18,636 research outputs found

    Investigation of critical slowing down in a bistable S-SEED

    Get PDF
    A simulation of S-SEED switching based upon experimental data is developed that includes the effect of critical slowing down. The simulation's accuracy is demonstrated by close agreement with the results from experimental S-SEED switching. The simulation is subsequently used to understand how the phenomenon of critical slowing down applies to switching of an S-SEED and how the effect on photonic analog-to-digital (A/D) converter performance may be minimized.B. A. Clare, K. A. Corbett, K. J. Grant, P. B. Atanackovic, W. Marwood and J. Munc

    Summary of the electromagnetic compatibility evaluation of the proposed satellite power system

    Get PDF
    The effects of the proposed solar power satellite (SPS) operations on electronic equipment and systems by fundamental, harmonic, and intermodulation component emissions from the orbital station; and the fundamental, harmonic, and structural intermodulation emissions from the rectenna site were evaluated. The coupling and affects interactions affecting a wide spectrum of electronic equipment are considered. The primary EMC tasking areas are each discussed separately

    Laser velocimeter for simultaneous two-dimensional velocity measurements

    Get PDF
    Laser velocimeter provides simultaneous orthogonal measurements in manner which minimizes many problems attending prior systems, and allows spatial traversing of flowfield in order to obtain velocity profiles. Velocimeter permits rapid interrogation of unsteady flows where area of interest is of the order of one meter in extent and flow does not vary appreciably over time of about one second

    The r-Process in Neutrino-Driven Winds from Nascent, "Compact" Neutron Stars of Core-Collapse Supernovae

    Get PDF
    We present calculations of r-process nucleosynthesis in neutrino-driven winds from the nascent neutron stars of core-collapse supernovae. A full dynamical reaction network for both the alpha-rich freezeout and the subsequent r-process is employed. The physical properties of the neutrino-heated ejecta are deduced from a general relativistic model in which spherical symmetry and steady flow are assumed. Our results suggest that proto-neutron stars with a large compaction ratio provide the most robust physical conditions for the r-process. The third peak of the r-process is well reproduced in the winds from these ``compact'' proto-neutron stars even for a moderate entropy, \sim 100-200 N_A k, and a neutrino luminosity as high as \sim 10^{52} ergs s^{-1}. This is due to the short dynamical timescale of material in the wind. As a result, the overproduction of nuclei with A \lesssim 120 is diminished (although some overproduction of nuclei with A \approx 90 is still evident). The abundances of the r-process elements per event is significantly higher than in previous studies. The total-integrated nucleosynthesis yields are in good agreement with the solar r-process abundance pattern. Our results have confirmed that the neutrino-driven wind scenario is still a promising site in which to form the solar r-process abundances. However, our best results seem to imply both a rather soft neutron-star equation of state and a massive proto-neutron star which is difficult to achieve with standard core-collapse models. We propose that the most favorable conditions perhaps require that a massive supernova progenitor forms a massive proto-neutron star by accretion after a failed initial neutrino burst.Comment: 12 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Description of the Immature Stages of Trioza uniqua (Caldwell) (Homoptera: Psyllidae)

    Get PDF
    The taxonomic position of Trioza uniqua (Caldwell) and its evolutionary affinities with the genera Kuwayama and Trioza are reviewed. Detailed descriptions of the five nymphal instars are given

    Parasites Associated with the Leucaena Psyllid, Heteropsylla cubana Crawford, in Hawaii

    Get PDF
    Four species of parasitoid Hymenoptera have been reared from the Leucaena psyllid, Heteropsylla cubana Crawford, in Hawaii. In addition to the purposely introduced primary parasite Psyllaephagus yaseeni Noyes (Encyrtidae), three species of hyperparasites have been reared. These are a pteromalid, Pachyneuron siphonophorae (Ashmead), and two encyrtids, Syrphophagus aphidivorus (Mayr) and Syrphophagus sp. A key to parasitoids reared from H. cubana in Hawaii is presented

    Origin and emergence of entrepreneurship as a research field

    Get PDF
    This paper seeks to map out the emergence and evolution of entrepreneurship as an independent field in the social science literature from the early 1990s to 2009. Our analysis indicates that entrepreneurship has grown steadily during the 1990s but has truly emerged as a legitimate academic discipline in the latter part of the 2000s. The field has been dominated by researchers from Anglo-Saxon countries over the past 20 years, with particularly strong representations from the US, UK, and Canada. The results from our structural analysis, which is based on a core document approach, point to five large knowledge clusters and further 16 sub-clusters. We characterize the clusters from their cognitive structure and assess the strength of the relationships between these clusters. In addition, a list of most cited articles is presented and discussed

    Phantom energy traversable wormholes

    Full text link
    It has been suggested that a possible candidate for the present accelerated expansion of the Universe is ''phantom energy''. The latter possesses an equation of state of the form Ï‰â‰Ąp/ρ<−1\omega\equiv p/\rho<-1, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. Due to the fact of the accelerating Universe, macroscopic wormholes could naturally be grown from the submicroscopic constructions that originally pervaded the quantum foam. One could also imagine an advanced civilization mining the cosmic fluid for phantom energy necessary to construct and sustain a traversable wormhole. In this context, we investigate the physical properties and characteristics of traversable wormholes constructed using the equation of state p=ωρp=\omega \rho, with ω<−1\omega<-1. We analyze specific wormhole geometries, considering asymptotically flat spacetimes and imposing an isotropic pressure. We also construct a thin shell around the interior wormhole solution, by imposing the phantom energy equation of state on the surface stresses. Using the ''volume integral quantifier'' we verify that it is theoretically possible to construct these geometries with vanishing amounts of averaged null energy condition violating phantom energy. Specific wormhole dimensions and the traversal velocity and time are also deduced from the traversability conditions for a particular wormhole geometry. These phantom energy traversable wormholes have far-reaching physical and cosmological implications. For instance, an advanced civilization may use these geometries to induce closed timelike curves, consequently violating causality.Comment: 9 pages, Revtex4. V2: Considerable comments and references added, no physics changes, now 10 pages. Accepted for publication in Physical Review

    SSM/I Rainfall Volume Correlated with Deepening Rate in Extratropical Cyclones

    Get PDF
    With the emergence of reasonably robust, physically based rain rate algorithms designed for the Special Sensor Microwave/Imager (SSM/I), a unique opportunity exists to directly observe a physical component which can contribute to or be a signature of cyclone deepening (latent heat release). The emphasis of the research in this paper is to seek systematic differences in rain rate observed by the SSM/I, using the algorithm of Petty in cases of explosive and nonexplosive cyclone deepening

    Advanced high temperature static strain sensor development

    Get PDF
    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K
    • 

    corecore