178 research outputs found

    Rocking motion induced charging of C60 on h-BN/Ni(111)

    Full text link
    One monolayer of C60 on one monolayer of hexagonal boron nitride on nickel is investigated by photoemission. Between 150 and 250 K the work function decreases and the binding energy of the highest occupied molecular orbital (HOMO) increases by approx. 100 meV. In parallel, the occupancy of the, in the cold state almost empty, lowest unoccupied molecular orbital (LUMO) changes by 0.4 electrons. This charge redistribution is triggered by onset of molecular rocking motion, i.e. by orientation dependent tunneling between the LUMO of C60 and the substrate. The magnitude of the charge transfer is large and cannot be explained within a single particle picture. It is proposed to involve electron-phonon coupling where C60- polaron formation leads to electron self-trapping.Comment: 15 pages, 4 figure

    Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111)

    Get PDF
    As a continuation of our work employing polyphenylene-dicarbonitrile molecules and in particular the terphenyl derivative 1 (TDCN), we have synthesized a novel ditopic terphenyl-4,4"-di(propiolonitrile) (2) linker for the self-assembly of organic monolayers and metal coordination at interfaces. The structure of the organic linker 2 was confirmed by single crystal X-ray diffraction analysis (XRD). On the densely packed Ag(111) surface, the terphenyl-4,4"-di(propiolonitrile) linkers self-assemble in a regular, molecular chevron arrangement exhibiting a Moiré pattern. After the exposure of the molecular monolayer to a beam of Gd atoms, the propiolonitrile groups get readily involved in metal–ligand coordination interactions. Distinct coordination motifs evolve with coordination numbers varying between three and six for the laterally-bound Gd centers. The linker molecules retain an overall flat adsorption geometry. However, only networks with restricted local order were obtained, in marked contrast to previously employed, simpler polyphenylene-dicarbonitrile 1 linkers

    An exploratory cluster randomised trial of a university halls of residence based social norms marketing campaign to reduce alcohol consumption among 1st year students

    Get PDF
    <p>Aims: This exploratory trial examines the feasibility of implementing a social norms marketing campaign to reduce student drinking in universities in Wales, and evaluating it using cluster randomised trial methodology.</p> <p>Methods: Fifty residence halls in 4 universities in Wales were randomly assigned to intervention or control arms. Web and paper surveys were distributed to students within these halls (n = 3800), assessing exposure/contamination, recall of and evaluative responses to intervention messages, perceived drinking norms and personal drinking behaviour. Measures included the Drinking Norms Rating Form, the Daily Drinking Questionnaire and AUDIT-C.</p> <p>Results: A response rate of 15% (n = 554) was achieved, varying substantially between sites. Intervention posters were seen by 80% and 43% of students in intervention and control halls respectively, with most remaining materials seen by a minority in both groups. Intervention messages were rated as credible and relevant by little more than half of students, though fewer felt they would influence their behaviour, with lighter drinkers more likely to perceive messages as credible. No differences in perceived norms were observed between intervention and control groups. Students reporting having seen intervention materials reported lower descriptive and injunctive norms than those who did not.</p> <p>Conclusions: Attention is needed to enhancing exposure, credibility and perceived relevance of intervention messages, particularly among heavier drinkers, before definitive evaluation can be recommended. A definitive evaluation would need to consider how it would achieve sufficient response rates, whilst hall-level cluster randomisation appears subject to a significant degree of contamination.</p&gt

    Tuning the electrical conductance of metalloporphyrin supramolecular wires

    Get PDF
    In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductanc than their current in-plane (CIP) counterparts, ranging from 2.10−2 G0 for Ni-DPP up to 8.10−2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high conductance CPP single-molecule devices

    Preserving Charge and Oxidation State of Au(III) Ions in an Agent-Functionalized Nanocrystal Model System

    Get PDF
    Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of, the active center is indispensable. We. present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support With potential Impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy,we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal-ligand bonding interaction and completes the study by providing an Illustrative electrostatic.. model relevant for ionic metalorganic agent molecules, in general

    Polycyclic aromatic chains on metals and insulating layers by repetitive [3+2] cycloadditions

    Get PDF
    The vast potential of organic materials for electronic, optoelectronic and spintronic devices entails substantial interest in the fabrication of π-conjugated systems with tailored functionality directly at insulating interfaces. On-surface fabrication of such materials on non-metal surfaces remains to be demonstrated with high yield and selectivity. Here we present the synthesis of polyaromatic chains on metallic substrates, insulating layers, and in the solid state. Scanning probe microscopy shows the formation of azaullazine repeating units on Au(111), Ag(111), and h-BN/Cu(111), stemming from intermolecular homo-coupling via cycloaddition reactions of CN-substituted polycyclic aromatic azomethine ylide (PAMY) intermediates followed by subsequent dehydrogenation. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry demonstrates that the reaction also takes place in the solid state in the absence of any catalyst. Such intermolecular cycloaddition reactions are promising methods for direct synthesis of regioregular polyaromatic polymers on arbitrary insulating surfaces.This work was financially supported by the European Research Council Consolidator Grant NanoSurfs (no. 615233), the Advanced Grant (no. 694097), the Horizon 2020 research and innovation program 2D ink (no. 664878) and the National Science Foundation of China (no. 11974403 and Sino-German Project no. 51761135130). W.A. acknowledges funding by the DFG via a Heisenberg professorship. M.R., R.B., and X.F. thank the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden (cfaed)” and EnhanceNano (No. 391979941). A.P.P. and A.Ru. thank the Cluster of Excellence "Advanced Imaging of Matter (AIM)" and Grupos Consolidados (IT1249-19). M.G. acknowledges funding by the H2020-MSCA-IF−2014 program under GA no. 658070 (2DNano).Peer reviewe
    corecore