42 research outputs found

    Unsplit superconducting and time reversal symmetry breaking transitions in Sr2_2RuO4_4 under hydrostatic pressure and disorder

    Get PDF
    There is considerable evidence that the superconducting state of Sr2_2RuO4_4 breaks time reversal symmetry. In the experiments showing time reversal symmetry breaking its onset temperature, TTRSBT_\text{TRSB}, is generally found to match the critical temperature, TcT_\text{c}, within resolution. In combination with evidence for even parity, this result has led to consideration of a dxz±idyzd_{xz} \pm id_{yz} order parameter. The degeneracy of the two components of this order parameter is protected by symmetry, yielding TTRSB=TcT_\text{TRSB} = T_\text{c}, but it has a hard-to-explain horizontal line node at kz=0k_z=0. Therefore, s±ids \pm id and d±igd \pm ig order parameters are also under consideration. These avoid the horizontal line node, but require tuning to obtain TTRSBTcT_\text{TRSB} \approx T_\text{c}. To obtain evidence distinguishing these two possible scenarios (of symmetry-protected versus accidental degeneracy), we employ zero-field muon spin rotation/relaxation to study pure Sr2_2RuO4_4 under hydrostatic pressure, and Sr1.98_{1.98}La0.02_{0.02}RuO4_4 at zero pressure. Both hydrostatic pressure and La substitution alter TcT_\text{c} without lifting the tetragonal lattice symmetry, so if the degeneracy is symmetry-protected TTRSBT_\text{TRSB} should track changes in TcT_\text{c}, while if it is accidental, these transition temperatures should generally separate. We observe TTRSBT_\text{TRSB} to track TcT_\text{c}, supporting the hypothesis of dxz±idyzd_{xz} \pm id_{yz} order.Comment: 14 pages, 8 Figure

    Contrasting Micro/Nano Architecture on Termite Wings: Two Divergent Strategies for Optimising Success of Colonisation Flights

    Get PDF
    Many termite species typically fly during or shortly after rain periods. Local precipitation will ensure water will be present when establishing a new colony after the initial flight. Here we show how different species of termite utilise two distinct and contrasting strategies for optimising the success of the colonisation flight. Nasutitermes sp. and Microcerotermes sp. fly during rain periods and adopt hydrophobic structuring/‘technologies’ on their wings to contend with a moving canvas of droplets in daylight hours. Schedorhinotermes sp. fly after rain periods (typically at night) and thus do not come into contact with mobile droplets. These termites, in contrast, display hydrophilic structuring on their wings with a small scale roughness which is not dimensionally sufficient to introduce an increase in hydrophobicity. The lack of hydrophobicity allows the termite to be hydrophilicly captured at locations where water may be present in large quantities; sufficient for the initial colonization period. The high wettability of the termite cuticle (Schedorhinotermes sp.) indicates that the membrane has a high surface energy and thus will also have strong attractions with solid particles. To investigate this the termite wings were also interacted with both artificial and natural contaminants in the form of hydrophilic silicon beads of various sizes, 4 µm C18 beads and three differently structured pollens. These were compared to the superhydrophobic surface of the planthopper (Desudaba psittacus) and a native Si wafer surface. The termite cuticle demonstrated higher adhesive interactions with all particles in comparison to those measured on the plant hopper

    Skin Lesions on Common Bottlenose Dolphins (Tursiops truncatus) from Three Sites in the Northwest Atlantic, USA

    Get PDF
    Skin disease occurs frequently in many cetacean species across the globe; methods to categorize lesions have relied on photo-identification (photo-id), stranding, and by-catch data. The current study used photo-id data from four sampling months during 2009 to estimate skin lesion prevalence and type occurring on bottlenose dolphins (Tursiops truncatus) from three sites along the southeast United States coast [Sarasota Bay, FL (SSB); near Brunswick and Sapelo Island, GA (BSG); and near Charleston, SC (CHS)]. The prevalence of lesions was highest among BSG dolphins (P = 0.587) and lowest in SSB (P = 0.380), and the overall prevalence was significantly different among all sites (p<0.0167). Logistic regression modeling revealed a significant reduction in the odds of lesion occurrence for increasing water temperatures (OR = 0.92; 95%CI:0.906–0.938) and a significantly increased odds of lesion occurrence for BSG dolphins (OR = 1.39; 95%CI:1.203–1.614). Approximately one-third of the lesioned dolphins from each site presented with multiple types, and population differences in lesion type occurrence were observed (p<0.05). Lesions on stranded dolphins were sampled to determine the etiology of different lesion types, which included three visually distinct samples positive for herpesvirus. Although generally considered non-fatal, skin disease may be indicative of animal health or exposure to anthropogenic or environmental threats, and photo-id data provide an efficient and cost-effective approach to document the occurrence of skin lesions in free-ranging populations
    corecore