308 research outputs found

    2010 Status of the Lake Ontario Lower Trophic Levels

    Get PDF
    This report presents data on the status of lower trophic level components of the Lake Ontario ecosystem (zooplankton, phytoplankton, nutrients) in 2010 and compares the 2010 data with available time series. Lower trophic levels are indicators of ecosystem health [as identified by the Lake Ontario Pelagic Community Health Indicator Committee (EPA 1993) and presented in the biennial State of the Lake Ecosystem Conference (SOLEC) reports] and determine the lake’s ability to support the prey fish upon which both wild and stocked salmonids depend. Understanding the production potential of lower trophic levels is also integral to ecosystem-based management. Continued evaluation of lower trophic levels is particularly important for fisheries management, as the observed declines in alewife and Chinook salmon in Lake Huron in 2003 may have been partly the result of changes in lower trophic levels (Barbiero et al. 2009)

    Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    Get PDF
    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified

    A T3 and T7 Recombinant Phage Acquires Efficient Adsorption and a Broader Host Range

    Get PDF
    It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress

    Properties and crystallization of a genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12

    Full text link
    Derivatives of the Escherichia coli penicillin-binding protein 5 (PBP5) with truncated carboxyl terminals were obtained by altering the carboxyl-coding end of the dacA gene. After cloning the modified dacA gene into a runaway-replication-control plasmid, one clone that overproduced and excreted the desired protein into the periplasm was used as a source for the isolation of a water-soluble PBP5 (i.e. PBP5S). In PBP5S the carboxyl-terminal 21-amino-acid region of the wild-type protein was replaced by a short 9-amino-acid segment. Milligram amounts of PBP5S were purified by penicillin affinity chromatography in the absence of detergents or of chaotropic agents. PBP5S was stable and possessed DD-carboxypeptidase activity without added Triton X-100. Upon reaction with [14C]benzylpenicillin it was converted into a rather short-lived acyl-enzyme complex, as observed with PBP5. Both PBP5 and PBP5S were crystallized. In contrast to PBP5, PBP5S yielded enzymatically active, well-formed prismatic crystals suitable for X-ray analysis

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Berechnung von Duplex-Drosselspulen fuer die Daempfung von Oberschwingungen Anhang E

    No full text
    Available from TIB Hannover: FR6636(AnhE) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore