331 research outputs found

    Muon spin relaxation study of the magnetism in unilluminated Prussian Blue analogue photomagnets

    Full text link
    We present longitudinal field muon spin relaxation (ÎŒ\muSR) measurements in the unilluminated state of the photo-sensitive molecular magnetic Co-Fe Prussian blue analogues M1−2x_{1-2x}Co1+x_{1+x}[Fe(CN)6_6]⋅z\cdot z H2_2O, where M=K and Rb with x=0.4x=0.4 and ≃0.17\simeq 0.17, respectively. These results are compared to those obtained in the x=0.5x=0.5 stoichiometric limit, Co1.5_{1.5}[Fe(CN)6_6]⋅6\cdot 6 H2_2O, which is not photo-sensitive. We find evidence for correlation between the range of magnetic ordering and the value of xx in the unilluminated state which can be explained using a site percolation model.Comment: 7 pages, 12 figure

    Local Magnetic Susceptibility of the Positive Muon in the Quasi 1D S=1/2 Antiferromagnet KCuF3_3

    Full text link
    We report muon spin rotation measurements of the local magnetic susceptibility around a positive muon in the paramagnetic state of the quasi one-dimensional spin 1/2 antiferromagnet KCuF3_3. Signals from two distinct sites are resolved which have a temperature dependent frequency shift which is different than the magnetic susceptibility. This difference is attributed to a muon induced perturbation of the spin 1/2 chain.Comment: 13 pages, 4 figures, The 2002 International Conference on Muon Spin Rotation, Relaxation and Resonance, Virginia. US

    Methodology to resolve the transport equation with the discrete ordinates code TORT into the IPEN/MB-01 reactor

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Computer Mathematics in 2014, available online: http://www.tandfonline.com/10.1080/00207160.2013.799668Resolution of the steady-state Neutron Transport Equation in a nuclear pool reactor is usually achieved by means of two different numerical methods: Monte Carlo (stochastic) and Discrete Ordinates (deterministic). The Discrete Ordinates method solves the Neutron Transport Equation for a set of selected directions, obtaining a set of directional equations and solutions for each equation which are the angular flux. In order to deal with the energy dependence, an energy multi-group approximation is commonly performed, obtaining a set of equations depending on the number of energy groups. In addition, spatial discretization is also required and the problem is solved by sweeping the geometry mesh. However, special cross-sections are required due to the energy and directional discretization, thus a methodology based on NJOY99 code capabilities has been used. Finally, in order to demonstrate the capability of this method, the 3D discrete ordinates code TORT has been applied to resolve the IPEN/MB-01 reactor.The authors wish to thank Departamento de Engenharia Nuclear da UFMG and Instituto de Pesquisas Energeticas e Nucleares for all data and support.Bernal García, Á.; Abarca Giménez, A.; Barrachina Celda, TM.; Miró Herrero, R. (2014). Methodology to resolve the transport equation with the discrete ordinates code TORT into the IPEN/MB-01 reactor. International Journal of Computer Mathematics. 91(1):113-123. doi:10.1080/00207160.2013.799668S113123911Rhoades, W. A., & Simpson, D. B. (1997). The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3). doi:10.2172/58226

    Quantum Monte Carlo study of a nonmagnetic impurity in the two-dimensional Hubbard model

    Full text link
    In order to investigate the effects of nonmagnetic impurities in strongly correlated systems, Quantum Monte Carlo (QMC) simulations have been carried out for the doped two-dimensional Hubbard model with one nonmagnetic impurity. Using a bare impurity potential which is onsite and attractive, magnetic and single-particle properties have been calculated. The QMC results show that giant oscillations develop in the Knight shift response around the impurity site due to the short-range antiferromagnetic correlations. These results are useful for interpreting the NMR data on Li and Zn substituted layered cuprates.Comment: 10 pages, 7 figure

    Magnetic Order in YBa2_2Cu3_3O6+x_{6+x} Superconductors

    Get PDF
    Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa2_2Cu3_3O6+x_{6+x} superconductors. Most of the measurements were made on a high quality crystal of YBa2_2Cu3_3O6.6_{6.6}. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the aa-bb plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the dd-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa2_2Cu3_3O7_{7} show no signal while a small magnetic intensity is found in YBa2_2Cu3_3O6.45_{6.45} that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.Comment: 11 pages with 10 figure

    Cu NMR Study of Detwinned Single Crystals of Ortho--II YBCO6.5

    Full text link
    Copper NMR has been used as a local probe of the oxygen ordering in Ortho--II YBa2Cu3O6.5 crystals grown in BaZrO3 crucibles. Line assignments have been made to each of the expected crystallographically inequivalent sites. The presence of distinct and narrow lines for these sites as well as the lack of a line known to be associated with oxygen defects indicates that these crystals are highly stoichiometric. Our estimate of the lower limit on the chain length is consistent with that derived from X-ray diffraction measurements. In addition, we have found no evidence for static magnetic moments, in contrast to some previous results.Comment: 11 pages, 7 figures, submitted to Physica

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    Determination of the Form Factors for the Decay B0 --> D*-l+nu_l and of the CKM Matrix Element |Vcb|

    Get PDF
    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element ∣Vcb∣|V_{cb}| and of the parameters ρ2\rho^2, R1R_1, and R2R_2, which fully characterize the form factors of the B0→D∗−ℓ+ΜℓB^0 \to D^{*-}\ell^{+}\nu_\ell decay in the framework of HQET, based on a sample of about 52,800 B0→D∗−ℓ+ΜℓB^0 \to D^{*-}\ell^{+}\nu_\ell decays recorded by the BABAR detector. The kinematical information of the fully reconstructed decay is used to extract the following values for the parameters (where the first errors are statistical and the second systematic): ρ2=1.156±0.094±0.028\rho^2 = 1.156 \pm 0.094 \pm 0.028, R1=1.329±0.131±0.044R_1 = 1.329 \pm 0.131 \pm 0.044, R2=0.859±0.077±0.022R_2 = 0.859 \pm 0.077 \pm 0.022, F(1)∣Vcb∣=(35.03±0.39±1.15)×10−3\mathcal{F}(1)|V_{cb}| = (35.03 \pm 0.39 \pm 1.15) \times 10^{-3}. By combining these measurements with the previous BABAR measurements of the form factors which employs a different technique on a partial sample of the data, we improve the statistical accuracy of the measurement, obtaining: ρ2=1.179±0.048±0.028,R1=1.417±0.061±0.044,R2=0.836±0.037±0.022,\rho^2 = 1.179 \pm 0.048 \pm 0.028, R_1 = 1.417 \pm 0.061 \pm 0.044, R_2 = 0.836 \pm 0.037 \pm 0.022, and F(1)∣Vcb∣=(34.68±0.32±1.15)×10−3. \mathcal{F}(1)|V_{cb}| = (34.68 \pm 0.32 \pm 1.15) \times 10^{-3}. Using the lattice calculations for the axial form factor F(1)\mathcal{F}(1), we extract ∣Vcb∣=(37.74±0.35±1.25±1.441.23)×10−3|V_{cb}| =(37.74 \pm 0.35 \pm 1.25 \pm ^{1.23}_{1.44}) \times 10^{-3}, where the third error is due to the uncertainty in F(1)\mathcal{F}(1)

    Study of the Exclusive Initial-State Radiation Production of the DDˉD \bar D System

    Get PDF
    A study of exclusive production of the DDˉD \bar D system through initial-state r adiation is performed in a search for charmonium states, where D=D0D=D^0 or D+D^+. The D0D^0 mesons are reconstructed in the D0→K−π+D^0 \to K^- \pi^+, D0→K−π+π0D^0 \to K^- \pi^+ \pi^0, and D0→K−π+π+π−D^0 \to K^- \pi^+ \pi^+ \pi^- decay modes. The D+D^+ is reconstructed through the D+→K−π+π+D^+ \to K^- \pi^+ \pi^+ decay mode. The analysis makes use of an integrated luminosity of 288.5 fb−1^{-1} collected by the BaBar experiment. The DDˉD \bar D mass spectrum shows a clear ψ(3770)\psi(3770) signal. Further structures appear in the 3.9 and 4.1 GeV/c2c^2 regions. No evidence is found for Y(4260) decays to DDˉD \bar D, implying an up per limit \frac{\BR(Y(4260)\to D \bar D)}{\BR(Y(4260)\to J/\psi \pi^+ \pi^-)} < 7.6 (95 % confidence level)
    • 

    corecore