394 research outputs found

    Establishing a nu_{mu,tau} Component in the Solar Neutrino Flux

    Full text link
    We point out that the recoil electron kinetic energy spectra in the nu-e elastic scattering are different for incident nu_{e} or nu_{mu,tau}, and hence one can in principle establish the existence of the nu_{mu,tau} component in the solar neutrino flux by fitting the shape of the spectrum. This would be a new model-independent test of the solar neutrino oscillation in a single experiment, free from astrophysical and nuclear physics uncertainties. For the ^7Be neutrinos, it is possible to determine the nu_{mu,tau} component at BOREXINO or KamLAND, if the background is sufficiently low. Note that this effect is different from the distortion in the incident neutrino energy spectrum, which has been discussed in the literature.Comment: 12 pages, 3 figures, uses psfig. Figures reorganized, one corrected, conclusions unchange

    A first measurement of the interaction cross section of the tau neutrino

    Get PDF
    The DONuT experiment collected data in 1997 and published first results in 2000 based on four observed ντ\nu_\tau charged-current (CC) interactions. The final analysis of the data collected in the experiment is presented in this paper, based on 3.6×10173.6 \times 10^{17} protons on target using the 800 GeV Tevatron beam at Fermilab. The number of observed ντ\nu_\tau CC interactions is 9, from a total of 578 observed neutrino interactions. We calculated the energy-independent part of the tau-neutrino CC cross section (ν+νˉ\nu + \bar \nu), relative to the well-known νe\nu_e and νμ\nu_\mu cross sections. The ratio σ(ντ)\sigma(\nu_\tau)/σ(νe,μ)\sigma(\nu_{e,\mu}) was found to be 1.37±0.35±0.771.37\pm0.35\pm0.77. The ντ\nu_\tau CC cross section was found to be 0.72±0.24±0.36×10380.72 \pm 0.24\pm0.36 \times 10^{-38} cm2GeV1^{2}\rm{GeV}^{-1}. Both results are in agreement the Standard Model.Comment: 37 pages, 15 figure

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200

    Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector

    Get PDF
    A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by a class of extensions to the Standard Model. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in these extensions to the Standard Model lie between 0.01-1% of the maximum expected, assuming a suppression of these signatures by factor of 101710^{-17}.

    Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

    Get PDF
    The velocity of a ~3 GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.12.910-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mnu<50 MeV/c2 (99% C.L.)

    A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam

    Get PDF
    We report the results of a search for muon-neutrino disappearance by the Main Injector Neutrino Oscillation Search. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27e20 protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 muon-neutrino charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3 eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.Comment: In submission to Phys. Rev.

    Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    Get PDF
    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.Comment: 16 pages, 17 figure

    The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    Get PDF
    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of 20\sim 20 kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/EL/E behaviour, and distinguishing effects arising from δCP\delta_{CP} and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least 3σ3\sigma for 50\% of the true values of δCP\delta_{CP} with a 20 kton detector. With a far detector of 70 kton, the combination allows a 3σ3\sigma sensitivity for 75\% of the true values of δCP\delta_{CP} after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within today's state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.Comment: 21 pages, 12 figure
    corecore