432 research outputs found

    Cobalt and nickel in the Peru upwelling region : a major flux of labile cobalt utilized as a micronutrient

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB4030, doi:10.1029/2003GB002216.The geochemistry of cobalt in the Peru upwelling region is dominated by its importance as a micronutrient. A large and previously undocumented flux of labile cobalt behaved as a micronutrient with correlations with major nutrients (nitrate, phosphate; r 2 = 0.90, 0.96) until depleted to ≤50 pM of strongly complexed cobalt. Co:P utilization ratios were an order of magnitude higher than in the North Pacific, comparable to utilization rates of zinc in other oceanic regions. Cobalt speciation measurements showed that available cobalt decreased over 4 orders of magnitude in this region, with shifts in phytoplankton assemblages occurring at transitions between labile and nonlabile cobalt. Only small changes in total dissolved nickel were observed, and nickel was present in a labile chemical form throughout the region. In the Peru upwelling region, cobalt uptake was highest at the surface and decreased with depth, suggesting phytoplankton uptake was a more important removal mechanism than co-oxidation with microbial manganese oxidation. These findings show the importance of cobalt as a micronutrient and that cobalt scarcity and speciation may be important in influencing phytoplankton species composition in this economically important environment.This work was supported by the NSF under grant OCE-9618729 and OCE-0327225

    Resource Availability and Entrainment Are Driven by Offsets Between Nutriclines and Winter Mixed‐Layer Depth

    Get PDF
    While phytoplankton play a key role in ocean biogeochemical cycles, the availability and supply pathways of resources that support their growth remain poorly constrained. Here, we show that the availability of various resources varies over several orders of magnitude throughout the Atlantic Ocean, causing regional contrasts in resource deficiency. Regional variations in the relative availability of nitrogen, phosphorous, silicon, iron, zinc, manganese, cobalt, and cadmium are important and result from the contrasts between winter mixing depths and differences in vertical profiles of the different resources. The winter-time thickening of the mixed layer may replenish or deplete resources via entrainment, depending on the vertical nutrient profile. For nutrients like nitrate, phosphate, and cadmium, entrainment is a consistent source term. While for others, such as manganese and iron, entrainment can reduce ocean resource availability, particularly in subtropical regions. Any future change to the depth of winter-time mixing will cause region-specific changes in relative availability of different resources that may have important ecological consequences

    Neuropsychological Predictors of Safety in Urban Left-Turn Scenarios

    Get PDF
    Left turns at urban intersections can be dangerous, especially when views are obstructed or pedestrians are present. Impairments in driver vision, motor, and cognition functions may further increase left-turn risk. We examined this problem in a simulated environment that included left-turn scenarios to study the driving behaviors of 28 drivers, ages 37 to 88 years, six of whom had “Useful Field of View” (UFOV) impairments. Subjects also completed a battery of neuropsychological tests. The simulated drive included an urban section with six left turns in three types of scenarios: 1) a semi truck blocking the view of oncoming traffic, 2) a lead vehicle obstruction, and 3) a pedestrian crossing ahead of the turning driver. Results showed a mean (SD) of 1.46 (1.60) collisions per driver (range 0 to 7), 83% of which occurred at intersections with semi trucks. Far visual acuity, contrast sensitivity, UFOV, Mini Mental State Examination, TrailMaking Test Part B, the Wisconsin Card Sort task, and age were all associated with the total number of collisions (Pearson correlation magnitudes between 0.37 to 0.77; p-values\u3c0.05). Spearman correlations were less significant. Findings indicate that visual obstruction by on oncoming semi-truck is a particularly dangerous left-turn situation

    Estimation of the atmospheric flux of nutrients and trace metals to the Eastern Tropical North Atlantic Ocean

    Get PDF
    Atmospheric deposition contributes potentially significant amounts of the nutrients iron, nitrogen and phosphorus (via mineral dust and anthropogenic aerosols) to the oligotrophic tropical North Atlantic Ocean. Transport pathways, deposition processes and source strengths contributing to this atmospheric flux are all highly variable in space and time. Atmospheric sampling was conducted during 28 research cruises through the Eastern Tropical North Atlantic (ETNA) over a 12 year period and a substantial dataset of measured concentrations of nutrients and trace metals in aerosol and rainfall over the region was acquired. This database was used to quantify (on a spatial- and seasonal-basis) the atmospheric input of ammonium, nitrate, soluble phosphorus and soluble and total iron, aluminium and manganese to the ETNA. The magnitude of atmospheric input varies strongly across the region, with high rainfall rates associated with the Inter-tropical Convergence Zone contributing to high wet deposition fluxes in the south, particularly for soluble species. Dry deposition fluxes of species associated with mineral dust exhibited strong seasonality, with highest fluxes associated with winter-time low-level transport of Saharan dust. Overall (wet plus dry) atmospheric inputs of soluble and total trace metals were used to estimate their soluble fractions. These also varied with season and were generally lower in the dry north than in the wet south. The ratio of ammonium plus nitrate to soluble iron in deposition to the ETNA was lower than the N:Fe requirement for algal growth in all cases, indicating the importance of the atmosphere as a source of excess iron

    Dissolved zinc in the subarctic North Pacific and Bering Sea : its distribution, speciation, and importance to primary producers

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB2015, doi:10.1029/2010GB004004.The eastern subarctic North Pacific, an area of high nutrients and low chlorophyll, has been studied with respect to the potential for iron to control primary production. The geochemistry of zinc, a critical micronutrient for diatoms, is less well characterized. Total zinc concentrations and zinc speciation were measured in near-surface waters on transects across the subarctic North Pacific and across the Bering Sea. Total dissolved zinc concentrations in the near-surface ranged from 0.10 nmol L−1 to 1.15 nmol L−1 with lowest concentrations in the eastern portions of both the North Pacific and Bering Sea. Dissolved zinc speciation was dominated by complexation to strong organic ligands whose concentration ranged from 1.1 to 3.6 nmol L−1 with conditional stability constants (K′ZnL/Zn′) ranging from 109.3 to 1011.0. The importance of zinc to primary producers was evaluated by comparison to phytoplankton pigment concentrations and by performing a shipboard incubation. Zinc concentrations were positively correlated with two pigments that are characteristic of diatoms. At one station in the North Pacific, the addition of 0.75 nmol L−1 zinc resulted in a doubling of chlorophyll after 4 days.This research was supported by NSF grant OCE-0136835 and by an EPA STAR Fellowship.2012-11-1

    A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments

    Get PDF
    The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment

    Iron, silicate, and light co-limitation of three Southern Ocean diatom species

    Get PDF
    The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light

    Pathways of Superoxide (O2-) decay in the Eastern Tropical North Atlantic

    Get PDF
    Superoxide (O2-: IUPAC name dioxide (•1−)) is an important transient reactive oxygen species (ROS) in the ocean formed as an intermediate in the redox transformation of oxygen (O2) into hydrogen peroxide (H2O2) and vice versa. This highly reactive and very short-lived radical anion can be produced both via photochemical and biological processes in the ocean. In this paper we examine the decomposition rate of O2- throughout the water column, using new data collected in the Eastern Tropical North Atlantic (ETNA) Ocean. For this approach we applied a semi factorial experimental design, to identify and quantify the pathways of the major identified sinks in the ocean. In this work we occupied 6 stations, 2 on the West African continental shelf and 4 open ocean stations, including the CVOO time series site adjacent to Cape Verde. Our results indicate that in the surface ocean, impacted by Saharan aerosols and sediment resuspension, the main decay pathways for superoxide is via reactions with Mn(II) and organic matter

    Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB4012, doi:10.1029/2007GB003119.Many trace metals such as iron, copper, and manganese have lower concentrations in the surface waters of the North Pacific Ocean than in North Atlantic surface waters. However, cobalt and zinc concentrations in North Atlantic surface waters are often as low as those reported in the North Pacific. We studied the relationship between the distribution of cobalt, zinc, and phosphorus in surface waters of the western North Atlantic Ocean. Both metals show strong depletion in the southern Sargasso Sea, a region characterized by exceedingly low dissolved inorganic phosphorus (generally <4 nmol L−1) and measurable alkaline phosphatase activity. Alkaline phosphatase is a metalloenzyme (typically containing zinc) that cleaves phosphate monoesters and is a diagnostic indicator of phosphorus stress in phytoplankton. In contrast to the North Pacific Ocean, cobalt and zinc appear to be drawn down to their lowest values only when inorganic phosphorus is below 10 nmol L−1 in the North Atlantic Ocean. Lower levels of phosphorus in the Atlantic may contribute to these differences, possibly through an increased biological demand for zinc and cobalt associated with dissolved organic phosphorus acquisition. This hypothesis is consistent with results of a culture study where alkaline phosphatase activity decreased in the model coccolithophore Emiliania huxleyi upon zinc and cobalt limitation.This research was supported by NSF grant OCE- 0136835 to J.W.M. and S.D. R.W.J. was supported by an EPA STAR Fellowship
    corecore