1,051 research outputs found

    Mantle viscosity, J2 and the nontidal acceleration of Earth rotation

    Get PDF
    Recent interpretations of laser ranging for the LAGEOS satellite have rather conclusively established that the observed acceleration in the node of its orbit is just that expected to exist as a residual effect of the last deglaciation event which ended about 6000 years ago. The nontidal acceleration of rotation would be rather different than that observed if there were any significant melting of high latitude continental ice masses currently ongoing. The sensitivity of the expected nontidal acceleration to variations of several elements of the radial viscoelastic structure of the planet is explored using a new normal mode method for the computation of viscoelastic relaxation spectra. These calculations establish that the most important sensitivity is to variations in the mantle viscosity profile. Although the predicted nontidal acceleration does depend upon lithospheric thickness and on the elastic component of the radial structure, the dependence on these components of the structure is much weaker than it is upon mantle viscosity. The observed J sub 2 is therefore a particularly useful determinant of radial variations in the latter parameter

    Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model

    Get PDF
    A new model of the last deglaciation event of the Late Quaternary ice age is here described and denoted as ICE-6G_C (VM5a). It differs from previously published models in this sequence in that it has been explicitly refined by applying all of the available Global Positioning System (GPS) measurements of vertical motion of the crust that may be brought to bear to constrain the thickness of local ice cover as well as the timing of its removal. Additional space geodetic constraints have also been applied to specify the reference frame within which the GPS data are described. The focus of the paper is upon the three main regions of Last Glacial Maximum ice cover, namely, North America, Northwestern Europe/Eurasia, and Antarctica, although Greenland and the British Isles will also be included, if peripherally, in the discussion. In each of the three major regions, the model predictions of the time rate of change of the gravitational field are also compared to that being measured by the Gravity Recovery and Climate Experiment satellites as an independent means of verifying the improvement of the model achieved by applying the GPS constraints. Several aspects of the global characteristics of this new model are also discussed, including the nature of relative sea level history predictions at far-field locations, in particular the Caribbean island of Barbados, from which especially high-quality records of postglacial sea level change are available but which records were not employed in the development of the model. Although ICE-6G_C (VM5a) is a significant improvement insofar as the most recently available GPS observations are concerned, comparison of model predictions with such far-field relative sea level histories enables us to identify a series of additional improvements that should follow from a further stage of model iteration

    Radiative effects of ozone on the climate of a Snowball Earth

    Get PDF
    Some geochemical and geological evidence has been interpreted to suggest that the concentration of atmospheric oxygen was only 1–10 % of the present level in the time interval from 750 to 580 million years ago when several nearly global glaciations or Snowball Earth events occurred. This low concentration of oxygen would have been accompanied by a lower ozone concentration than exists at present. Since ozone is a greenhouse gas, this change in ozone concentration would alter surface temperature, and thereby could have an important influence on the climate of the Snowball Earth. Previous works that have focused either on initiation or deglaciation of the proposed Snowball Earth has not taken the radiative effects of ozone changes into account. We address this issue herein by performing a series of simulations using an atmospheric general circulation model with various ozone concentrations. <br><br> Our simulation results demonstrate that, as ozone concentration is uniformly reduced from 100 % to 50 %, surface temperature decreases by approximately 0.8 K at the Equator, with the largest decreases located in the middle latitudes reaching as high as 2.5 K. When ozone concentration is reduced and its vertical and horizontal distribution is simultaneously modulated, surface temperature decreases by 0.4–1.0 K at the Equator and by 4–7 K in polar regions. These results here have uncertainties, depending on model parameterizations of cloud, surface snow albedo, and relevant feedback processes, while they are qualitatively consistent with radiative-convective model results that do not involve such parameterizations and feedbacks. These results suggest that ozone variations could have had a moderate impact on the climate during the Neoproterozoic glaciations

    An initial intercomparison of atmospheric and oceanic climatology for the ICE-5G and ICE-4G models of LGM paleotopography

    Get PDF
    This paper investigates the impact of the new ICE-5G paleotopography dataset for Last Glacial Maximum (LGM) conditions on a coupled model simulation of the thermal and dynamical state of the glacial atmosphere and on both land surface and sea surface conditions. The study is based upon coupled climate simulations performed with the ocean–atmosphere–sea ice model of intermediate-complexity Climate de Bilt-coupled large-scale ice–ocean (ECBilt-Clio) model. Four simulations focusing on the Last Glacial Maximum [21 000 calendar years before present (BP)] have been analyzed: a first simulation (LGM-4G) that employed the original ICE-4G ice sheet topography and albedo, and a second simulation (LGM-5G) that employed the newly constructed ice sheet topography, denoted ICE-5G, and its respective albedo. Intercomparison of the results obtained in these experiments demonstrates that the LGM-5G simulation delivers significantly enhanced cooling over Canada compared to the LGM-4G simulation whereas positive temperature anomalies are simulated over southern North America and the northern Atlantic. Moreover, introduction of the ICE-5G topography is shown to lead to a deceleration of the subtropical westerlies and to the development of an intensified ridge over North America, which has a profound effect upon the hydrological cycle. Additionally, two flat ice sheet experiments were carried out to investigate the impact of the ice sheet albedo on global climate. By comparing these experiments with the full LGM simulations, it becomes evident that the climate anomalies between LGM-5G and LGM-4G are mainly driven by changes of the earth’s topography

    Secular sea level change in the Russian sector of the Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03042, doi:10.1029/2003JC002007.Sea level is a natural integral indicator of climate variability. It reflects changes in practically all dynamic and thermodynamic processes of terrestrial, oceanic, atmospheric, and cryospheric origin. The use of estimates of sea level rise as an indicator of climate change therefore incurs the difficulty that the inferred sea level change is the net result of many individual effects of environmental forcing. Since some of these effects may offset others, the cause of the sea level response to climate change remains somewhat uncertain. This paper is focused on an attempt to provide first-order answers to two questions, namely, what is the rate of sea level change in the Arctic Ocean, and furthermore, what is the role of each of the individual contributing factors to observed Arctic Ocean sea level change? In seeking answers to these questions we have discovered that during the period 1954–1989 the observed sea level over the Russian sector of the Arctic Ocean is rising at a rate of approximately 0.123 cm yr−1 and that after correction for the process of glacial isostatic adjustment this rate is approximately 0.185 cm yr−1. There are two major causes of this rise. The first is associated with the steric effect of ocean expansion. This effect is responsible for a contribution of approximately 0.064 cm yr−1 to the total rate of rise (35%). The second most important factor is related to the ongoing decrease of sea level atmospheric pressure over the Arctic Ocean, which contributes 0.056 cm yr−1, or approximately 30% of the net positive sea level trend. A third contribution to the sea level increase involves wind action and the increase of cyclonic winds over the Arctic Ocean, which leads to sea level rise at a rate of 0.018 cm yr−1 or approximately 10% of the total. The combined effect of the sea level rise due to an increase of river runoff and the sea level fall due to a negative trend in precipitation minus evaporation over the ocean is close to 0. For the Russian sector of the Arctic Ocean it therefore appears that approximately 25% of the trend of 0.185 cm yr−1, a contribution of 0.048 cm yr−1, may be due to the effect of increasing Arctic Ocean mass.This material is based upon work supported by the National Science Foundation under grant 0136432

    Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial Isochrysis algal biomass

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Visualized Experiments 112 (2016): e54189, doi:10.3791/54189.The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product.This work was supported by the National Science Foundation (CHE-1151492), the Northwest Advanced Renewables Alliance (fellowship to J. Wilson-Peltier), and through a private donation from friends of WHOI

    Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse

    Full text link
    Ongoing and future space missions aim to identify potentially habitable planets in our Solar System and beyond. Planetary habitability is determined not only by a planet's current stellar insolation and atmospheric properties, but also by the evolutionary history of its climate. It has been suggested that icy planets and moons become habitable after their initial ice shield melts as their host stars brighten. Here we show from global climate model simulations that a habitable state is not achieved in the climatic evolution of those icy planets and moons that possess an inactive carbonate-silicate cycle and low concentrations of greenhouse gases. Examples for such planetary bodies are the icy moons Europa and Enceladus, and certain icy exoplanets orbiting G and F stars. We find that the stellar fluxes that are required to overcome a planet's initial snowball state are so large that they lead to significant water loss and preclude a habitable planet. Specifically, they exceed the moist greenhouse limit, at which water vapour accumulates at high altitudes where it can readily escape, or the runaway greenhouse limit, at which the strength of the greenhouse increases until the oceans boil away. We suggest that some icy planetary bodies may transition directly to a moist or runaway greenhouse without passing through a habitable Earth-like state.Comment: 31 pages, 4 figures, 2 supplementary tables, and 9 supplementary figure

    To See or Not to See: Do Front of Pack Nutrition Labels Affect Attention to Overall Nutrition Information?

    Get PDF
    Citation: Bix, L., Sundar, R. P., Bello, N. M., Peltier, C., Weatherspoon, L. J., & Becker, M. W. (2015). To See or Not to See: Do Front of Pack Nutrition Labels Affect Attention to Overall Nutrition Information? Plos One, 10(10), 20. doi:10.1371/journal.pone.0139732Background Front of pack (FOP) nutrition labels are concise labels located on the front of food packages that provide truncated nutrition information. These labels are rapidly gaining prominence worldwide, presumably because they attract attention and their simplified formats enable rapid comparisons of nutritional value. Methods Eye tracking was conducted as US consumers interacted with actual packages with and without FOP labels to (1) assess if the presence of an FOP label increases attention to nutrition information when viewers are not specifically tasked with nutrition-related goals; and (2) study the effect of FOP presence on consumer use of more comprehensive, traditional nutrition information presented in the Nutritional Facts Panel (NFP), a mandatory label for most packaged foods in the US. Results Our results indicate that colored FOP labels enhanced the probability that any nutrition information was attended, and resulted in faster detection and longer viewing of nutrition information. However, for cereal packages, these benefits were at the expense of attention to the more comprehensive NFP. Our results are consistent with a potential short cut effect of FOP labels, such that if an FOP was present, participants spent less time attending the more comprehensive NFP. For crackers, FOP labels increased time spent attending to nutrition information, but we found no evidence that their presence reduced the time spent on the nutrition information in the NFP. Conclusions The finding that FOP labels increased attention to overall nutrition information by people who did not have an explicit nutritional goal suggests that these labels may have an advantage in conveying nutrition information to a wide segment of the population. However, for some food types this benefit may come with a short-cut effect; that is, decreased attention to more comprehensive nutrition information. These results have implications for policy and warrant further research into the mechanisms by which FOP labels impact use of nutrition information by consumers for different foods

    Dispelling the myths of online education: learning via the information superhighway

    Get PDF
    There continues to be a perception that online education is inferior to traditional education. In the U.S. online learning is more developed than in the U.K. This paper provides insights into a U.S. provision and takes a close look at what are perceived as weaknesses of on line learning and argues that these are not necessarily inherent weaknesses of this form of educational delivery. Then, results of two major studies, undertaken in the U.S. are provided comparing the effectiveness of online education to traditional education as perceived by current MBA students and past graduates. Results of these studies suggest that students of MBA modules and MBA graduates perceive the quality and effectiveness of online education to be similar to, if not higher than, the quality and effectiveness of traditional modules and programmes
    • …
    corecore