805 research outputs found

    A chemical and biological survey of the lower Potomac River in the vicinity of Piney Point, Maryland

    Get PDF
    This report presents the results of a survey of benthic organisms in the lower Potomac River estuary in the vicinity of Steuart Petroleum Company\u27s facilities at Piney Point, Maryland (Fig. 1). This survey was conducted to provide baseline data for the assessment of impact of the expansion of pier facilities at Steuart Petroleum. The environmental impact assessment is being made by Enviro Plan, Inc

    Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses

    Get PDF
    Antibodies raised in Indian rhesus macaques [Macaca mulatta (MM)] in many preclinical vaccine studies are often evaluated in vitro for titer, antigen-recognition breadth, neutralization potency, and/or effector function, and in vivo for potential associations with protection. However, despite reliance on this key animal model in translation of promising candidate vaccines for evaluation in first in man studies, little is known about the properties of MM immunoglobulin G (IgG) subclasses and how they may compare to human IgG subclasses. Here, we evaluate the binding of MM IgG1, IgG2, IgG3, and IgG4 to human Fc gamma receptors (FcgammaR) and their ability to elicit the effector functions of human FcgammaR-bearing cells, and unlike in humans, find a notable absence of subclasses with dramatically silent Fc regions. Biophysical, in vitro, and in vivo characterization revealed MM IgG1 exhibited the greatest effector function activity followed by IgG2 and then IgG3/4. These findings in rhesus are in contrast with the canonical understanding that IgG1 and IgG3 dominate effector function in humans, indicating that subclass-switching profiles observed in rhesus studies may not strictly recapitulate those observed in human vaccine studies

    Sex differences in age-related decline of urinary insulin-like growth factor-binding protein-3 levels in adult bonobos and chimpanzees

    Get PDF
    There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely-related species, such as non-human primates, can be very useful. Here we use data from bonobos and chimpanzees, two closely-related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I, to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged ten years or older we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30 to 35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (< 10 years) of both sexes. Moreover, like humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex-differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life history strategies in cross-sectional and in longitudinal studies, both in captivity and in the wild

    Diagnosing air quality changes in the UK during the COVID-19 lockdown using TROPOMI and GEOS-Chem

    Get PDF
    The dramatic and sudden reduction in anthropogenic activity due to lockdown measures in the UK in response to the COVID-19 outbreak has resulted in a concerted effort to estimate local and regional changes in air quality, though changes in underlying emissions remain uncertain. Here we combine satellite observations of tropospheric NO_{2} from TROPOspheric Monitoring Instrument and the Goddard Earth Observing System (GEOS)-Chem 3D chemical transport model to estimate that NO_{x} emissions declined nationwide by ~20% during the lockdown (23 March to 31 May 2020). Regionally, these range from 22% to 23% in the western portion of the country to 29% in the southeast and Manchester, and >40% in London. We apply a uniform 20% lockdown period emission reduction to GEOS-Chem anthropogenic emissions over the UK to determine that decline in lockdown emissions led to a national decline in PM_{2.5} of 1.1 Ī¼g m^{āˆ’3}, ranging from 0.6 Ī¼g m^{āˆ’3} in Scotland to 2 Ī¼g m^{āˆ’3} in the southwest. The decline in emissions in cities (>40%) is greater than the national average and causes an increase in ozone of ~2 ppbv in London and Manchester. The change in ozone and PM_{2.5} concentrations due to emission reductions alone is about half the total change from 2019 to 2020. This emphasizes the need to account for emissions and other factors, in particular meteorology, in future air pollution abatement strategies and regulatory action

    Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China

    Get PDF
    Aim Species distribution models (SDMs) are an effective tool to explore the potential distribution of terrestrial, freshwater and marine organisms; however, SDMs have been seldom used to model ichthyoplankton distributions, and thus, our understanding of how larval stages of fishes will respond to climate change is still limited. Here, we developed SDMs to explore potential impacts of climate change on habitat suitability of ichthyoplankton. Location Yangtze Estuary, China. Methods Using long-term ichthyoplankton survey data and a large set of marine predictor variables, we developed ensemble SDMs for five abundant ichthyoplankton species in the Yangtze Estuary (Coilia mystus, Hypoatherina valenciennei, Larimichthys polyactis, Salanx ariakensis and Chelidonichthys spinosus). Then, we projected their habitat suitability under present and future climate conditions. Results The ensemble SDMs had good predictive performance and were successful in estimating the known distributions of the five species. Model projections highlighted two contrasting patterns of response to future climates: while C. mystus will likely expand its range, the ranges of the other four species will likely contract and shift northward. Main conclusions According to our SDM projections, the five ichthyoplankton species that we tested in the Yangtze Estuary are likely to respond differently to future climate changes. These projected different responses seemingly reflect the differential functional attributes and life-history strategies of these species. To the extent that climate change emerges as a critical driver of the future distribution of these species, our findings provide an important roadmap for designing future conservation strategies for ichthyoplankton in this region.Peer reviewe

    Attribution of recent increases in atmospheric methane through 3-D inverse modelling

    Get PDF
    The atmospheric methane (CH4) growth rate has varied considerably in recent decades. Unexplained renewed growth after 2006 followed 7 years of stagnation and coincided with an isotopic trend toward CH4 more depleted in 13C, suggesting changes in sources and/or sinks. Using surface observations of both CH4 and the relative change of isotopologue ratio (Ī“13CH4) to constrain a global 3-D chemical transport model (CTM), we have performed a synthesis inversion for source and sink attribution. Our method extends on previous studies by providing monthly and regional attribution of emissions from six different sectors and changes in atmospheric sinks for the extended 2003ā€“2015 period. Regional evaluation of the model CH4 tracer with independent column observations from the Greenhouse Gases Observing Satellite (GOSAT) shows improved performance when using posterior fluxes (R=0.94ā€“0.96, RMSEā€‰=8.3ā€“16.5ā€‰ppb), relative to prior fluxes (R=0.60ā€“0.92, RMSEā€‰=48.6ā€“64.6ā€‰ppb). Further independent validation with data from the Total Carbon Column Observing Network (TCCON) shows a similar improvement in the posterior fluxes (R=0.87, RMSEā€‰=18.8ā€‰ppb) compared to the prior fluxes (R=0.69, RMSEā€‰=55.9ā€‰ppb). Based on these improved posterior fluxes, the inversion results suggest the most likely cause of the renewed methane growth is a post-2007 1.8Ā±0.4ā€‰% decrease in mean OH, a 12.9Ā±2.7ā€‰% increase in energy sector emissions, mainly from Africaā€“Middle East and southern Asiaā€“Oceania, and a 2.6Ā±1.8ā€‰% increase in wetland emissions, mainly from northern Eurasia. The posterior wetland flux increases are in general agreement with bottom-up estimates, but the energy sector growth is greater than estimated by bottom-up methods. The model results are consistent across a range of sensitivity analyses. When forced to assume a constant (annually repeating) OH distribution, the inversion requires a greater increase in energy sector (13.6Ā±2.7ā€‰%) and wetland (3.6Ā±1.8ā€‰%) emissions and an 11.5Ā±3.8ā€‰% decrease in biomass burning emissions. Assuming no prior trend in sources and sinks slightly reduces the posterior growth rate in energy sector and wetland emissions and further increases the magnitude of the negative OH trend. We find that possible tropospheric Cl variations do not influence Ī“13CH4 and CH4 trends, although we suggest further work on Cl variability is required to fully diagnose this contribution. While the study provides quantitative insight into possible emissions variations which may explain the observed trends, uncertainty in prior source and sink estimates and a paucity of Ī“13CH4 observations limit the robustness of the posterior estimates

    A Phase-Field Model of Spiral Dendritic Growth

    Full text link
    Domains of condensed-phase monolayers of chiral molecules exhibit a variety of interesting nonequilibrium structures when formed via pressurization. To model these domain patterns, we add a complex field describing the tilt degree of freedom to an (anisotropic) complex-phase-field solidification model. The resulting formalism allows for the inclusion of (in general, non-reflection symmetric) interactions between the tilt, the solid-liquid interface, and the bond orientation. Simulations demonstrate the ability of the model to exhibit spiral dendritic growth.Comment: text plus Four postscript figure file

    Interplay of disorder and nonlinearity in Klein-Gordon models: Immobile kinks

    Full text link
    We consider Klein-Gordon models with a Ī“\delta-correlated spatial disorder. We show that the properties of immobile kinks exhibit strong dependence on the assumptions as to their statistical distribution over the minima of the effective random potential. Namely, there exists a crossover from monotonically increasing (when a kink occupies the deepest potential well) to the non-monotonic (at equiprobable distribution of kinks over the potential minima) dependence of the average kink width as a function of the disorder intensity. We show also that the same crossover may take place with changing size of the system.Comment: 7 pages, 4 figure

    Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel-Kontorova chain

    Full text link
    Kink dynamics of the damped Frenkel-Kontorova (discrete sine-Gordon) chain driven by a constant external force are investigated. Resonant steplike transitions of the average velocity occur due to the competitions between the moving kinks and their radiated phasonlike modes. A mean-field consideration is introduced to give a precise prediction of the resonant steps. Slip-stick motion and spatiotemporal dynamics on those resonant steps are discussed. Our results can be applied to studies of the fluxon dynamics of 1D Josephson-junction arrays and ladders, dislocations, tribology and other fields.Comment: 20 Plain Latex pages, 10 Eps figures, to appear in Phys. Rev.

    The acheulean handaxe : More like a bird's song than a beatles' tune?

    Get PDF
    Ā© 2016 Wiley Periodicals, Inc. KV is supported by the Netherlands Organization for Scientific Research. MC is supported by the Canada Research Chairs Program, the Social Sciences and Humanities Research of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser UniversityPeer reviewedPublisher PD
    • ā€¦
    corecore