619 research outputs found

    Corrigendum to “Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps” [Earth Planet. Sci. Lett. 449 (2016) 332–344]

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Earth and Planetary Science Letters 475 (2017): 268, doi:10.1016/j.epsl.2017.07.037

    Mass fractionation of noble gases in synthetic methane hydrate : implications for naturally occurring gas hydrate dissociation

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Chemical Geology 339 (2013): 242-250, doi:10.1016/j.chemgeo.2012.09.033.As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean–atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.Partial support for this research was provided by Interagency Agreements DE-FE0002911 and DE-NT0006147 between the U.S. Geological Survey Gas Hydrates Project and the U.S. Department of Energy's Methane Hydrates Research and Development Program

    Parametrically-stimulated recovery of a microwave signal using standing spin-wave modes of a magnetic film

    Full text link
    The phenomenon of storage and parametrically-stimulated recovery of a microwave signal in a ferrite film has been studied both experimentally and theoretically. The microwave signal is stored in the form of standing spin-wave modes existing in the film due to its finite thickness. Signal recovery is performed by means of frequency-selective amplification of one of these standing modes by double- requency parametric pumping process. The time of recovery, as well as the duration and magnitude of the recovered signal, depend on the timing and amplitudes of both the input and pumping pulses. A mean-field theory of the recovery process based on the competitive interaction of the signal-induced standing spin-wave mode and thermal magnons with the parametric pumping field is developed and compared to the experimental data

    Work functions, ionization potentials, and in-between: Scaling relations based on the image charge model

    Full text link
    We revisit a model in which the ionization energy of a metal particle is associated with the work done by the image charge force in moving the electron from infinity to a small cut-off distance just outside the surface. We show that this model can be compactly, and productively, employed to study the size dependence of electron removal energies over the range encompassing bulk surfaces, finite clusters, and individual atoms. It accounts in a straightforward manner for the empirically known correlation between the atomic ionization potential (IP) and the metal work function (WF), IP/WF∌\sim2. We formulate simple expressions for the model parameters, requiring only a single property (the atomic polarizability or the nearest neighbor distance) as input. Without any additional adjustable parameters, the model yields both the IP and the WF within ∌\sim10% for all metallic elements, as well as matches the size evolution of the ionization potentials of finite metal clusters for a large fraction of the experimental data. The parametrization takes advantage of a remarkably constant numerical correlation between the nearest-neighbor distance in a crystal, the cube root of the atomic polarizability, and the image force cutoff length. The paper also includes an analytical derivation of the relation of the outer radius of a cluster of close-packed spheres to its geometric structure.Comment: Original submission: 8 pages with 7 figures incorporated in the text. Revised submission (added one more paragraph about alloy work functions): 18 double spaced pages + 8 separate figures. Accepted for publication in PR

    Recent magnetic views of the Antarctic lithosphere

    Get PDF
    Magnetic anomaly investigations are a key tool to help unveil subglacial geology, crustal architecture and the tectonic and geodynamic evolution of the Antarctic continent. Here, we present the second generation Antarctic magnetic anomaly compilation ADMAP 2.0 (Golynsky et al., 2018), that now includes a staggering 3.5 million line-km of aeromagnetic and marine magnetic data, more than double the amount of data available in the first generation effort. All the magnetic data were corrected for the International Geomagnetic Reference Field, diurnal effects, high-frequency errors and leveled, gridded,and stitched together. The new magnetic anomaly dataset provides tantalising new views into the structure and evolution of the Antarctic Peninsula and the West Antarctic Rift System within West Antarctica, and Dronning Maud Land, the Gamburtsev Subglacial Mountains, the Prince Charles Mountains, Princess Elizabeth Land, and Wilkes Land in East Antarctica, as well as key insights into oceanic gateways. Our magnetic anomaly compilation is helping unify disparate regional geologic and geophysical studies by providing larger-scale perspectives into the major tectonic and magmatic processes that affected Antarctica from Precambrian to Cenozoic times, including e.g. the processes of subduction and magmatic arc development, orogenesis, accretion, cratonisation and continental rifting, as well as continental margin and oceanic basin evolution. The international Antarctic geomagnetic community remains very active in the wake of ADMAP 2.0, and we will showcase some of their key ongoing study areas, such as the South Pole and Recovery frontiers, the Ross Ice Shelf, Dronning Maud Land and Princess Elizabeth Land

    H.E.S.S. observations of gamma-ray bursts in 2003-2007

    Full text link
    Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays. Dedicated observations of 32 GRB positions were made in the years 2003-2007 and a search for VHE gamma-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures

    A Replication of Failure, Not a Failure to Replicate

    Full text link
    Purpose: The increasing role of systematic reviews in knowledge production demands greater rigor in the literature search process. The performance of the Social Work Abstracts (SWA) database has been examined multiple times over the past three decades. The current study is a replication within this line of research. Method: Issue level coverage was examined for the same 33 SWA core journals and the same time period as our 2009 study. Results: The mean percentage of issues missing in the current study was 20%. The mean percentage of issues missing in the current study was significantly greater than the mean percentage of issues missing in the 2009 study. Discussion: The research of other groups, and that of our own, has failed to prompt NASW Press to act. SWA was failing, it is failing and NASW Press has failed to correct those failures
    • 

    corecore