107 research outputs found

    Association of Hepatitis C Virus—Specific CD8+ T Cells with Viral Clearance in Acute Hepatitis C

    Get PDF
    CD8+ T lymphocytes play a major role in antiviral immune defense. Their significance for acute hepatitis C is unclear. Our aim was to correlate the CD8+ T cell response with the outcome of infection. Eighteen patients with acute hepatitis C and 19 normal donors were studied. Hepatitis C virus (HCV)—specific CD8+ T cells were identified in the enzyme-linked immunospot assay by their interferon-γ (IFN-γ) production after specific stimulation. The highest numbers of IFN-γ—producing HCV-specific CD8+ T cells were found in patients with acute hepatitis C and a self-limited course of disease during the first 6 months after onset of disease, but these numbers dropped thereafter to undetectable levels. The differences in responsiveness between patients with self-limited disease versus patients with a chronic course were statistically significant (P < .001). Our data show that the number of IFN—γ-producing HCV-specific CD8+ T cells during the first 6 months after onset of disease is associated with eradication of the HCV infectio

    Association of Hepatitis C Virus—Specific CD8+ T Cells with Viral Clearance in Acute Hepatitis C

    Get PDF
    CD8+ T lymphocytes play a major role in antiviral immune defense. Their significance for acute hepatitis C is unclear. Our aim was to correlate the CD8+ T cell response with the outcome of infection. Eighteen patients with acute hepatitis C and 19 normal donors were studied. Hepatitis C virus (HCV)—specific CD8+ T cells were identified in the enzyme-linked immunospot assay by their interferon-γ (IFN-γ) production after specific stimulation. The highest numbers of IFN-γ—producing HCV-specific CD8+ T cells were found in patients with acute hepatitis C and a self-limited course of disease during the first 6 months after onset of disease, but these numbers dropped thereafter to undetectable levels. The differences in responsiveness between patients with self-limited disease versus patients with a chronic course were statistically significant (P < .001). Our data show that the number of IFN—γ-producing HCV-specific CD8+ T cells during the first 6 months after onset of disease is associated with eradication of the HCV infection

    Multivisceral intestinal transplantation: Surgical pathology

    Get PDF
    We report the diagnostic surgical pathology of two children who underwent multivisceral abdominal transplantation and survived for 1 month and 6 months. There is little relevant literature, and diagnostic criteria for the various clinical possibilities are not established; this is made more complicated by the simultaneous occurrence of more than one process. We based our interpretations on conventional histology, augmented with immunohistology, including HLA staining that distinguished graft from host cells in situ. In some instances functional analysis of T cells propagated from the same biopsies was available and was used to corroborate morphological interpretations. A wide spectrum of changes was encountered. Graft-versus-host disease, a prime concern before surgery, was not seen. Rejection was severe in 1 patient, not present in the other, and both had evidence of lymphoproliferative disease, which was related to Epstein-Barr virus. Bacterial translocation through the gut wall was also a feature in both children. This paper documents and illustrates the various diagnostic possibilities.. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Degradation, infection and heat effects on polypropylene mesh for pelvic implantation: what was known and when it was known

    Get PDF
    Many properties of polypropylene mesh that are causative in producing the complications that our patients are experiencing were published in the literature prior to the marketing of most currently used mesh configurations and mesh kits. These factors were not sufficiently taken into account prior to the sale of these products for use in patients. This report indicates when this information was available to both mesh kit manufacturers and the Food and Drug Administration

    Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder

    Get PDF
    In order to determine the impact of the epigenetic response to traumatic stress on post-traumatic stress disorder (PTSD), this study examined longitudinal changes of genome-wide blood DNA methylation profiles in relation to the development of PTSD symptoms in two prospective military cohorts (one discovery and one replication data set). In the first cohort consisting of male Dutch military servicemen (n=93), the emergence of PTSD symptoms over a deployment period to a combat zone was significantly associated with alterations in DNA methylation levels at 17 genomic positions and 12 genomic regions. Evidence for mediation of the relation between combat trauma and PTSD symptoms by longitudinal changes in DNA methylation was observed at several positions and regions. Bioinformatic analyses of the reported associations identified significant enrichment in several pathways relevant for symptoms of PTSD. Targeted analyses of the significant findings from the discovery sample in an independent prospective cohort of male US marines (n=98) replicated the observed relation between decreases in DNA methylation levels and PTSD symptoms at genomic regions in ZFP57, RNF39 and HIST1H2APS2. Together, our study pinpoints three novel genomic regions where longitudinal decreases in DNA methylation across the period of exposure to combat trauma marks susceptibility for PTSD

    Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder

    Get PDF
    In order to determine the impact of the epigenetic response to traumatic stress on post-traumatic stress disorder (PTSD), this study examined longitudinal changes of genome-wide blood DNA methylation profiles in relation to the development of PTSD symptoms in two prospective military cohorts (one discovery and one replication data set). In the first cohort consisting of male Dutch military servicemen (n=93), the emergence of PTSD symptoms over a deployment period to a combat zone was significantly associated with alterations in DNA methylation levels at 17 genomic positions and 12 genomic regions. Evidence for mediation of the relation between combat trauma and PTSD symptoms by longitudinal changes in DNA methylation was observed at several positions and regions. Bioinformatic analyses of the reported associations identified significant enrichment in several pathways relevant for symptoms of PTSD. Targeted analyses of the significant findings from the discovery sample in an independent prospective cohort of male US marines (n=98) replicated the observed relation between decreases in DNA methylation levels and PTSD symptoms at genomic regions in ZFP57, RNF39 and HIST1H2APS2. Together, our study pinpoints three novel genomic regions where longitudinal decreases in DNA methylation across the period of exposure to combat trauma marks susceptibility for PTSD

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes

    Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects.

    Get PDF
    Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course
    corecore