390 research outputs found

    Extinction of impurity resonances in large-gap regions of inhomogeneous d-wave superconductors

    Full text link
    Impurity resonances observed by scanning tunneling spectroscopy in the superconducting state have been used to deduce properties of the underlying pure state. Here we study a longstanding puzzle associated with these measurements, the apparent extinction of these resonances for Ni and Zn impurities in large-gap regions of the inhomogeneous BSCCO superconductor. We calculate the effect of order parameter and hopping suppression near the impurity site, and find that these two effects are sufficient to explain the missing resonances in the case of Ni. There are several possible scenarios for the extinction of the Zn resonances, which we discuss in turn; in addition, we propose measurements which could distinguish among them.Comment: 10 pages, 8 figure

    Step Counts of 10- to 11-Year-Old Children by Ethnicity and Metropolitan Status

    Get PDF
    Background: The purpose of this study was to conduct a secondary analysis by combining 2 pedometer data sets to describe and analyze pedometer-determined steps/day of children by ethnicity and metropolitan status. Methods: Participants were 582 children (309 girls, 273 boys; 53% Hispanic, 26% Caucasian, 21% African American) age 10 to 11 years (M = 10.37 ± 0.48) attending 1 of 10 schools located in urban, suburban, and rural settings. Participants wore a research grade pedometer for at least 3 week/school days. Mean steps/ day were analyzed by gender, ethnicity, and metropolitan status. Results: Statistical analyses indicated 1) boys (12,853 ± 3831; P \u3c .001) obtained significantly more steps/day than girls (10,409 ± 3136); 2) African American (10,709 ± 3386; P \u3c .05) children accumulated significantly less steps/day than Hispanic (11,845 ± 3901) and Caucasian (11,668 ± 3369) children; and 3) urban (10,856 ± 3706; P \u3c .05) children obtained significantly less steps/day than suburban (12,297 ± 3616) and rural (11,934 ± 3374) children. Conclusions: Findings support self-report data demonstrating reduced physical activity among African American children and youth, especially girls, and among children and youth living in urban areas. Possible reasons for these discrepancies are explored

    Repulsion and attraction in high Tc superconductors

    Full text link
    The influence of repulsion and attraction in high-Tc superconductors to the gap functions is studied. A systematic method is proposed to compute the gap functions using the irreducible representations of the point group. It is found that a pure s-wave superconductivity exists only at very low temperatures, and attractive potentials on the near shells significantly expand the gap functions and increase significantly the critical temperature of superconductivity. A strong on-site repulsion drives the A1gA_{1g} gap into a B1gB_{1g} gap. It is expected that superconductivity with the A1gA_{1g} symmetry reaches a high critical temperature due to the cooperation of the on-site and the next-nearest neighbor attractions.Comment: 4 pages, 5figure

    Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy

    Full text link
    To test the dust torus model for active galactic nuclei directly, we study the extent and morphology of the nuclear dust distribution in the Circinus galaxy using high resolution interferometric observations in the mid-infrared with the MIDI instrument at the Very Large Telescope Interferometer. We find that the dust distribution in the nucleus of Circinus can be explained by two components, a dense and warm disk-like component of 0.4 pc size and a slightly cooler, geometrically thick torus component with a size of 2.0 pc. The disk component is oriented perpendicular to the ionisation cone and outflow and seems to show the silicate feature at 10 micron in emission. It coincides with a nuclear maser disk in orientation and size. From the energy needed to heat the dust, we infer a luminosity of the accretion disk corresponding to 20% of the Eddington luminosity of the nuclear black hole. We find that the interferometric data are inconsistent with a simple, smooth and axisymmetric dust emission. The irregular behaviour of the visibilities and the shallow decrease of the dust temperature with radius provide strong evidence for a clumpy or filamentary dust structure. We see no evidence for dust reprocessing, as the silicate absorption profile is consistent with that of standard galactic dust. We argue that the collimation of the ionising radiation must originate in the geometrically thick torus component. Our findings confirm the presence of a geometrically thick, torus-like dust distribution in the nucleus of Circinus, as required in unified schemes of Seyfert galaxies. Several aspects of our data require that this torus is irregular, or "clumpy".Comment: 20 pages, 16 figures, accepted for publication by A&

    Influence of Fermi surface topology on the quasiparticle spectrum in the vortex state

    Full text link
    We study the influence of Fermi surface topology on the quasiparticle density of states in the vortex state of type II superconductors. We observe that the field dependence and the shape of the momentum and spatially averaged density of states is affected significantly by the topology of the Fermi surface. We show that this behavior can be understood in terms of characteristic Fermi surface functions and that an important role is played by the number of points on the Fermi surface at which the Fermi velocity is directed parallel to the magnetic field. A critical comparison is made with a broadened BCS type density of states, that has been used frequently in analysis of tunneling data. We suggest a new formula as a replacement for the broadened BCS model for the special case of a cylindrical Fermi surface. We apply our results to the two gap superconductor MgB2_2 and show that in this particular case the field dependence of the partial densities of states of the two gaps behaves very differently due to the different topologies of the corresponding Fermi surfaces, in qualitative agreement with recent tunneling experiments.Comment: 12 pages 12 figure

    Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides

    Get PDF
    Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave (A1gA_{1g}) symmetry (s±s^\pm). In particular we focus on the role of the hole pocket at the (π,π)(\pi,\pi) point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {\it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic s±s^\pm state. The pocket's contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap

    Single Impurity Problem in Iron-Pnictide Superconductors

    Full text link
    Single impurity problem in iron-pnictide superconductors is investigated by solving Bogoliubov-de Gennes (BdG) equation in the five-orbital model, which enables us to distinguish s+_{+-} and s++_{++} superconducting states. We construct a five-orbital model suitable to BdG analysis. This model reproduces the results of random phase approximation in the uniform case. Using this model, we study the local density of states around a non-magnetic impurity and discuss the bound-state peak structure, which can be used for distinguishing s+_{+-} and s++_{++} states. A bound state with nearly zero-energy is found for the impurity potential I1.0I\sim 1.0 eV, while the bound state peaks stick to the gap edge in the unitary limit. Novel multiple peak structure originated from the multi-orbital nature of the iron pnictides is also found.Comment: 5 page

    Normal State Spin Dynamics of Five-band Model for Iron-pnictides

    Full text link
    Normal state spin dynamics of the recently discovered iron-pnictide superconductors is discussed by calculating spin structure factor S(q, omega) in an itinerant five-band model within RPA approximation. Due to the characteristic Fermi surface structure of iron-pnictide, column like response is found at (pi, 0) in extended Brillouin zone in the undoped case, which is consistent with the recent neutron scattering experiment. This indicates that the localized spin model is not necessary to explain the spin dynamics of this system. Furthermore, we show that the temperature dependence of inelastic neutron scattering intensity can be well reproduced in the itinerant model. We also study NMR 1/T_1T in the same footing calculation and show that the itinerant model can capture the magnetic property of iron-pnictide superconductors.Comment: 4 page

    Superconductivity at the Border of Electron Localization and Itinerancy

    Full text link
    The superconducting state of iron pnictides and chalcogenides exists at the border of antiferromagnetic order. Consequently, these materials could provide clues about the relationship between magnetism and unconventional superconductivity. One explanation, motivated by the so-called bad-metal behaviour of these materials, proposes that magnetism and superconductivity develop out of quasi-localized magnetic moments which are generated by strong electron-electron correlations. Another suggests that these phenomena are the result of weakly interacting electron states that lie on nested Fermi surfaces. Here we address the issue by comparing the newly discovered alkaline iron selenide superconductors, which exhibit no Fermi-surface nesting, to their iron pnictide counterparts. We show that the strong-coupling approach leads to similar pairing amplitudes in these materials, despite their different Fermi surfaces. We also find that the pairing amplitudes are largest at the boundary between electronic localization and itinerancy, suggesting that new superconductors might be found in materials with similar characteristics.Comment: Version of the published manuscript prior to final journal-editting. Main text (23 pages, 4 figures) + Supplementary Information (14 pages, 7 figures, 3 tables). Calculation on the single-layer FeSe is added. Enhancement of the pairing amplitude in the vicinity of the Mott transition is highlighted. Published version is at http://www.nature.com/ncomms/2013/131115/ncomms3783/full/ncomms3783.htm

    Parsec-scale dust distributions in Seyfert galaxies - Results of the MIDI AGN snapshot survey

    Full text link
    The emission of warm dust dominates the mid-infrared spectra of active galactic nuclei (AGN). Only interferometric observations provide the necessary angular resolution to resolve the nuclear dust and to study its distribution and properties. The investigation of dust in AGN cores is hence one of the main science goals for the MID-infrared Interferometric instrument MIDI at the VLTI. As the first step, the feasibility of AGN observations was verified and the most promising sources for detailed studies were identified. This was carried out in a "snapshot survey" with MIDI using Guaranteed Time Observations. In the survey, observations were attempted for 13 of the brightest AGN in the mid-infrared which are visible from Paranal. The results of the three brightest, best studied sources have been published in separate papers. Here we present the interferometric observations for the remaining 10, fainter AGN. For 8 of these, interferometric measurements could be carried out. Size estimates or limits on the spatial extent of the AGN-heated dust were derived from the interferometric data of 7 AGN. These indicate that the dust distributions are compact, with sizes on the order of a few parsec. The derived sizes roughly scale with the square root of the luminosity in the mid-infrared, s ~ sqrt(L), with no clear distinction between type 1 and type 2 objects. This is in agreement with a model of nearly optically thick dust structures heated to T ~ 300 K. For three sources, the 10 micron feature due to silicates is tentatively detected either in emission or in absorption. Based on the results for all AGN studied with MIDI so far, we conclude that in the mid-infrared the differences between individual galactic nuclei are greater than the generic differences between type 1 and type 2 objects.Comment: 18 pages, 8 figures, updated to version published in A&A 502, 67-8
    corecore