with the first Post-Newtonian approximation of GRT (Weinberg 1972, Will 1993).Comment: v1: 11 pages, GR17 conf. paper, Dublin 2004, v2: WEP issue solved, section on acceleration transformation added, text improved, more references, same results, v3: typos removed, footnotes, added and references updated, v4: appendix added, improved tex

    Sagittarius II, Draco II and Laevens 3: Three New Milky Way Satellites Discovered in the Pan-STARRS 1 3 Survey

    Get PDF
    We present the discovery of three new Milky Way satellites from our search for compact stellar overdensities in the photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS 1, or PS1) 3π survey. The first satellite, Laevens 3, is located at a heliocentric distance of d = 67 ± 3 kpc. With a total magnitude of MV = −4.4 ± 0.3 and a half-light radius of rh = 7 ± 2 pc, its properties resemble those of outer halo globular clusters. The second system, Draco II/Laevens 4, is a closer and fainter satellite (d ~ 20 kpc, MV = −2.9 ± 0.8), whose uncertain size (rh=19−6+8  pc{r}_{h}={19}_{-6}^{+8}\;\mathrm{pc}) renders its classification difficult without kinematic information; it could either be a faint and extended globular cluster or a faint and compact dwarf galaxy. The third satellite, Sagittarius II/Laevens 5 (Sgr II), has an ambiguous nature, as it is either the most compact dwarf galaxy or the most extended globular cluster in its luminosity range (rh=37−8+9  pc{r}_{h}={37}_{-8}^{+9}\;\mathrm{pc} and MV = −5.2 ± 0.4). At a heliocentric distance of 67 ± 5 kpc, this satellite lies intriguingly close to the expected location of the trailing arm of the Sagittarius stellar stream behind the Sagittarius dwarf spheroidal galaxy (Sgr dSph). If confirmed through spectroscopic follow up, this connection would locate this part of the trailing arm of the Sagittarius stellar stream that has so far gone undetected. It would further suggest that Sgr II was brought into the Milky Way halo as a satellite of the Sgr dSph

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    Context, Complexity and Contestation: Birmingham's Agreed Syllabuses for Religious Education since the 1970s

    Get PDF
    publication-status: AcceptedThis is an Author's Original Manuscript of an article whose final and definitive form, the Version of Record, has been published in the Journal of Beliefs and Values, September 2011. Available online at: http://www.tandfonline.com/ or DOI: 10.1080/13617672.2011.600823The present article offers an historical perspective on the 1975, 1995 and 2007 Birmingham Agreed Syllabuses for Religious Education. It draws upon historical evidence uncovered as part of ‘The hidden history of curriculum change in religious education in English schools, 1969–1979’ project, and curriculum history theories, especially David Labaree’s observations about the distance between the ‘rhetorical’ and ‘received’ curricula. We argue that, contrary to the existing historiography, curriculum change in religious education (RE) has been evolutionary not revolutionary. Multiple reasons are posited to explain this, not least among which is the capacity and agency of teachers. Furthermore, we argue that ongoing debates about the nature and purpose of RE, as exemplified in the Birmingham context, reflect the multiple expectations that religious educators and other stakeholders had, and continue to have, of the curriculum subject. These debates contribute to the inertia evident in the implementation of RE curriculum reforms. A consciousness of the history of RE enables curriculum contestations to be contextualised and understood, and, thereby, provides important insights which can be applied to ongoing and future debates and developments

    International perspectives on the future of geography education: an analysis of national curricula and standards

    Get PDF
    Geography as a school subject is expressed in a wide variety of ways across different national jurisdictions. This article explores some of the issues arising from attempts to represent geography as a subject for study in schools through the organisational structures offered by national standards and/or national curricula. It serves as an introduction to this special issue, which primarily concerns itself with the contemporary analysis of geography education in seven national settings across the globe. We stress the importance of considering political, cultural, social and philosophical traditions when analysing the curriculum choices made for geography education. Although it may be assumed that geography as a disciplinary specialism is concerned with a body of knowledge that is common across the globe, the creative tensions generated between the disciplines, educational trends and matters of social or policy concern play out differently, making comparisons across jurisdictions hazardous. Understanding this, we argue, is of great significance to those who plan and shape the geography curriculum. Despite the difficulties we hope to offer something more useful than a series of descriptions of geography teaching in different national settings. The purpose of this paper is to introduce a set of robust and irresistible arguments for the inclusion of the study of geography in schools. We argue that geographical knowledge is a vital component of the education of young people across the globe, even though it may be expressed in different ways in different national settings

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    QCD moment sum rules for Coulomb systems: the charm and bottom quark masses

    Get PDF
    In this work the charm and bottom quark masses are determined from QCD moment sum rules for the charmonium and upsilon systems. To illustrate the special character of these sum rules when applied to Coulomb systems we first set up and study the behaviour of the sum rules in quantum mechanics. In our analysis we include both the results from nonrelativistic QCD and perturbation theory at next-next-to-leading order. The moments are evaluated at different values of q^2 which correspond to different relative influence among the theoretical contributions. In the numerical analysis we obtain the masses by choosing central values for all input parameters. The error is estimated from a variation of these parameters. First, the analysis is performed in the pole mass scheme. Second, we employ the potential-subtracted mass in intermediate steps of the calculation to then infer the quark masses in the MS-scheme. Our final results for the pole- and MS-masses are: M_c = 1.75 \pm 0.15 GeV, m_c(m_c) = 1.19 \pm 0.11 GeV, M_b = 4.98 \pm 0.125 GeV and m_b(m_b) = 4.24 \pm 0.10 GeV.Comment: 55 pages, 12 figures. References added, discussions extended. To appear in Phys. Rev.
    • …
    corecore