3,611 research outputs found
The Interplanetary Network Supplement to the BeppoSAX Gamma-Ray Burst Catalogs
Between 1996 July and 2002 April, one or more spacecraft of the
interplanetary network detected 787 cosmic gamma-ray bursts that were also
detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera
experiments aboard the BeppoSAX spacecraft. During this period, the network
consisted of up to six spacecraft, and using triangulation, the localizations
of 475 bursts were obtained. We present the localization data for these events.Comment: 89 pages, 3 figures. Submitted to the Astrophysical Journal
Supplement Serie
TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays
Some recent experiments detecting very high energy (VHE) gamma-rays above
10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts
(GRBs). If these signals are truly from GRBs, these GRBs must emit a much
larger amount of energy as VHE gamma-rays than in the ordinary photon energy
range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably
explained by synchrotron radiation of protons accelerated to \sim 10^{20-21}
eV, which has been predicted by Totani (1998a). Protons seem to carry about
(m_p/m_e) times larger energy than electrons, and hence the total energy
liberated by one GRB becomes as large as \sim 10^{56} (\Delta \Omega / 4 \pi)
ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of
the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of
the Lorentz factor of GRBs, as \gamma \gtilde 500. Furthermore, our model
gives the correct energy range and time variability of ordinary keV-MeV
gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE
bursts of GRBs strongly support the hypothesis that ultra high energy cosmic
rays observed on the Earth are produced by GRBs.Comment: Final version to appear in ApJ Lett. Emphasizing that the extremely
large energy required in this model is not theoretically impossible if GRB
emission is strongly beamed. References update
Detailed transonic flow field measurements about a supercritical airfoil section
The transonic flow field about a Whitcomb-type supercritical airfoil profile was measured in detail. In addition to the usual surface pressure distributions and wake surveys, schlieren photographs were taken and velocity vector profiles were determined in the upper surface boundary layer and in the near wake. Spanwise variations in the measured pressures were also determined. The data are analyzed with the aid of an inviscid transonic finite-difference computer program as well as with boundary layer modeling and calculation schemes
Characterization of Chromate Conversion Coating Formation and Breakdown Using Electrode Arrays
Chromate conversion coating (CCC) formation and breakdown was examined using 25 element Al wire electrode arrays. Arrays were interrogated using a multichannel analyzer capable of separately recording currents from each electrode. During CCC formation, electrodes exhibited a 30 s period of intense electrochemical activity characterized by large net currents. On any given element, net current polarity was found to be predominantly anodic, predominately cathodic, or mixed. After 30 s, net currents decayed to small values, which remained small out to 300 s of exposure. Raman spectroscopy showed that Cr^6+ concentrations in the coating continued to increase during this electrochemically quiescent period, suggesting continued CCC evolution. Conversion-coated arrays were subject to anodic potentiodynamic polarization in 0.5 M NaCl until all elements on the array exhibited coating breakdown and substrate pitting. Breakdown potentials were found to increase with coating time up to 120 s, indicating anodic inhibition in CCC corrosion protection. Breakdown was found to be more difficult on electrodes that were net cathodes during coating formation. Results also showed that the NaF and K_3Fe(CN)_6 in commercial CCC bath formulations strongly contributed to coating corrosion resistance. Without Fv, the Al surface passivated quickly during coating formation, and a nonprotective film formed. Without Fe(CN)_3^6-, CCCs exhibited lower breakdown potentials
De-blending Deep Herschel Surveys: A Multi-wavelength Approach
Cosmological surveys in the far infrared are known to suffer from confusion.
The Bayesian de-blending tool, XID+, currently provides one of the best ways to
de-confuse deep Herschel SPIRE images, using a flat flux density prior. This
work is to demonstrate that existing multi-wavelength data sets can be
exploited to improve XID+ by providing an informed prior, resulting in more
accurate and precise extracted flux densities. Photometric data for galaxies in
the COSMOS field were used to constrain spectral energy distributions (SEDs)
using the fitting tool CIGALE. These SEDs were used to create Gaussian prior
estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the
extracted SPIRE flux densities were run through CIGALE again to allow us to
compare the performance of the two priors. Inferred ALMA flux densities
(F), at 870m and 1250m, from the best fitting SEDs from the
second CIGALE run were compared with measured ALMA flux densities (F) as an
independent performance validation. Similar validations were conducted with the
SED modelling and fitting tool MAGPHYS and modified black body functions to
test for model dependency. We demonstrate a clear improvement in agreement
between the flux densities extracted with XID+ and existing data at other
wavelengths when using the new informed Gaussian prior over the original
uninformed prior. The residuals between F and F were calculated. For
the Gaussian prior, these residuals, expressed as a multiple of the ALMA error
(), have a smaller standard deviation, 7.95 for the Gaussian
prior compared to 12.21 for the flat prior, reduced mean, 1.83
compared to 3.44, and have reduced skew to positive values, 7.97
compared to 11.50. These results were determined to not be significantly model
dependent. This results in statistically more reliable SPIRE flux densities.Comment: 8 pages, 7 figures, 3 tables. Accepted for publication in A&
A second catalog of gamma ray bursts: 1978 - 1980 localizations from the interplanetary network
Eighty-two gamma ray bursts were detected between 1978 September 14 and 1980 February 13 by the experiments of the interplanetary network (Prognoz 7, Venera 11 and 12 SIGNE experiments, Pioneer Venus Orbiter, International Sun-Earth Explorer 3, Helios 2, and Vela). Sixty-five of these events have been localized to annuli or error boxes by the method of arrival time analysis. The distribution of sources is consistent with isotropy, and there is no statistically convincing evidence for the detection of more than one burst from any source position. The localizations are compared with those of two previous catalogs
Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)
The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a NASA Small Explorer satellite designed to study hard x-ray and gamma-ray emission from solar flares. In addition, its high-resolution array of germanium detectors can see photons from high-energy sources throughout the Universe. Here we discuss the various algorithms necessary to extract spectra, lightcurves, and other information about cosmic gamma-ray bursts, pulsars, and other astrophysical phenomena using an unpointed, spinning array of detectors. We show some preliminary results and discuss our plans for future analyses. All RHESSI data are public, and scientists interested in participating should contact the principal author
Limits to the burster repetition rate as deduced from the 2nd catalog of the interplanetary network
The burster repetition rate is an important parameter in many gamma ray burst models. The localizations of the interplanetary network, which have a relatively small combined surface area, may be used to estimate the average repetition rate. The method consists of (1) estimating the number of random overlaps between error boxes expected in the catalog and comparing this number to that actually observed; (2) modeling the response of the detectors in the network, so that the probability of detecting a burst can be estimated; and (3) simulating the arrival of bursts at the network assuming that burster repetition is governed by a Poisson process. The application of this method for many different burster luminosity functions shows that (1) the lower limit to the burster repetition rate depends strongly upon the assumed luminosity function; (2) the best lower limit to the repetition period obtainable from the data of the network is about 100 months; and (3) that a luminosity function for all bursters similar to that of the 1979 Mar 5 burster is inconsistent with the data
Three precise gamma-ray burst source locations
The precise source regions of three moderately intense gamma ray bursts are derived. These events were observed with the first interplanetary burst sensor network. The optimum locations of the detectors, widely separated throughout the inner solar system, allowed for high accuracy, over-determined source fields of size 0.7 to 7.0 arc-min(2). All three locations are at fairly high galactic latitude in regions of low source confusion; none can be identified with a steady source object. Archived photographs were searched for optical transients that are able to be associated with these source fields; one such association was made
Assessment of Smallmouth Bass Growth and Mortality in Nebraska Waters
Smallmouth bass (Micropterus dolomieu) have been introduced across Nebraska into a variety of waterbodies. However, an estimate of smallmouth bass growth and mortality in Nebraska waters has not been produced. The objectives of this study were to use historic sampling data to describe the growth of smallmouth bass in Nebraska lakes in relation to other regional models, growth among waterbody types (reservoirs, Interstate 80 [I-80] lakes, and rivers), estimates of age at quality, preferred, and memorable lengths, and mortality for Nebraska smallmouth bass populations. Mean length ± SE of Nebraska smallmouth bass at age 7 was 383 ± 21 mm, which is similar to national and regional values. Mean lengths at age of smallmouth bass in I-80 lakes and reservoirs were similar, but lengths were larger in rivers than in I-80 lakes and reservoirs at ages 3–5. Mean total annual mortality measured 0.41 (± 0.06 SE). These growth and mortality rates allow biologists to set appropriate management objectives and assess local sampling results with proper perspectives
- …